Tải bản đầy đủ (.pdf) (76 trang)

ỨNG DỤNG MPC THIẾT KẾ BỘ ĐIỀU KHIỂN CHO LÒ PHẢN ỨNG KHUẤY TRỘN LIÊN TỤC LUẬN VĂN THẠC SĨ KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.41 MB, 76 trang )

ĐẠI HỌC ĐÀ NẴNG
TRƢỜNG ĐẠI HỌC BÁCH KHOA
------------------

ĐÀO MINH THỦY

ỨNG DỤNG MPC THIẾT KẾ BỘ ĐIỀU KHIỂN CHO LÒ
PHẢN ỨNG KHUẤY TRỘN LIÊN TỤC

LUẬN VĂN THẠC SĨ
KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA

Đà Nẵng - Năm 2018


ĐẠI HỌC ĐÀ NẴNG
TRƢỜNG ĐẠI HỌC BÁCH KHOA
------------------

ĐÀO MINH THỦY

ỨNG DỤNG MPC THIẾT KẾ BỘ ĐIỀU KHIỂN CHO LÒ
PHẢN ỨNG KHUẤY TRỘN LIÊN TỤC

Chuyên ngành: Kỹ thuật điều khiển và tự động hóa
Mã số: 8520216

LUẬN VĂN THẠC SĨ

NGƢỜI HƢỚNG DẪN KHOA HỌC:
TS. Nguyễn Quốc Định



Đà Nẵng - Năm 2018


LỜI CẢM ƠN
Trong thời gian học tập cũng nhƣ nghiên cứu thực hiện q trình làm luận văn, tơi
đã tiếp thu đƣợc rất nhiều kiến thức bổ ích từ sự dạy dỗ tận tình của các thầy cơ tại
trƣờng Đại học Bách khoa - Đại học Đà Nẵng. Do đó, tơi xin bày tỏ lịng cảm ơn sâu
sắc đến tập thể các thầy cô giáo, các cán bộ nhà trƣờng, đặc biệt là thầy TS Nguyễn
Quốc Định đã tâm huyết hƣớng dẫn tôi trong suốt thời gian làm luận văn.
Tôi cũng xin chân thành cảm ơn các đồng nghiệp, tập thể các nhà khoa học Bộ
mơn Tự động hóa, Đại học Bách khoa Đà Nẵng, đã có những ý kiến đóng góp q báu
cho tơi trong thời gian làm luận văn.
Tôi cũng xin cảm ơn Ban giám hiệu và các đồng nghiệp đang công tác tại Trƣờng
Cao đẳng công nghệ Tây nguyên và Cao đẳng nghề Đà Nẵng đã tạo điều kiện và giúp
đỡ tôi trong công việc, để tôi có thể hồn thành đƣợc luận văn.
Tác giả luận văn



ỨNG DỤNG MPC THIẾT KẾ BỘ ĐIỀU KHIỂN CHO LÒ
PHẢN ỨNG KHUẤY TRỘN LIÊN TỤC
Học viên: Đào Minh Thủy
Chuyên ngành: Kỹ thuật điều khiển và tự động hóa
Mã số: 8520216
Tóm tắt: Để có những ngun liệu và sản phầm cơng nghiệp đạt tiêu chuẩn về
chất lƣợng và chi phí phục vụ cho nhiều ngành sản xuất thì cần quan tâm và phát triển
mạnh ngành cơng nghiệp hóa chất, đƣa ngành cơng nghiệp hóa chất trở thành ngành
cơng nghiệp mũi nhọn.
Đề tài: “Ứng dụng MPC thiết kế bộ điều khiển cho lị phản ứng khuấy trộn liên

tục” đã phát triển mơ hình tốn học của hệ thống phi tuyến CSTR có sự tác động bởi
các tín hiệu phi tuyến với 2 tín hiệu đầu vào – 1 tín hiệu đầu ra, cụ thể nhƣ sau:
- Phân tích tổng quan của lị phản ứng khuấy trộn liên tục CSTR
- Xây dựng phƣơng trình trạng thái của của lị phản ứng khuấy trộn liên tục
CSTR
- Ứng dụng thuật toán MPC để điều khiển CSTR, khảo sát sự ảnh hƣởng của các
tham số trong bộ điều khiển và các đáp ứng đầu ra của CSTR.
- Mô phỏng kết quả trên Matlab-Simulink sử dụng bộ điều khiển MPC điều
khiển cho lò phản ứng khuấy trộn liên tục
Từ khóa: Thiết bị khuấy trộn liên tục, phƣơng pháp điều khiển PID, điều khiển
dự báo theo mơ hình MPC.
APPLYING MPC TO DESIGN THE CONTROLLER FOR CONTINUOUS
STIRRED TANK REACTOR
Abstracts: In order to have the industrial materials and products that meet the
standards of quality and cost for various industries, it is necessary to pay attention to
and strongly develop the chemical industry, making the chemical industry a public
industry spearhead industry.
Research entitled “Applying MPC to design the controller for Continuous Stirred
Tank Reactor (CSTR)” developed the mathematical model of CSTR nonlinear system
with the effect of nonlinear signals with the two input - 1 output model. This
research’s results are as follows:
- Review on the various types of CSTR
- Building the space equations of the selected CSTR
- Using the MPC algorithm to control the selected CSTR and analysing the effect of
some parameters to the designed controller’s performance
- Simulating the designed controller’s performance using Matlab-Simulink software

Keywords: Continuous Stirred Tank Reactor, PID control method, model
predictive control MPC.



MỤC LỤC
LỜI CẢM ƠN
LỜI CAM ĐOAN
MỤC LỤC
CÁC KÝ HIỆU ĐƢỢC SỬ DỤNG
CÁC KÝ HIỆU VIẾT TẮT
DANH MỤC CÁC BẢNG
DANH MỤC CÁC HÌNH
MỞ ĐẦU ......................................................................................................................... 1
1. LÝ DO CHỌN ĐỀ TÀI.................................................................................... 1
2. MỤC ĐÍCH NGHIÊN CỨU ............................................................................ 1
3. ĐỐI TƢỢNG VÀ PHẠM VI NGHIÊN CỨU ................................................. 2
4. PHƢƠNG PHÁP NGHIÊN CỨU .................................................................... 2
5. Ý NGHĨA KHOA HỌC VÀ THỰC TIỄN CỦA ĐỀ TÀI ............................... 2
6. CẤU TRÚC CỦA LUẬN VĂN ....................................................................... 2
CHƢƠNG 1. LÝ THUYẾT VỀ ĐIỀU KHIỂN THEO MƠ HÌNH DỰ BÁO ......... 3
1.1. Tổng quan về điều khiển theo mơ hình dự báo MPC ............................................... 3
1.1.1. Khái qt chung ......................................................................................... 3
1.1.2. Ngun lý điều khiển theo mơ hình dự báo MPC ....................................... 3
1.1.3. Các thành phần chính trong điều khiển theo mơ hình dự báo ................... 5
1.2. Một số phƣơng pháp điều khiển dự báo theo mơ hình ............................................. 8
1.3. Các ƣu nhƣợc điểm của điều khiển dự báo so với phƣơng pháp khác ................... 10
1.4. Đề xuất hƣớng nghiên cứu giải quyết trong luận văn ............................................ 11
1.5. Kết luận Chƣơng 1.................................................................................................. 12
CHƢƠNG 2. ĐIỀU KHIỂN LÒ PHẢN ỨNG KHUẤY TRỘN LIÊN TỤC CSTR
2 ĐẦU VÀO – 1 ĐẦU RA BẰNG PHƢƠNG PHÁP PID ........................................ 13
2.1. Lý thuyết cơ bản về phản ứng hóa học ................................................................... 13
2.1.1. Cân bằng hóa học..................................................................................... 13
2.1.2. Tốc độ phản ứng ....................................................................................... 13

2.1.3. Độ hoạt hóa .............................................................................................. 14
2.2. Lý thuyết xây dựng các phƣơng trình cân bằng cho thiết bị phản ứng có thể tích
khơng đổi ....................................................................................................................... 14
2.2.1 Cân bằng khối lượng ................................................................................. 14
2.2.2 n ằng n ng lượng cho phản ứng ......................................................... 15
2.2.3 n ằng th nh phần hóa học cho phản ứng: .......................................... 16
2.3. Phƣơng trình tốn học của lị phản ứng 2 đầu vào 1 đầu ra ................................... 18
2.3.1 Phân tích các biến của lò phản ứng CSTR ................................................ 18
2.3.2 Xây dựng phương trình động học cho lị phản ứng CSTR ........................ 23
2.3.3 Thông số thiết bị CSTR .............................................................................. 24
2.3. Thiết lập mơ hình mơ phỏng lị phản ứng CSTR dùng PID ................................... 26
2.3.1 Mô phỏng bằng simulink ........................................................................... 26
2.3.2. Kết quả mô phỏng..................................................................................... 29


CHƢƠNG 3: ỨNG DỤNG MPC ĐIỀU KHIỂN CSTR 2 ĐẦU VÀO – 1 ĐẦU RA34
3.1 Thiết kế bộ điều khiển MPC 2 đầu vào - 1 đầu ra ................................................... 34
3.1.1 Lựa chọn phương pháp điều khiển lò phản ứng khuấy trộn liên tục ........ 34
3.1.2 Xây dựng phương trình của hệ phản ứng khuấy trộn liên tục .................. 35
3.1.3 Thiết kế bộ điều khiển cho lò phản ứng khuấy trộn liên tục ..................... 38
3.2 Thiết lập mơ hình mơ phỏng ứng dụng MPC điều khiển cho lò phản ứng khuấy
trộn liên tục .................................................................................................................... 41
3.2.1 Mô phỏng bằng simulink ........................................................................... 41
3.2.2 Kết quả mô phỏng...................................................................................... 43
KẾT LUẬN VÀ KIẾN NGHỊ ..................................................................................... 46
TÀI LIỆU THAM KHẢO........................................................................................... 47
QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN (bản sao)


CÁC KÝ HIỆU ĐƢỢC SỬ DỤNG

aj

là hệ số tỷ lƣợng thành phần thứ j trong phản ứng

j

là hóa thế thành phần thứ j trong phản ứng

pj

áp suất riêng phần thành phần j

jI, jII

là hóa thế của thành phần j trong pha I và pha II

Pj*

là áp suất hơi thành phần j

kj

là hệ số cân bằng hóa hơi

ri

là tốc độ phản ứng chất i




là bậc phản ứng

Mi

là khối lƣợng chất i

Ci

là hàm lƣợng chất i

k1

là hệ số tốc độ phản ứng

0

là hệ số tỉ lệ hàm mũ của mỗi phản ứng

E

là năng lƣợng cần thiết để hoàn thành phản ứng

R

là hằng số chất khí lý tƣởng

T

là nhiệt độ phản ứng


Ci0

là hàm lƣợng ban đầu chất i

Tc

là hằng số thời gian phản ứng

F1 i

là lƣu lƣợng đƣa vào lò phản ứng của chất tham gia phản ứng

F2 i

là lƣu lƣợng sản phẩm



là công suất nhiệt tác động vào thiết bị phản ứng

V

thể tích lị phản ứng

Q

là cơng suất nhiệt cấp cho bình phản ứng

KT


là hệ số truyền nhiệt

A

diện tích truyền nhiệt

Tj,TjA

là nhiệt độ môi chất làm mát trong Jacket đầu vào và đầu ra




là khối lƣợng riêng của chất phản ứng

Cp

là nhiệt dung riêng của chất phản ứng

Vj

là thể tích Jacket

Cpj

là nhiệt dung riêng của môi chất gia nhiệt

j

là khối lƣợng riêng của môi chất gia nhiệt


Fj

là lƣu lƣợng môi chất cấp cho Jacket

CA1,CA2

là nồng độ đầu vào và ra của chất phản ứng

T1

là nhiệt độ đầu vào của chất phản ứng

h

là enthalpi dung dịch trong bình phản ứng

H

là nhiệt của phản ứng

yk

tín hiệu ra

wk

tín hiệu đặt

ek


sai lệch giữa tín hiệu ra với tín hiệu đặt


CÁC KÝ HIỆU VIẾT TẮT
AGPC

Alternative Generalized Predictive Control

CSTR

Continuous Stirred Tank Reactor

CV

Control Valve

DMC

Dynamic Matrix Control

GPC

Generalized predictive control

MIMO

Multiple Input Multiple Output

MISO


Multiple Input single Output

MAC

Model Algorithmic Control

NMPC

Nonlinear-Model Predictive Control

PCS

Process Control System

PFR

Plug Flow Reactor

PV

Preset Value

P&ID

Process and Intrumentation Diagram

PID

Proportional Integral Derivative


SP

Setpoint

SISO

Single Input Single Output


DANH MỤC CÁC BẢNG
Bảng 1. Bảng tóm lƣợc một số phƣơng pháp nhận dạng mơ hình dự báo của một số
phƣơng pháp MPC .........................................................................................................10
Bảng 2. Các thông số của hệ thống khuấy trộn liên tục ...............................................24


DANH MỤC CÁC HÌNH
Hình 1. 1. Ngun lý cơ bản của điều khiển dự báo dựa trên mơ hình ...........................4
Hình 1. 2. Cấu trúc rút gọn của hệ thống điều khiển dự báo ...........................................5
Hình 1. 3. Cấu trúc nguyên lý trƣợt .................................................................................5
Hình 2. 1. Lị phản ứng khuấy trộn liên tục...................................................................18
Hình 2. 2. Phân đoạn jacket ........................................................................................... 22
Hình 2. 3. Mơ hình điều khiển lị phản ứng khuấy trộn liên tục ...................................26
Hình 2. 4. Mơ hình mơ phỏng cân bằng mol .................................................................27
Hình 2. 5. Mơ hình mơ phỏng cân bằng năng lƣợng .....................................................27
Hình 2. 6. Mơ hình mơ phỏng cân bằng nhiệt Jacket ....................................................28
Hình 2. 7. Mơ hình mơ phỏng hàm mũ .........................................................................28
Hình 2. 8. Mơ hình điều khiển lị phản ứng bằng PID ..................................................29
Hình 2. 9. Tham số chỉnh định PID ...............................................................................29
Hình 2. 10. Trƣờng hợp có nhiễu tác động CA0 = - 10 % và T1 =+10% .......................30

Hình 2. 11. Đáp ứng đầu ra CA và T khi có nhiễu tác động CA0 = - 10 % và T1 =+10%
.......................................................................................................................................30
Hình 2. 12. Nhiều đầu vào FA ........................................................................................30
Hình 2. 13. Đáp ứng đầu ra CA và T khi nhiễu lƣu lƣợng dung dịch gia nhiệt FA ........31
Hình 2. 14. Nhiễu đầu vào Tj0 .......................................................................................31
Hình 2. 15. Đáp ứng đầu ra khi nhiễu nhiệt độ dung dịch gia nhiệt Tj0 ........................31
Hình 2. 16. Nhiễu tác động đầu vào đồng thời .............................................................. 32
Hình 2. 17. Đáp ứng đầu ra khi nhiễu tác động đồng thời ............................................32
Hình 3. 1. Sơ đồ khối mơ hình hệ thống điều khiển dự báo [5] ....................................34
Hình 3. 2. Mơ hình mơ phỏng điều khiển bám đối tƣợng CSTR bằng MPC ................41
Hình 3. 3. Mơ hình mơ phỏng điều khiển nhiễu đầu vào CSTR ...................................42
Hình 3. 4. Sybsystem bộ ổn định ...................................................................................42
Hình 3. 5. Sybsystem điều khiển các tham số đầu vào .................................................42
Hình 3. 6. Sai lệch đầu ra CA bám điểm đạt đầu vào ...................................................43
Hình 3. 7. Sai lệch nhiễu lƣu lƣợng đầu vào FA ............................................................ 43
Hình 3. 8. Sai lệch đầu ra CA khi tác động nhiễu lƣu lƣợng đầu vào FA0 .....................43
Hình 3. 9. Sai lệch đầu ra CA khi giảm nồng độ mol CA0 .............................................44
Hình 3. 10. Sai lệch nhiễu nhiệt độ Jacket Tj0 ............................................................... 44
Hình 3. 11. Sai lệch nhiễu nhiệt độ phản ứng TA .......................................................... 44
Hình 3. 12. Sai lệch đầu ra CA khi tác động nhiễu đồng thời ........................................44


1

MỞ ĐẦU
1. LÝ DO CHỌN ĐỀ TÀI
Trong sản xuất công nghiệp thì cơng nghiệp hóa chất chiếm tỷ lệ rất lớn. Cơng
nghiệp hóa chất đóng vai trị quan trọng đối với sự phát triển kinh tế. Để có những
nguyên liệu và sản phầm công nghiệp đạt tiêu chuẩn về chất lƣợng và chi phí phục vụ
cho nhiều ngành sản xuất thì cần quan tâm và phát triển mạnh ngành cơng nghiệp hóa

chất, đƣa ngành cơng nghiệp hóa chất trở thành ngành cơng nghiệp mũi nhọn.
Một trong những thành tựu đó khơng thể khơng quan tâm đến lị phản ứng khuấy
trộn liên tục (CSTR – Continuous Stirred Tank Reactor). CSTR đƣợc dùng rất phổ
biến vì nó có năng suất cao, tạo ra các nguyên liệu và sản phẩm chất lƣợng.
Thiết bị CSTR đƣợc biết đến nhƣ một thùng chứa lớn hoặc một thiết bị phản ứng,
là một dạng thiết bị phản ứng phổ biến trong kỹ thuật hóa học. Một thiết bị CSTR
thƣờng dùng để nói đến một mơ hình sử dụng để đánh giá sự thay đổi của các thành
phần hợp chất trong quá trình phản ứng, với việc sử dụng một thùng (bể) chứa có thiết
bị khuấy hoạt động liên tục, nhằm cho sản phẩm đầu ra theo yêu cầu. Với yêu cầu
công nghệ sản xuất phức tạp, chịu tác động ảnh hƣởng của nhiều đối tƣợng tác động
nhƣ nhiệt độ đầu vào, nồng độ, lƣu lƣợng đầu vào… Nên khi thiết kế bộ điều khiển
cần phải phủ hợp với u cầu cơng nghệ đảm bảo thích ứng nhanh trong mọi điều
kiện.
Với sự đóng góp cho ngành cơng nghiệp hóa chất rất lớn, tạo ra nhiều phản ứng
hóa học bằng thiết bị CSTR. Tuy nhiên, các nghiên cứu trƣớc đây cho thấy việc sử
dụng các bộ điều khiển CSTR hiện nay chủ yếu sử dụng bộ điều khiển PID, điều khiển
MPC…chủ yếu xét các việc điều khiển tuyến tính các tín hiệu đơn biến vào/ra nhƣ
khối lƣợng hóa chất hoặc năng lƣợng cung cấp, chƣa thực sự quan tâm đến các tín hiệu
tác động bên ngồi nhƣ nhiễu. Mặt khác, việc tác động nhiệt vào Jacket chủ yếu là
dùng môi chất lỏng, nên việc điều khiển môi chất lỏng phụ thuộc rất nhiều với sự tác
động điều khiển nhiễu.
Luận văn chọn đề tài: “Ứng dụng MPC thiết kế bộ điều khiển cho lò phản ứng
khuấy trộn liên tục” để làm đề tài nghiên cứu nhằm mục đích phát triển mơ hình tốn
học của hệ thống phi tuyến CSTR có sự tác động bởi các tín hiệu phi tuyến với 2 tín
hiệu đầu vào – 1 tín hiệu đầu ra. đồng thời đề tài cũng tính đến q trình điều khiển
nhiệt độ jacket.
2. MỤC ĐÍCH NGHIÊN CỨU
- Phân tích tổng quan của lò phản ứng khuấy trộn liên tục CSTR
- Xây dựng phƣơng trình trạng thái của của lị phản ứng khuấy trộn liên tục
CSTR

- Ứng dụng bộ điều khiển MPC phi tuyến để điều khiển CSTR, khảo sát sự ảnh
hƣởng của các tham số trong bộ điều khiển và các đáp ứng đầu ra của CSTR.
- Mô phỏng kết quả trên Matlab-Simulink sử dụng bộ điều khiển MPC điều
khiển cho lò phản ứng khuấy trộn liên tục


2
3. ĐỐI TƢỢNG VÀ PHẠM VI NGHIÊN CỨU
- Đối tƣợng nghiên cứu: Lò phản ứng khuấy trộn liên tục CSTR có tác động điều
khiển nhiệt độ biến thiên lị phản ứng.
- Phạm vi nghiên cứu: Thiết kế bộ điều khiển MPC phi tuyến có 2 đầu vào, 1
đầu ra cho Lò phản ứng khuấy trộn liên tục CSRT
4. PHƢƠNG PHÁP NGHIÊN CỨU
Để giải quyết các mục tiêu nêu trên, luận văn đƣa ra phƣơng pháp nghiên cứu
nhƣ sau:
+ Phƣơng pháp nghiên cứu lý thuyết:
- Nghiên cứu lý thuyết về điều khiển theo mơ hình dự báo MPC.
- Nghiên cứu các vấn đề về phƣơng pháp MPC, xây dựng mơ hình MPC điều
khiển CSTR.
- Nguyên cứu lý thuyết liên quan đến lò phản ứng khuấy trộn liên tục CSTR.
+ Phƣơng pháp thực nghiệm:
- Sử dụng cơng cụ tính tốn trong phần mềm Matlab, tạo dữ liệu mô phỏng để
đánh giá kết quả.
Phần tính tốn và mơ phỏng sẽ thực hiện tính tốn theo các thơng số của Lị phản
ứng khuấy trộn liên tục CSTR có tác động bởi nhiễu đầu vào.
5. Ý NGHĨA KHOA HỌC VÀ THỰC TIỄN CỦA ĐỀ TÀI
+ Đề tài nghiên cứu thành cơng sẽ góp phần kiểm chứng và phát triển phƣơng
pháp MPC điều khiển CSTR.
+ Đây sẽ là cơ sở để ứng dụng điều khiển 2 đầu vào với các hệ thống MPC
CSTR có 1 đầu ra trong suốt quá trình phản ứng với điều kiện nhiệt độ lò thay đổi

jacket .
6. CẤU TRÚC CỦA LUẬN VĂN
Ngoài phần mở đầu và kết luận chung, nội dung của đề tài đƣợc tổ chức thành 4
chƣơng. Bố cục của nội dung chính của luận văn nhƣ sau:
- Chƣơng 1: Lý thuyết về điều khiển theo mơ hình dự báo MPC
- Chƣơng 2: Điều khiển lò phản ứng khuấy trộn liên tục 2 đầu vào – 1 đầu ra
bằng phƣơng pháp PID.
- Chƣơng 3: Ứng dụng MPC điều khiển CSTR 2 đầu vào – 1 đầu ra.


3

CHƢƠNG 1. LÝ THUYẾT VỀ ĐIỀU KHIỂN THEO
MƠ HÌNH DỰ BÁO
1.1 Tổng quan về điều khiển theo mơ hình dự báo MPC
1.1.1 Khái quát chung
Trong thực tế, điều khiển dự báo dựa trên mơ hình cho hệ tuyến tính MPC với các
phƣơng pháp nhằm mục đích điều khiển hệ thống trên cơ sở dự đoán kết quả đáp ứng
đầu ra tƣơng lai đã và đang đƣợc sử dụng tốt trong nhiều lĩnh vực. Tuy nhiên, các bài
toán điều khiển quá trình thƣờng gặp trong sản xuất thì các đối tƣợng điều khiển phi
tuyến có đặc điểm vừa phi tuyến, vừa có trễ và có nhiễu nên khả năng kiểm sốt tín
hiệu đầu ra khó có thể đảm bảo đƣợc tính ổn định và chất lƣợng sản phẩm. Để giải
quyết thực tế đó, một mơ hình mới đƣợc đề xuất là phƣơng pháp điều khiển phi tuyến
dự báo theo mơ hình MPC.
Điều khiển dự báo theo mơ hình là phƣơng pháp điều khiển hệ thống dựa trên cơ
sở tín hiệu đầu ra của đối tƣợng đƣợc dự báo thông qua một mơ hình tốn nào đó. Dựa
vào tín hiệu dự báo đầu ra của đối tƣợng, sử dụng thuật toán tối ƣu để tìm tín hiệu điều
khiển tối ƣu cho hệ thống sao cho đầu ra của đối tƣợng ở tƣơng lai bám theo giá trị
mong muốn. Nhƣ vậy tín hiệu điều khiển tối ƣu này sẽ phụ thuộc vào độ chính xác của
tín hiệu dự báo đầu ra của đối tƣợng và thuật tốn tìm nghiệm tối ƣu. Độ chính xác của

tín hiệu dự báo phụ thuộc vào mơ hình tốn của đối tƣợng. Trong thực tế mơ hình tốn
của đối tƣợng thƣờng đƣợc xây dựng dựa trên cơ sở các định luật vật lý, rất phức tạp
và thƣờng là khơng chính xác. Do đó việc đƣa ra một phƣơng pháp để nhận dạng hay
xây dựng đƣợc chính xác mơ hình đối tƣợng đang là vấn đề thu hút đƣợc rất nhiều sự
quan tâm của các nhà nghiên cứu khoa học
Tính ƣu việt của MPC đƣợc thể hiện ở các bài tốn điều khiển q trình thƣờng
gặp trong cơng nghiệp. Ví dụ các q trình biến thiên chậm, có trễ, cấu trúc hàm
truyền thay đổi và có độ phi tuyến lớn, các tham số điều khiển có độ tƣơng tác, hệ
thống có vùng chết. Đó là các q trình thƣờng thấy trong bài toán điều khiển nhiệt độ,
lƣu lƣợng, áp suất, phản ứng hố học,…[3]. Với các q trình trên nếu chỉ dùng
phƣơng pháp điều khiển truyền thống thì chất lƣợng điều khiển khơng cao, khơng giải
quyết đƣợc bài tốn điều khiển nhƣ mong muốn. Với những lớp đối tƣợng này đã có
rất nhiều các cơng trình nghiên cứu áp dụng thực hiện bằng phƣơng pháp điều khiển
dự báo.
Hiện nay MPC đã trở thành một sách lƣợc điều khiển cao cấp đƣợc chấp nhận khá
rộng rãi trong một số lĩnh vực cơng nghiệp. Đã có nhiều ứng dụng của MPC đƣợc
thƣơng mại hóa trong các lĩnh vực khác nhau bao gồm: cơng nghệ lọc hóa dầu, cơng
nghệ xử lý thực phẩm, công nghệ ô tô, công nghệ không gian, công nghệ bột giấy và
giấy,...
1.1.2 Nguyên lý điều khiển theo mô hình dự báo MPC
Nguyên lý của điều khiển MPC là dựa vào thơng số trạng thái của mơ hình đối
tƣợng và trạng thái thực của chúng tại một số thời điểm liên tiếp để xác định tín hiệu
điều khiển tốt nhất có thể (tối ƣu) trong một khoảng thời gian hữu hạn (a finite time


4
horizon). Tín hiệu điều khiển này đƣợc duy trì cho đến khi hệ thống cập nhật lại trạng
thái mới, khi đó tín hiệu điều khiển mới lại đƣợc tính tốn và cập nhật lại trong khoảng
thời gian hữu hạn tiếp theo. Điều khiển MPC đƣợc mơ tả theo thuật tốn sau:
Thuật toán điều khiển MPC

Cho một khoảng thời gian dự báo TP (cửa sổ dự báo, tầm dự báo) và khoảng thời
gian trích mẫu DT , tại một thời điểm trích mẫu , tk = kDT, k = 0,1, 2, ...
1. Đo các trạng thái X(tk ) và tính (dự báo) các trạng thái tiếp theo X(tk+1),X(tk +
2),... của hệ thống
2. Giải bài toán điều khiển tối ƣu trong khoảng thời gian
3. Đƣa tín hiệu điều khiển tối ƣu tác động lên hệ thống đến khi đo đƣợc các giá trị
trạng thái mới tại thời điểm trích mẫu tiếp theo tk + 1 = tk + DT

Hình 1.1. Nguyên lý cơ ản của điều khiển dự báo dựa trên mô hình
Bài tốn điều khiển dự báo dựa trên mơ hình có mức độ phức tạp sẽ phụ thuộc vào
tính chất và đặc điểm của đối tƣợng điều khiển, tùy theo lớp các đối tƣợng cụ thể mà
ngƣời ta sẽ sử dụng các phƣơng pháp xây dựng mơ hình dự báo khác nhau, việc xây
dựng mơ hình dự báo chính là bài tốn nhận dạng mơ hình của đối tƣợng điều khiển.
Mặc dù là một phƣơng pháp điều khiển mạnh mẽ và đã có nhiều ứng dụng thành cơng
tuy nhiên trong thực tế việc áp dụng điều khiển dự báo đặc biệt là cho đối tƣợng phi
tuyến vẫn còn gặp những hạn chế, khó khăn:
- Thứ nhất, phải xây dựng mơ hình tốn học để dự báo chính xác trạng thái của đối
tƣợng cần điều khiển trong phạm vi dự báo. Đối với hệ phi tuyến thì xây dựng đƣợc
mơ hình chính xác vẫn cịn là một bài tốn khó vì đặc tính phi tuyến rất đa dạng.
- Thứ hai, phải giải một bài tốn tối ƣu để tính chuỗi tín hiệu điều khiển trong một
khoảng thời gian có hạn, với đối tƣợng đáp ứng nhanh thì thời gian giải càng cần phải
ngắn. Trong khi đó, bài tốn tối ƣu ở đây thƣờng là khơng lồi có nhiều cực trị địa
phƣơng.
Các bƣớc cơ bản khi xây dựng thuật toán điều khiển là:
* Sử dụng một mơ hình để dự báo (dự đốn) giá trị đầu ra của q trình ở các thời
điểm trong tƣơng lai.
* Tính tốn lần lƣợt các tín hiệu điều khiển bằng cách tối thiểu hoá một hàm mục
tiêu.



5
* Mỗi lần (tại thời điểm hiện tại t) các tín hiệu điều khiển đƣợc dự báo thì chỉ có
tín hiệu đầu tiên đƣợc đƣa đến tác động vào quá trình.
1.1.3. Các thành phần chính trong điều khiển theo mơ hình dự báo
Theo tài liệu [1],[8]
Từ cấu trúc rút gọn của hệ thống điều khiển dự báo

Hình 1.2. Cấu trúc rút gọn của hệ thống điều khiển dự báo
Cấu trúc bộ điều khiển: Gồm ba khối cơ bản:
1. Khối dự báo: Xác định tín hiệu ra tƣơng lai

tính từ thời điểm hiện tại k

2. Hàm mục tiêu: Xây dựng từ chất lƣợng mong muốn mà hệ thống phải có
3. Tối ƣu hóa: Tìm nghiệm

để hàm mục tiêu đạt giá trị nhỏ nhất.

Tại thời điểm hiện tại k thực hiện lần lƣợt 3 bƣớc trên để có
. Ở thời điểm k + 1
tiếp theo thực hiện lại 3 bƣớc trên để có
(receding horizon controller)
* Khối thứ nhất: Dự báo tín hiệu đầu ra tương lai
Có nhiệm vụ xác định tất cả các đầu ra tƣơng lai

(i=0,1,…,N) tính từ thời

điểm k hiện tại thuộc của sổ dự báo hiện tại là [k, k +N]. Kết quả luôn là hàm phụ
thuộc các đầu vào tƣơng lai (tất nhiên chỉ thuộc cửa sổ dự báo hiện tại) dựa theo
nguyên tắc trƣợt dọc trên trục thời gian nhƣ hình 1.3.

Nguyên tắc trượt dọc trên trục thời gian:

Hình 1.3. Cấu trúc nguyên lý trượt


6

Một mơ hình điều khiển sau:
 xk 1  f  xk , uk 

 yk  g k  xk 

Trong đó,

,

, và

(1. 1)

là vector các tín hiệu trạng thái, tín hiệu đầu ra của hệ và

tín hiệu điều khiển (đầu vào). Khi đó, giống nhƣ tất cả các bộ điều khiển khác, bộ điều
khiển dự báo có nhiệm vụ là làm sai lệch giữa tín hiệu ra
, và tín hiệu đặt

k  yk  ek

(1. 2)


(k= 0,1,….)

Trong đó:
ek chính là sai lệch đầu ra cho phép và ln có xu hƣớng tiệm cận về 0.

k là tín hiệu đặt với k = 0, 1, ….

Lúc đó:

* Khối thứ hai: Xây dựng hàm mục tiêu
Có nhiệm vụ mơ tả đƣợc chất lƣợng điều khiển mong muốn thông qua các đầu ra
tƣơng lai đƣợc dự báo. Nếu chất lƣợng điều khiển mong muốn là tín hiệu ra
phải
bám tiệm cận theo đƣợc tín hiệu đặt

tức là

thì một hàm mục

tiêu thích hợp cho hệ ở thời điểm hiện tại k sẽ là:
N





J k   ckT1Qk ck 1  ukT1Rk uk 1  min
i 0

(1. 3)


Qk, Rk đối xứng xác định dƣơng là hai ma trận đƣờng chéo nên có thể kết hợp
thêm điều kiện ràng buộc
Trong đó:
(1. 4)
Trong đó

là những giá trị dƣơng thực chặn trên bắt buộc của tín hiệu điều khiển.

Nhƣ vậy với công thức dự báo và ở thời điểm k hiện tại là đo đƣợc thì hàm mục
tiêu Jk tƣơng ứng cho thời điểm k chỉ phụ thuộc vào các đầu vào tƣơng lai
(với i
= 0,1,…,N-1).
Tuy nhiên, ở từng thời điểm k khác nhau cũng có thể xây dựng các hàm mục tiêu k
Jk khác nhau. Nên ta có thể cải thiện bổ sung nâng cao chất lƣợng điều khiển nhƣ điều
chỉnh tốc độ bám, điều chỉnh quỹ đạo sai lệch bám giá trị đặt.


7
* Khối thứ ba: Tối ưu hóa
Khối này có nhiệm vụ thực hiện bài toán tối ƣu nhờ một phƣơng pháp tối ƣu hóa
thích hợp
Phát biểu và phân loại bài tốn tối ƣu ta có:
Tối ƣu hóa

,

,

,


. Khi đó nó đƣợc viết thành:

+ Khơng ràng buộc, nếu

+ Có ràng buộc, nếu
+ Lồi, nếu P là tập lồi và

là hàm lồi

Nhận xét: Tổng phƣơng sai chênh lệch giữa các đầu ra đƣợc dự đoán là các điểm
đặt dự đoán trên đƣờng biên trong tƣơng lai và tổng các sai lệch lân cận. Việc xử lý
một quá trình, định lƣợng của mục tiêu xử lý là để giảm thiểu nhiễu sai lệch.
N2

Nu

minJ  N1 , N 2 ,U   y  r  t  i   y p  t  i   U  Δu  t  i  1
2

i N1

i 1

2

(1.5)

Trong đó: NU ≤ N1,2
Δu  t   umax

umin  u  t   umax

(1.6)

y pmin  y p  y pmax
Δu  t   Δumax

U và NU là véctơ tín hiệu đầu ra tƣơng lai
U  u  t  , u  t  1 ,u  t  NU  1

T

(1.7)

Phƣơng pháp điều khiển dự báo hệ phi tuyến đƣợc chi tiết hóa bởi những bài tốn
riêng biệt là điều khiển ổn định hệ và điều khiển bám tín hiệu ở đầu ra. Đây đƣợc xem
là điều khiển với hệ MIMO bất định theo mơ hình trạng thái:

 xk 1  A  xk , k  xk  B  xk , k  uk   k


 yk  C  xk , k  xk  vk

Trong đó
,
vừa phụ thuộc trạng thái

(1.8)

,

đều là những ma trận có phần tử là hàm số
, vừa phụ thuộc thời gian. Thành phần sai lệch và nhiễu


8
không xác định đƣợc thể hiện đây là hệ bất định khơng xác định đƣợc, tham gia
trong mơ hình. Các vector
,
,
lần lƣợt là vector trạng thái (hệ có n
biến trạng thái), vector các tín hiệu đầu vào (hệ có m tín hiệu vào) và vector các tín
hiệu đầu ra (hệ có r tín hiệu ra).
Điều khiển dự báo hệ phi tuyến có cấu trúc gần giống hệ tuyến tính nhất và cũng
là lớp hệ phi tuyến gặp trong thực tế nhiều nhất.
1.2 Một số phƣơng pháp điều khiển dự báo theo mơ hình
Mơ hình điều khiển dự báo dựa trên cơ sở dự báo theo mơ hình là một trong những
phƣơng pháp điều khiển tìm ra tín hiệu điều khiển một cách lặp lại dựa vào việc giải
một bài toán điều khiển tối ƣu với một hàm mục tiêu cụ thể.
Trong thực tế mơ hình tốn của đối tƣợng thƣờng đƣợc xây dựng dựa trên cơ sở
các định luật vật lý, rất phức tạp và thƣờng là khơng chính xác. Độ chính xác của tín
hiệu dự báo phụ thuộc vào mơ hình tốn của đối tƣợng. Các q trình điều khiển nhiệt
độ, lƣu lƣợng, áp suất, phản ứng hóa học chỉ dùng phƣơng pháp điều khiển truyền
thống thì chất lƣợng điều khiển khơng cao, khơng giải quyết đƣợc bài tốn điều khiển
nhƣ mong muốn. Các đối tƣợng trong quá trình thƣờng biến thiên, có trễ và có độ phi
tuyến lớn, có độ tƣơng tác cao và có vùng chết trong hệ thống nên việc sử dụng điều
khiển tuyến tính dự báo theo mơ hình đối tƣợng và trạng thái thực của chúng tại một
số thời điểm liên tiếp để xác định tín hiệu điều khiển tốt nhất có thể (tối ƣu) trong một
khoảng thời gian hữu hạn. Tín hiệu điều khiển này đƣợc duy trì cho đến khi hệ thống
cập nhật lại trạng thái mới, khi đó tín hiệu điều khiển mới lại đƣợc tính tốn và cập
nhật lại trong khoảng thời gian hữu hạn tiếp theo.

* Điều khiển ma trận động học (Dynamic matrix control) – DMC
Vào năm 1978, Cutler và Ramaker ở công ty dầu mỏ Shell đã đƣa ra một thuật
tốn điều khiển đa biến khơng ràng buộc, đƣợc gọi là DMC. Thuật toán này đƣợc kế
thừa từ một kỹ thuật biểu diễn các động học quá trình bằng một tập các hệ số. Ma trận
động học dùng để ánh xạ các đầu ra của hệ trong tƣơng lai. DMC phù hợp cho các hệ
tuyến tính ổn định, và dựa vào mơ hình đáp ứng bƣớc nhảy của hệ. Mục tiêu của bộ
điều khiển DMC là điều khiển đầu ra bám theo giá trị chủ đạo với sai số bình phƣơng
cực tiểu, chất lƣợng điều khiển của DMC không cao, đặc biệt là cho các đối tƣợng đa
biến.
* Điều khiển thuật tốn mơ hình (Model Algorithmic Control) – MAC
MAC ban đầu đƣợc gọi là điều khiển phỏng đốn dự báo mơ hình (Model
predictive heuristic control). Vào năm 1978 Richalet đã ứng dụng thành công phƣơng
pháp này. MAC cũng tƣơng tự nhƣ DMC, tuy nhiên có một số điểm khác nhƣ: thay vì
dùng mơ hình đáp ứng bƣớc nhảy thì MAC sử dụng mơ hình đáp ứng xung, điều này
cho phép nâng cao đƣợc tính bền vững đối với các sai lệch khi nhận dạng và các ảnh
hƣởng của việc thay đổi các tham số. MAC đƣợc ứng dụng cho các quá trình ổn định
hệ hở.
Cả hai phƣơng pháp MDC và MAC đều dựa trên mơ hình đáp ứng bƣớc nhảy cho
hệ SISO. Đối tƣợng cần xác định của mơ hình là hàm trọng lƣợng g(t) hoặc hàm quá
độ h(t). Các giả thiết đều cho thấy đối tƣợng là ổn định, chính xác và khơng có nhiễu.


9
Tuy nhiên, nếu các giả thiết khơng thỏa mãn thì giữa tín hiệu ra dự báo và tín hiệu ra
thực trong tƣơng lai sẽ có một sai lệch và đồng thời các sai lệch sẽ đƣợc tính trên tổng
hữu hạn với 0 ≤ N ≤ . Việc xác định giá trị tín hiệu điều khiển dự báo chạy dọc theo
cửa sổ dự báo với các bƣớc:
Bƣớc 1. Ƣớc lƣợng hàm sai số e(t) sinh ra bởi sai lệch mơ hình và nhiễu hệ thống.
Ta lập hai ma trận G1, G2 hoặc H1, H2. Chọn tham số N cho mơ hình dự báo, cửa
sổ dự báo M ≤ N và các tham số j , j = 0, 1,…., M – 1 cho hàm mục tiêu

Bƣớc 2. Thực hiện lần lƣợt với k = 1, 2, … dọc theo trục thời gian nhƣ sau:
- Lập các véc tơ ,
- Tính

, , và

, xác định hàm

với

, có chỉ số j < 0 thì gán giá trị bằng 0.

để đƣa vào điều khiển đối tƣợng.

* Điều khiển hàm dự báo (Predictive Functional Control) – PFC
PFC đƣợc đƣa ra vào năm 1968 và lần đầu đƣợc ứng dụng vào thực tế những năm
1970. PFC có thể sử dụng một số loại mơ hình, tuy nhiên phụ thuộc vào các đặc tính
bền vững thì PFC thƣờng sử dụng mơ hình khơng gian trạng thái. Nhƣợc điểm là trong
thực tế, việc nhận đƣợc mơ hình tốn biểu diễn trên khơng gian trạng thái một cách
chính xác là khó khăn, đặc biệt là hệ có những thành phần phi tuyến bất định, có thời
gian trễ và quá trình có các hệ số hằng thay đổi theo thời gian.
* Điều khiển tự thích nghi dự báo mở rộng (Extended Prediction Self Adaptive
Control) – EPSAC
Đƣợc đƣa ra vào năm 1953, EPSAC sử dụng hàm truyển rời rạc để mô hình hóa
đối tƣợng, phƣơng pháp đề xuất một tín hiệu điều khiển bắt đầu từ thời điểm hiện tại
trong khi sử dụng một khâu dự báo cận tối ƣu thay cho việc giải phƣơng trình
Diophantine.
* Điều khiển thích nghi theo tầm dự báo mở rộng (Extended Horizon Adaptive
Control) – EHAC
Vào năm 1984, Ydstie B. E đã đƣa ra thuật toán EHAC dùng cho mơ hình q

trình tham số, đặc điểm của thuật tốn này là nó cho phép sử dụng một khoảng thời
gian dài hơn để đƣa đầu ra của quá trình bám theo đầu ra mong muốn thay vì sử dụng
một khoảng thời gian trễ cố định.
* Điều khiển thích nghi dự báo tổng quát (Generalized Predictive Control) – GPC
GPC là một trong những thuật toán điều khiển dự báo thông dụng nhất đƣợc đƣa
ra bởi Clarke D. W. vào năm 1987. Sự khác nhau cơ bản giữa GPC và DMC là mơ
hình đƣợc sử dụng cho miêu tả đối tƣợng và công thức của ma trận động học. GPC sử
dụng bộ điều khiển đƣợc tích hợp với mơ hình hồi quy trung bình trƣợt.
Nhƣ vậy điều khiển dự báo cho hệ tuyến tính đã đƣợc áp dụng khá thành cơng cho
các hệ thống tuyến tính. Điều này thể hiện ở rất nhiều ngành áp dụng chiến lƣợc điều
khiển này nhƣ cơng nghiệp hóa chất, cơng nghiệp thực phẩm, công nghiệp vũ trụ, công
nghiệp giấy.


10
Bảng 1.1. Bảng tóm lược một số phương pháp nhận dạng mơ hình dự báo của một số
phương pháp MP
Tên phƣơng pháp

Mơ hình ƣớc
lƣợng trạng thái

Phƣơng pháp ƣớc
lƣợng

Nhiễu bất định

DMC

FIR – đáp ứng

xung hữu hạn

LS – Bình phƣơng
cực tiểu

Khơng

SMC Model

FIR, ARX

LS, GD – Gradient
giảm dần



OPC

FIR, ARMAX

LS



GPC sử dụng hàm truyền khơng liên tục của q trình (đối tƣợng điều khiển).
Phƣơng pháp này đƣợc mở rộng cho hệ MIMO, đƣợc áp dụng cho các đối tƣợng
không ổn định và cả những q trình có tính pha khơng cực tiểu. Đây là phƣơng pháp
đƣợc xây dựng trên nền mơ hình sai phân của q trình, nó sử dụng thuật tốn nhận
dạng trực tuyến để dễ dàng xác định các hệ số của đa thức đầu ra. Từ đó có thể thấy
phƣơng pháp GPC hồn tồn có thể phát triển thành bộ điều khiển dự báo thích nghi

nếu ta bổ sung thêm khâu nhận dạng trực tuyến các tham số của đa thức.

 

 

  n

A z 1 yk  B z 1 uk 1  C z 1

(1.9)

k

Các bƣớc tính lặp k = 1, 2,… chạy dọc trên trục thời gian cùng với cửa sổ dự báo
đƣợc thực hiện nhƣ sau:
Bƣớc 1. Gải phƣơng trình hàm truyền G(z) để xác định các các hệ số hàm truyền
A, B, C,…
G z 

b0  b1 z 1  bnb z  nb
1  a1 z 1  a2 z 2  ana z  na

(1.10)

Bƣớc 2. Thực hiện lần lƣợt với k = 1, 2, … dọc theo trục thời gian nhƣ sau:
- Lập các véc tơ
bằng 0.
- Tính


,

, và

, xác định hàm

tính

với chỉ số j < 0 hoặc i ≤ 0 thì gán giá trị

để đƣa vào điều khiển đối tƣợng.

1.3. Các ƣu nhƣợc điểm của điều khiển dự báo so với phƣơng pháp khác
Theo tài liệu [12], [13].
MPC thể hiện một loạt các ƣu điểm so với các phƣơng pháp điều khiển khác, trong
đó nổi bật là :
- Có thể đƣợc sử dụng trong các bài tốn điều khiển q trình, từ những q trình
có đặc tính động học đơn giản cho tới những quá trình phức tạp hơn, kể cả những hệ
thống có thời gian trễ lớn, động học biến đổi chậm và có ràng buộc.


11
- Có thể sử dụng các thơng tin về đáp ứng bƣớc, đáp ứng xung của đối tƣợng.
- Thích hợp cho điều khiển các hệ nhiều vào nhiều ra (MIMO).
- Có khả năng xử lý các điều kiện ràng buộc đầu vào cũng nhƣ đầu ra.
- Có thể sử dụng đối với các quá trình đa biến.
- Đây là phƣơng pháp điều khiển bền vững.
- Việc thực hiện phƣơng pháp tƣơng đối đơn giản.
- Có thể đƣợc tối ƣu hóa theo một quỹ đạo.
Tuy nhiên, MPC cũng có một số hạn chế nhất định:

- Nhƣợc điểm của mỗi phƣơng pháp trên địi hỏi khối lƣợng tính tốn lớn cùng
một lúc bởi vì có nhiều các ràng buộc hoặc nhiều biến tối ƣu và phải tính bằng phƣơng
pháp lặp.
- Một nhƣợc điểm lớn nữa của phƣơng pháp là phải xác định một mơ hình dự báo
chính xác cho đối tƣợng. Điều này trở nên khó khăn hơn khi đối tƣợng có tham số thay
đổi hoặc có nhiễu hoặc phi tuyến. Giải bài toán tối ƣu cho phiếm hàm mục tiêu lựa
chọn ln khó khăn.
Với những bài tốn điều khiển cho những đối tƣợng tuyến tính, tham số là xác
định và khơng có trễ thì việc sử dụng phƣơng pháp điều khiển dự báo là khơng cần
thiết bởi q trình tính tốn phức tạp, chất lƣợng điều khiển không cao mà lại tốn kém
nên với những lớp đối tƣợng này phƣơng pháp kinh điển nhất là PID sẽ là một lựa
chọn hợp lý.
1.4. Đề xuất hƣớng nghiên cứu giải quyết trong luận văn
Nhằm đạt đƣợc mục đích nêu trên và khắc phục những khó khăn trong điều khiển
dự báo hệ phi tuyến bất định và tận dụng những tính ƣu việt của điều khiển dự báo hệ
tuyến tính, luận văn đề xuất phƣơng pháp tiếp cận nhƣ sau:
Thay vì thiết kế bộ điều khiển dự báo cho hệ phi tuyến có trễ thành thiết kế bộ
điều khiển dự báo cho hệ tuyến tính có trễ cộng với thành phần nhiễu (nhiễu phụ thuộc
trạng thái - phi tuyến bất định). Thành phần nhiễu này đƣợc nhận dạng trực tuyến và sẽ
đƣợc bù trừ để hệ chỉ cịn tuyến tính có trễ. Tiếp đó ta sử dụng phƣơng pháp điều
khiển dự báo theo mô hình dựa trên cơ sở nhận dạng nhiễu để đảm bảo tính ổn định
của hệ thống, tìm ra tầm dự báo và tầm điều khiển.
Vấn đề tổng hợp hệ điều khiển dự báo cho đối tƣợng phi tuyến bất định và có trễ
đƣợc phân ra thành các nội dung sau đây:
- Tách mơ hình đối tƣợng phi tuyến thành 2 phần: hệ tuyến tính có trễ và phần phi
tuyến. Theo quan điểm tuyến tính hóa xung quanh điểm làm việc ta dễ dàng xác định
đƣợc thông số động học của hệ thống qua ma trận A và B dựa vào điểm làm việc danh
định, thành phần phi tuyến còn lại đƣợc coi là nhiễu phụ thuộc trạng thái hay nhiễu nội
sinh của mơ hình tuyến tính;
- Sử dụng mạng nơron nhân tạo RBF (là mạng đơn giản, dễ huấn luyện) để nhận

dạng trực tuyến thành phần phi tuyến bất định của đối tƣợng;
- Bù trừ nhiễu trên cơ sở sử dụng kết quả nhận dạng;


12
- Xây dựng bộ điều khiển dự báo phản hồi trạng thái theo mơ hình với cấu trúc bù
nhiễu để điều khiển hệ thống lúc này chỉ còn phần tuyến tính có trễ.
Cũng cần nhấn mạnh rằng lớp các đối tƣợng chỉ có trễ trong kênh điều khiển rất đa
dạng. Lớp các đối tƣợng này có rất nhiều trong lĩnh vực công nghiệp. Trễ trên kênh
điều khiển đƣợc hiểu là trễ xảy ra do dòng vật chất đầu vào phải vận chuyển với tốc độ
nhất định trên những khoảng cách xác định trƣớc lúc tham gia trực tiếp vào quá trình
cơng nghệ. Do tính phổ biến và vai trị quan trọng của lớp các đối tƣợng này, luận văn
giới hạn trong phạm vi nghiên cứu là: xây dựng các phương pháp nhận dạng nhiễu và
tổng hợp hệ điều khiển sử dụng mơ hình dự áo cho các đối tượng có trễ trong kênh
điều khiển.
1.5. Kết luận Chƣơng 1
Chƣơng 1 đã trình bày tổng quan về điều khiển dự báo, cấu trúc, các thành phần
cơ bản của một hệ điều khiển dự báo và ảnh hƣởng của chúng đối với việc thiết kế
cũng nhƣ nâng cao chất lƣợng hệ điều khiển dự báo theo mơ hình. Điểm lại một số kỹ
thuật MPC tuyến tính, phi tuyến đã cơng bố trên các tạp chí khoa học trong nƣớc và
ngồi nƣớc cũng nhƣ các ứng dụng MPC trong công nghiệp của một số hãng trên thế
giới. Đã chỉ ra những vấn đề còn tồn tại, những vấn đề chƣa đƣợc giải quyết một cách
thỏa đáng. Đã nêu rõ tính bức thiết của đề tài luận văn, xác định rõ mục tiêu cần đạt,
đề xuất phƣơng pháp tiếp cận và những nội dung khoa học cụ thể cần giải quyết để đạt
đƣợc mục tiêu của luận văn.


13

CHƢƠNG 2. ĐIỀU KHIỂN LÒ PHẢN ỨNG KHUẤY TRỘN LIÊN TỤC

CSTR 2 ĐẦU VÀO – 1 ĐẦU RA BẰNG PHƢƠNG PHÁP PID

2.1 Lý thuyết cơ bản về phản ứng hóa học
2.1.1 Cân bằng hóa học
Khi một phản ứng hóa học xảy ra, nó sẽ làm thay đổi thành phần hỗn hợp các
chất tham gia trong phản ứng. Khi phản ứng đƣợc cân bằng thì tỉ lệ các thành phần này
sẽ đạt đến giá trị không đổi đƣợc đặc trƣng bởi các hệ số cân bằng. Khái quát chung về
cân bằng phản ứng, ta có cân bằng hóa học khi [1], [6]:
NC

a 
j

j

0

j 1

(2.1)

Với aj là hệ số tỷ lƣợng thành phần thứ j trong phản ứng, j là hóa thế thành phần
thứ j trong phản ứng, Ví dụ có phản ứng:

aa A  ab B

(2.2)

ab  j  aa  j  0


(2.3)

 j   0j  RT .lnrj

(2.4)

Ta có

j là hóa thế tiêu chuẩn chỉ phụ thuộc vào thành phần j,

là hệ số hóa thế ban

đầu, j áp suất riêng phần thành phần j, T là nhiệt độ phản ứng (K), R hằng số chất khí
lý tƣởng 8,314 (J/mol K).
 p aB
ln  BaA
 pA

 aa  A0  ab  B0

RT


(2.5)

Ta có hệ số cân bằng áp suất:
kp 

pBaB
p AaA


(2.6)

2.1.2 Tốc độ phản ứng
Tốc độ phản ứng đƣợc định nghĩa là sự biến thiên khối lƣợng mol của các chất
tham gia phản ứng trong đơn vị thể tích [1], [6]:
r

1 dM i 1 dM R

aiV dt
V dt

(2.7)

Trong đó: r đƣợc tính kmol/m3s, ai là hệ số lƣợng chất i, Mi là khối lƣợng chất A
kmol, V là thể tích dung dịch phản ứng:


×