Tải bản đầy đủ (.pdf) (10 trang)

Lecture Mechanics of materials (Third edition) - Chapter 7: Transformations of stress and strain

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (446.37 KB, 10 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>MECHANICS OF </b>


<b>MATERIALS</b>



<b>Ferdinand P. Beer</b>


<b>E. Russell Johnston, Jr.</b>
<b>John T. DeWolf</b>


<b>Lecture Notes:</b>
<b>J. Walt Oler</b>


<b>Texas Tech University</b>


CHAPTER


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

Transformations of Stress and Strain


Introduction


Transformation of Plane Stress
Principal Stresses


Maximum Shearing Stress
Example 7.01


Sample Problem 7.1


Mohr’s Circle for Plane Stress
Example 7.02


Sample Problem 7.2
General State of Stress



Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress
Yield Criteria for Ductile Materials Under Plane Stress


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

Introduction



• The most general state of stress at a point may
be represented by 6 components,


)
,


,


:
(Note


stresses
shearing


,
,


stresses
normal


,
,



<i>xz</i>
<i>zx</i>


<i>zy</i>
<i>yz</i>


<i>yx</i>
<i>xy</i>


<i>zx</i>
<i>yz</i>
<i>xy</i>


<i>z</i>
<i>y</i>
<i>x</i>


τ
τ


τ
τ


τ
τ


τ
τ
τ



σ
σ
σ


=
=


=


• Same state of stress is represented by a


different set of components if axes are rotated.
• The first part of the chapter is concerned with


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

Introduction



• <i>Plane Stress</i> - state of stress in which two faces of
the cubic element are free of stress. For the


illustrated example, the state of stress is defined by
.


0
,


, <i><sub>y</sub></i> <sub>xy</sub> and <i><sub>z</sub></i> = <i><sub>zx</sub></i> = <i><sub>zy</sub></i> =


<i>x</i> σ τ σ τ τ


σ



• State of plane stress occurs in a thin plate subjected
to forces acting in the midplane of the plate.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

Transformation of Plane Stress


(

)

(

)


(

)

(

)


(

)

(

)


(

θ

)

θ τ

(

θ

)

θ
σ
θ
θ
τ
θ
θ
σ
τ
θ
θ
τ
θ
θ
σ
θ
θ
τ
θ
θ
σ
σ

sin
sin
cos
sin
cos
cos
sin
cos
0
cos
sin
sin
sin
sin
cos
cos
cos
0
<i>A</i>
<i>A</i>
<i>A</i>
<i>A</i>
<i>A</i>
<i>F</i>
<i>A</i>
<i>A</i>
<i>A</i>
<i>A</i>
<i>A</i>
<i>F</i>

<i>xy</i>
<i>y</i>
<i>xy</i>
<i>x</i>
<i>y</i>
<i>x</i>
<i>y</i>
<i>xy</i>
<i>y</i>
<i>xy</i>
<i>x</i>
<i>x</i>
<i>x</i>

+





+

=
=











=
=







• Consider the conditions for equilibrium of a
prismatic element with faces perpendicular to
the <i>x</i>, <i>y</i>, and <i>x’</i> axes.


θ
τ
θ
σ
σ
τ
θ
τ
θ
σ
σ
σ
σ


σ
θ
τ
θ
σ
σ
σ
σ
σ
2
cos
2
sin
2
2
sin
2
cos
2
2
2
sin
2
cos
2
2


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

Principal Stresses



• The previous equations are combined to


yield parametric equations for a circle,


(

)



2
2
2


2
2


2
2


where


<i>xy</i>
<i>y</i>


<i>x</i>
<i>y</i>


<i>x</i>
<i>ave</i>


<i>y</i>
<i>x</i>
<i>ave</i>


<i>x</i>



<i>R</i>
<i>R</i>


τ
σ


σ
σ


σ
σ


τ
σ


σ


+
⎟⎟


⎜⎜




⎛ −


=
+



=


=
+


− <sub>′</sub> <sub>′</sub>




• <i>Principal stresses</i> occur on the <i>principal </i>
<i>planes of stress</i> with zero shearing stresses.


2
2
min


max,


2
2


tan


2
2


<i>y</i>
<i>x</i>



<i>xy</i>
<i>p</i>


<i>xy</i>
<i>y</i>


<i>x</i>
<i>y</i>


<i>x</i>


σ
σ


τ
θ


τ
σ


σ
σ


σ
σ



=


+


⎟⎟


⎜⎜




⎛ −


±
+


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

Maximum Shearing Stress



<i>Maximum shearing stress</i> occurs for σ<i>x</i>′ =σ<i>ave</i>


2


45
by
from


offset


and
90


by
separated
angles



two
defines
:


Note


2
2


tan


2


o


o
2


2
max


<i>y</i>
<i>x</i>


<i>ave</i>


<i>p</i>
<i>xy</i>



<i>y</i>
<i>x</i>


<i>s</i>


<i>xy</i>
<i>y</i>


<i>x</i>


<i>R</i>


σ
σ


σ
σ


θ
τ


σ
σ


θ


τ
σ


σ


τ


+
=


=





=


+
⎟⎟


⎜⎜




⎛ −


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

Example 7.01



For the state of plane stress shown,
determine (a) the principal panes,
(b) the principal stresses, (c) the
maximum shearing stress and the
corresponding normal stress.



SOLUTION:


• Find the element orientation for the principal
stresses from


<i>y</i>
<i>x</i>


<i>xy</i>


<i>p</i> <sub>σ</sub> <sub>σ</sub>


τ
θ



= 2


2
tan


• Determine the principal stresses from


2
2


min
max,



2


2 <i>xy</i>


<i>y</i>
<i>x</i>


<i>y</i>


<i>x</i> σ σ σ <sub>τ</sub>


σ


σ <sub>⎟⎟</sub> +




⎜⎜




⎛ −


±
+


=


• Calculate the maximum shearing stress with



2
2


max


2 <i>xy</i>


<i>y</i>


<i>x</i> σ <sub>τ</sub>


σ


τ <sub>⎟⎟</sub> +




⎜⎜




⎛ −


=


<i>y</i>


<i>x</i> σ


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

Example 7.01




SOLUTION:


• Find the element orientation for the principal
stresses from

(

)


(

)


°
°
=
=


+
=

=
1
.
233
,
1
.
53
2
333
.
1
10
50

40
2
2
2
tan
<i>p</i>
<i>y</i>
<i>x</i>
<i>xy</i>
<i>p</i>
θ
σ
σ
τ
θ
°
°


= 26.6 ,116.6


<i>p</i>
θ
MPa
10
MPa
40
MPa
50

=


+
=
+
=
<i>x</i>
<i>xy</i>
<i>x</i>
σ
τ
σ


• Determine the principal stresses from


( ) ( )

2 2


2
2
min
max,
40
30
20
2
2
+
±
=
+
⎟⎟



⎜⎜

⎛ −
±
+


=σ<i>x</i> σ <i>y</i> σ<i>x</i> σ<i>y</i> τ<i><sub>xy</sub></i>
σ


MPa
70


max =


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

Example 7.01



MPa
10


MPa
40


MPa
50



=


+


=
+


=


<i>x</i>


<i>xy</i>
<i>x</i>


σ


τ
σ


• Calculate the maximum shearing stress with


( ) ( )

2 2
2
2


max


40
30


2


+
=



+
⎟⎟


⎜⎜




⎛ −


= σ<i>x</i> σ <i>y</i> τ<i><sub>xy</sub></i>
τ


MPa
50


max =


τ


45


= <i><sub>p</sub></i>


<i>s</i> θ


θ



°
°




= 18.4 , 71.6


<i>s</i>


θ


2
10
50
2



=


+
=


=


′ <i>x</i> <i>y</i>


<i>ave</i>


σ
σ



σ
σ


• The corresponding normal stress is


=


</div>

<!--links-->

×