Tải bản đầy đủ (.pdf) (20 trang)

Kỳ thi tuyển sinh lớp 10 thpt năm học: 2015 – 2016 môn: Toán thời gian làm bài: 120 phút

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (263.45 KB, 20 trang )

<span class='text_page_counter'>(1)</span>Sự vuông góc Mục lục Loại 1. Hai đường thẳng vuông góc, đường thẳng vuông góc với mặt phẳng .............................................................1 A. Nguyên tắc chung .....................................................1 B. Một số ví dụ .............................................................3 C. Bài tập ......................................................................9 Loại 2. Hai mặt phẳng vuông góc ...................................13 A. Nguyên tắc chung ................................................... 13 B. Một số ví dụ ........................................................... 14 C. Bài tập ....................................................................18. Lop12.net.

<span class='text_page_counter'>(2)</span> Bản quyền thuộc về ThS. Phạm Hồng Phong – Trường Đại học Xây dựng Tài liệu có thể được download miễn phí tại violet.vn/phphong84 Từ khóa : pham hong phong, su vuong goc. Lop12.net.

<span class='text_page_counter'>(3)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44. Loại 1. Hai đường thẳng vuông góc, đường thẳng vuông góc với mặt phẳng A. Nguyên tắc chung * Để giải chứng minh hai đường thẳng vuông góc , ta có thể làm như sau: +) Phương pháp 1: Chứng minh một đường thẳng vuông góc với một mặt phẳng chứa đường thẳng kia. a   P   ab.  b  P    +) Phương pháp 2 (Sử dụng định lý ba đường vuông góc): Giả sử b' là hình chiếu vuông góc của b lên  P  , a   P  . Khi đó a  b  a  b' .. +) Phương pháp 3(Sử dụng mối liên hệ giữa quan hệ song song và quan hệ vuông góc): b '/ /b  ab.  a  b '. * Để chứng minh một đường thẳng vuông góc với một mặt phẳng, ta có thể làm như sau +) Phương pháp 1: Chứng minh đường thẳng vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.. a  b  a  c   a   P . b   P   c   P  b vaø c caét nhau  +) Phương pháp 2: (Sử dụng mối liên hệ giữa quan hệ song song và quan hệ vuông góc): a / /  Q   a   P ,   Q  / /  P  1. Lop12.net.

<span class='text_page_counter'>(4)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 a / /a '  a   P .  a'   P . 2. Lop12.net.

<span class='text_page_counter'>(5)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44. B. Một số ví dụ Ví dụ 1. Cho hình chóp S.ABC có SA vuông góc với đáy. Biết đáy ABC là tam giác vuông tại. B . Gọi M , N lần lượt là trung điểm của AB và SC . Chứng minh MN  AB . Giải * SA   ABC  , BC   ABC   BC  SA  1 . Mặt khác. S. theo giả thiết: BC  AB N.  2. . Từ.  1. ,.  2. suy ra:. BC   SAB   BC  SB , nói cách khác  SBC vuông tại. B  NB  1 SC  3  (trong tam giác vuông, trung tuyến ứng 2. C. A. với cạnh huyền bằng nửa cạnh huyền).. M B. * SA   ABC  , AC   ABC   NA  12 SC.  4. . AC  SA , nói cách khác  SAC vuông tại A. (trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh. huyền). * Từ (3), (4) suy ra NA  NB   NAB cân tại N nên trung tuyến MN đồng thời là đường cao  MN  AB (ĐPCM). Ví dụ 2. Cho tứ diện ABCD có mặt ABC là tam giác cân tại C , ABD là tam giác cân tại D . Chứng minh AB  CD . Giải Gọi M là trung điểm của AB . DAB cân tại D nên. D. trung tuyến DM đồng thời là đường cao . AB  MD  1 . Tương tự như thế, ta cũng chứng minh được AB  MC M.  2. . Từ.  1. ,.  2. suy ra. B. A. AB   DMC  , lại có DC   DMC  . Từ đó suy ra C. AB  CD (ĐPCM).. 3. Lop12.net.

<span class='text_page_counter'>(6)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 Ví dụ 3. [ĐHD07] Cho hình chóp S.ABCD có đáy là hình thang vuông ( AD / /BC ), BA  BC  a , AD  2a , SA vuông góc với đáy. Chứng minh SCD là tam giác vuông.. Giải Ta thấy AC là hình chiếu của SC lên  ABCD  . Lại có. S. CD   ABCD  nên: CD  SC  CD  AC (Định lý ba đường vuông góc). 2a M. A. D. a B. Lấy M là trung điểm của AD . Dễ thấy tứ giác ABCM là hình vuông  CM  AB  a  AD   ACM vuông tại C , 2. a. C. nói cách khác: CD  AC (ĐPCM).. Ví dụ 4. [CĐABD09] Cho hình chóp tứ giác đều S.ABCD . Gọi M , N , P lần lượt là trung điểm các cạnh SA , SD , BC . Chứng minh MN  SP . Giải Ta có MN / / AD / /BC  MN / /BC  1 . Mặt khác:. S.  ABC cân tại S nên trung tuyến SP đồng thời là. đường cao  SP  BC. N. M.  2 .. Từ  1 ,  2  suy ra. SP  MN (ĐPCM). D. A I B. P. C. Ví dụ 5. [ĐHA07] Cho hình chóp S.ABCD có đáy là hình vuông. Mặt bên SAD là tam giác cân tại S , nằm trong mặt phẳng vuông góc với đáy. Gọi M , P lần lượt là trung điểm của SB , CD . Chứng minh AM  BP . Giải. 4. Lop12.net.

<span class='text_page_counter'>(7)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 Lấy N , Q lần lượt là trung điểm của BC , AD .. S. * Ta có: MN là đường trung bình của  BSC M. . MN / /SC (1). Hơn nữa: tứ giác ANCQ là hình bình hành.  AN / /CQ (2) . Từ (1), (2) suy ra  AMN  / /  CQS  A. B. (3).. Q. I. N. D. P. C. * SQ là trung tuyến của tam giác cân SAD  SQ  AD . Mặt khác: AD là giao tuyến của hai mặt phẳng vuông góc  SAD  và  ABCD  nên SQ   ABCD  . Lại có BP   ABCD  . Từ đó suy ra BP  SQ (4).. BCP  CDQ.   DCQ  CBP. . (c.g.c). .. Đặt. I  BP  CQ. .. Ta. có.   180  DCQ   BPC   180  CBP   BPC   BCP   90  BP  CQ (5). CIP. . . . . Từ (4), (5) suy ra: BP   CQS  (6). * Từ (3), (6) suy ra: BP   AMN  , hơn nữa MA   AMN   PB  MA (ĐPCM). Ví dụ 6. [ĐHD02] Cho hình lập phương ABCD.A1B1C1D1 . Gọi M , N , P lần lượt là trung điểm của BB1 , CD , A1D1 . Chứng minh MP  C1N . Giải * Ta thấy PD1   CDD1C1   D1 là hình chiếu vuông. C. B. N D. A Q. M. B1. A1. P. góc của P lên  CDD1C1  (1). Gọi Q là trung điểm của. I. CC1  MQ   CDD1C1  . Do đó: Q là hình chiếu vuông. C1. góc của M lên CC1 (2). Từ (1), (2) suy ra QD1 là hình D1. chiếu vuông góc của MP lên  CDD1C1  (3).. 5. Lop12.net.

<span class='text_page_counter'>(8)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44.   * Lại có NCC1  QC1D1 (c.g.c) CC 1N  C1D1Q . Đặt I  NC1  QD1 . Ta có     180  CC      QIC 1 1N  D1QC1  180  C1D1Q  D1QC1  QC1D1  90  C1N  QD1. . . . . (4). * Từ (3), (4) suy ra C1N  MP (ĐPCM). Ví dụ 7. Cho tứ diện OABC có các cạnh OA , OB , OC đôi một vuông góc. Chứng minh rằng. H là trực tâm  ABC khi và chỉ khi OH   ABC  . Giải Đặt M  AH  BC , N  BH  CA .. O. * Phần thuận: giả sử H là trực tâm  ABC . Từ giả thiết của phần thuận suy ra BC  AM (1). Từ giả thiết của bài toán: B. A H. N C. M. OA  OB , OA  OC.  OA  mp(OBC) , lại có. BC  mp(OBC) , từ đây suy ra BC  OA (2). Từ (1), (2) suy ra BC  mp(OAM) , lại có OH  mp(OAM) , từ đây suy ra OH  BC (3). Một cách tương tự, ta cũng có OH  CA (4). Từ (3), (4) suy ra OH  mp(ABC) .. * Phần đảo: giả sử OH  mp(ABC) (5). Gọi H' là trực tâm của  ABC . Từ chứng minh phần thuận ta có OH'  mp(ABC) (6). Từ (5), (6) suy ra H  H' hay H là trực tâm của  ABC . Ví dụ 8. Cho tứ diện OABC có OA  OB , gọi H là hình chiếu của O lên mặt phẳng (ABC) . Chứng minh H là trực tâm của  ABC khi và chỉ khi OC  (OAB) . Giải. 6. Lop12.net.

<span class='text_page_counter'>(9)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 Đặt M  AH  BC .. O. * Phần thuận: giả thiết thì H là trực tâm  ABC . Từ giả thiết này, ta có BC  AM (1). Từ OH  mp(ABC) , B. A H. BC  mp(ABC) suy ra BC  OH (2). Từ (1), (2) suy ra BC  mp(OAM) , mà OA  mp(OAM) . Từ đó suy ra. M. C. OA  BC (3). Theo giả thiết thì OA  OB (4). Từ (3), (4). suy ra OA  mp(OBC) , lại có OC  mp(OBC) . Từ đây suy ra OA  OC (5) . Một cách tương tự, ta cũng chỉ ra được OA  OB (6). Từ (5), (6) suy ra OA  mp(OBC) . * Phần đảo: giải thiết OA   OBC  . Theo bài 3 thì H là trực tâm  ABC . Ví dụ 9. Cho hình chóp S.ABC có đáy là tam giác cân tại A , O là trực tâm của  ABC ,. SA  mp(ABC) , H  mp(SBC) . Chứng minh H là trực tâm  SBC khi và chỉ khi OH  mp(SBC) . Giải * Phần thuận: giả thiết thì H là trực tâm  SBC . Đặt. S. M  CO  AB , N  CH  SB . Từ giả thiết suy ra: CN  SB , CM  AB . Gọi P là trung điêm của BC . Vì  ABC đều,  SBC cân tại S nên SH và AO đều đi qua P. . H. N. C. A M. O B. P. Vì AP và SP lần lượt là SP là các đường cao của các tam giác ABC và SBC nên AP và SP đều vuông góc với BC . Từ đó suy ra BC  mp(SAP) . Lại có: OH  mp(SAP) . Từ đó. suy. ra. OH  BC. (1).. AB là hình chiếu của SB lên mp(ABC) . Lại có:. MC  mp(ABC) , MC  AB . Từ đó suy ra: MC  SB hay SB  MC (2). Lại có: SB  NC (3). Từ (2), (3) suy ra:. SB  mp(CMN).  OH  SB. (4).. 7. Lop12.net.

<span class='text_page_counter'>(10)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 Từ (3), (4) suy ra OH  mp(SBC) . * Phần đảo: giải thiết OH  mp(SBC) . Gọi H' là trực tâm  SBC . Từ phần thuận suy ra. OH'  mp(SBC) . Từ đó suy ra H'  H . Vậy H là trực tâm  ABC . Ví dụ 10.. Cho tứ diện ABCD . M , N lần lượt là trung điểm của BC và AD . Biết. AB  16a , CD  12a , MN  10a ( a  0 ). Chứng minh AB  CD .. 8. Lop12.net.

<span class='text_page_counter'>(11)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44. C. Bài tập   SAB  . M là trung điểm BC . Chứng minh: Bài 1. Cho hình chóp S.ABC có AB  AC , SAC SA  BC ..   90 . Biết Bài 2. Cho hình chóp S.ABCD có đáy là hình thang có đáy lớn là AD và A AD  2BC  2AB .. 1) Chứng minh: AC  CD . 2) Gọi E là trung điểm AD tìm giao tuyến của hai mặt phẳng.  SBC. và  SCD  ..   90 . Xác định góc giữa SA và BE . 3) Biết góc SCD. Bài 3. Cho tứ diện ABCD có hai mặt ABC và DBC là hai tam giác cân chung đáy BC . Gọi. I là trung điểm BC . 1) Chứng minh BC  AD . 2) Gọi AH là đường cao của tam giác ADI . Chứng minh AH  mp  BCD  . Bài 4. Cho hình chóp S.ABC có SA  mp  ABC  và đáy là tam giác vuông tại B . 1) Chứng minh BC  SB 2) Từ A lần lượt kẻ hai đường cao AH , AK của các tam giác SAB và SAC . Chứng minh. AH  mp  SBC  và SC  mp  AHK  . Bài 5. Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA  SC , SB  SD . Chứng minh 1). SO  mp  ABCD  .. 2). AC  SD. .. Bài 6. Cho tứ diện ABCD có AB  CD , AC  BD . Gọi H là trực tâm  BCD . Chứng minh 1). AH   BCD  .. 2). AD  BC. .. 9. Lop12.net.

<span class='text_page_counter'>(12)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 Bài 7. Hình chóp S.ABC có SA vuông với đáy,  ABC cân ở A . Gọi M là trung điểm BC . Chứng minh: 1). BC   SAM  .. 2) Gọi H là chân đường vuông góc hạ từ A xuống SM . Chứng minh AH  SB . Bài 8. Cho hình chóp S.ABC có SA  a 6 và các cạnh còn lại đều bằng a ( a  0 ). Gọi I là 2 trung điểm BC . Chứng minh SI   ABC  . Bài 9. Cho hình chóp S.ABCD có đáy là hình vuông tâm O , SA   ABCD  và SA  AB . Gọi H và M lần lượt là trung điểm của SB và SD . Chứng minh OM   AHD  . Bài 10. Cho  ABC cân tại A , I và H lần lượt là trung điểm các cạnh AB và BC . Dựng. SH  mp  ABC  , trên đoạn CI và SA lần lượt lấy hai điểm M và N sao cho MC  2MI và NA  2NS . Chứng minh MN  mp  ABC  .. Bài 11. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , cạnh SB vuông góc với đáy  ABC  . Qua B kẻ BH vuông góc với SA , BK vuông góc với SC . Chứng minh SC vuông góc với mặt phẳng (BHK) và tính diện tích tam giác BHK biết rằng AC  a , BC  a 3 và SB  a 2 . Bài 12. Cho hình chóp O.ABC có cạnh OA , OB , OC đôi một vuông góc với nhau và OA  OB  OC  a . Kí hiệu K , M , N lần lượt là trung điểm của các cạnh AB , BC , CA .. Gọi E là điểm đối xứng của O qua K và I là giao điểm của CE với mặt phẳng  OMN  . 1) Chứng minh rằng CE vuông góc với mặt phẳng  OMN  . 2) Tính diện tích của tứ giác OMIN theo a . Bài 13. Cho hình chóp S.ABCD , đáy là hình vuông cạnh bằng a . Mặt bên SAB là tam giác đều, SCD là tam giác vuông cân đỉnh S . Gọi I , J lần lượt là trung điểm của AB và CD . 1) Tính các cạnh của tam giác SIJ theo a . Chứng minh rằng SI vuông góc với mặt phẳng.  SCD. và SJ vuông với mặt phẳng  SAB  .. 2) Gọi H là hình chiếu vuông góc của S trên IJ . Chứng minh rằng SH vuông góc với AC . 3) Gọi M là một điểm thuộc đường thẳng CD sao cho BM vuông góc với SA . Tính độ dài đoạn thẳng AM theo a . 10. Lop12.net.

<span class='text_page_counter'>(13)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44   AOC   60o , BOC   900 . Bài 14. Cho tứ diện OABC có OA  OB  OC  a và AOB. 1) Tính độ dài các cạnh còn lại của tứ diện và chứng minh rằng tam giác ABC vuông. 2) Chứng minh OA  CB . Bài 15. [ĐHB12] Cho hình chóp tam giác đều S.ABC với SA  2a , AB  a . Gọi H là hình chiếu vuông góc của A lên cạnh SC . Chứng minh SC vuông góc với mặt phẳng  ABH . 11. Lop12.net.

<span class='text_page_counter'>(14)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44. 12. Lop12.net.

<span class='text_page_counter'>(15)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44. Loại 2. Hai mặt phẳng vuông góc A. Nguyên tắc chung * Góc giữa hai mặt phẳng chính là góc giữa hai đường thẳng thuộc hai mặt phẳng và vuông góc với giao tuyến. * Để chứng minh hai mặt phẳng vuông góc, ta thường sử dụng các phương pháp sau đây +) Sử dụng định nghĩa: chứng minh một mặt phẳng chứa một đường thẳng vuông góc với mặt phẳng còn lại. +) Sử dụng góc giữa hai mặt phẳng: chứng minh góc giữa hai mặt phẳng bằng 90 .. 13. Lop12.net.

<span class='text_page_counter'>(16)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44. B. Một số ví dụ Ví dụ 1. Cho tứ diện ABCD có mặt ACD và BCD là các tam giác đều cạnh a . Biết. AB  a 6 , chứng minh  ACD    BCD  . 2. Giải Lấy E là trung điểm của CD . AE là trung tuyến của tam giác. A. cân ACD nên đồng thời là đường cao, do đó: CD  AE (1). Tương tự, ta cũng chứng minh được CD  BE (2). Từ (1), (2) D. B. suy ra: góc giữa hai mặt phẳng  ACD  và  BCD  chính là 2. E. 2.  . Ta thấy AE 2  BE 2  2  a 3   3a 2   a 6  . góc AEB  2   2  2    . C.   90 (ĐPCM).  AEB vuông tại E  AEB. Ví dụ 2. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và SA vuông góc với đáy. Gọi H , K lần lượt là hình chiếu của A lên SB , SC . Chứng minh  SAC    AHK  . Giải * Theo giả thiết thì SC  AK (1).. S. * Ta chứng minh SC  HK :. K. Sử dụng hệ thức lượng trong tam giác vuông, ta có A. H C. B.  SH.SB  SA 2  SH.SB  SK .SC . Từ đây suy ra HKBC   SK.SC  SA 2. là tứ giác nội tiếp (2).. Lại có: CB  AB (giả thiết), CB  SA (do SA   ABC  )  SB   SAB   CB  SB (3). Từ (2), (3) suy ra SC  HK (4). Từ (3), (4) suy ra SC   AHK  .  SAC    AHK . (ĐPCM).. 14. Lop12.net.

<span class='text_page_counter'>(17)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 Ví dụ 3. [ĐHB06] Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB  a , AD  a 2 , SA vuông góc với đáy. Gọi M là trung điểm của AD . Chứng minh  SAC    SMB  .. Giải Đặt I  AC  BD . Áp dụng định lý Pitago, tính được:. S. AC  a 3 , BM  a. a 2. A. a 6 . 2. Vì hai tam giác IAM và ICB đồng dạng nên D. M a I. B. IA IC IA  IC AC    AM BC AM  BC AM  BC. C. a 2 .a 3 AM.AC a 3  IA   2  . AM  BC a 2  a 2 3 2 a 2 a 6 . 2 AM.BM a 6 Tương tự: IM   2  . AM  BC a 2  a 2 6 2 2. 2. 2. a 3 a 6 a 2 2 Ta có: IA  IM           AM  IAM vuông tại I hay 3 6 2       2. 2. BM  AC (1).. Lại có SA  mp(ABCD) , BM  mp(ABCD)  BM  SA (2). Từ (1), (2) suy ra BM  mp(SAC)  mp(SMB)  mp(SAC) (ĐPCM). Ví dụ 4. [ĐHA02] Cho hình chóp tam giác đều S.ABC có đỉnh S , có độ dài cạnh đáy bằng a . Gọi M , N lần lượt là trung điểm các cạnh SB , SC . Tính theo a diện tích tam giác AMN , biết rằng mặt phẳng  AMN  vuông góc với mặt phẳng  SBC  . Giải. 15. Lop12.net.

<span class='text_page_counter'>(18)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44 * Lấy I là trung điểm của BC .  ABC đều. S.  AI  BC ,  SBC cân  SI  BC . Từ. J. đó suy ra BC   SAI   1 . Lại có MN  BC. N.  2 .. M C. A H. Từ  1 ,  2  suy ra MN   SAI  .  MN  SI ( J  SI  MN )    MN  AJ. I B.  SI, AJ . chính là góc giữa hai mặt phẳng  AMN  và.  SBC * Dễ thấy J là trung điểm của SI .   90 .  AJI.  SAI cân tại A . SA  AI  a 3 . Lại có 2. AH  2 AI  a 3 . Do đó SH  SA 2  AH 2  a 15 . 3. 3. 6. 3 Vậy VS.ABC  13 S ABC .AH  13  12 a. a 2 3  a. 615  a 24 5  . Ví dụ 5. [ĐHA03] Cho hình hộp chữ nhật ABCD.A 'B 'C 'D ' có các đáy là hình vuông cạnh. a , AA '  b , M là trung điểm của CC' . Xác định tỷ số. a sao cho  A'BD    MBD  . b. Giải C'. D'. Đặt I  AC  BD . Ta thấy A'BD cân tại A nên. B'. A'. trung tuyến A'I đồng thời là đường cao. Như vậy M. b. Tương tự ta cũng chứng minh được MI  BD (2). D a. A. A'I  BD (1).. C I. a. Từ (1), (2) suy ra góc giữa hai mặt phẳng  A 'BD  và. B.  MBD. chính là góc giữa hai đường thẳng A'I và MI. .. 16. Lop12.net.

<span class='text_page_counter'>(19)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44. Áp. dụng. định. MI 2  A'I 2 . Thành thử 2a2 . lý. Pitago,. ta. tính. được:. b2 A 'M  2a  4 2. 2. ,. a2 A 'I   b2 , 2 2. a2 b2  . 2 4.  A'BD   MBD . .  A 'IM  90. . A 'M 2  A'I 2  MI 2. .   a2 b2  a b2  a2   b2      1.     2  4  2 4 b   . 17. Lop12.net.

<span class='text_page_counter'>(20)</span> THS. PHẠM HỒNG PHONG – GV TRƯỜNG ĐHXD – DĐ: 0983 0707 44. C. Bài tập Bài 1. Cho hình chóp S.ABCD có đáy là hình thoi. Các tam giác SAC và tam giác SBD là các tam giác cân tại S . Chứng minh  SAC    SBD  . Bài 2. Hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B , SA vuông góc với đáy. 1) Chứng minh  SAB    SBC  . 2) Gọi M là trung điểm AC . Chứng minh  SAC    SBM  . Bài 3. Hai tam giác ACD và BCD nằm trong hai mặt phẳng vuông góc với nhau . Biết AC  AD  BC  BD  a và CD  2x . Xác định x theo a sao cho  ABC    ABD  .. Bài 4. Cho tam giác đều ABC cạnh a , I là trung điểm BC , D là điểm đối xứng của A qua I . dựng đoạn SD . a 6 vuông góc với mp(ABC) . Chứng minh 2. 1).  SAB    SAC .. 2).  SBC    SAD .. Bài 5. Cho hình chóp S.ABC có đáy là tam giác vuông tại C , mặt bên SAC là tam giác đều nằm trong mặt phẳng vuông góc với đáy. 1) Chứng minh mp  SBC   mp  SAC  . 2) Gọi I là trung điểm của SC . Chứng minh mp  ABI   mp  SBC  . Bài 6. Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a . Gọi M và N lần lượt là các trung điểm của các cạnh SB và SC . Tính diện tích tam giác AMN theo a biết rằng mặt phẳng (AMN) vuông góc với mặt phẳng (SBC) . Bài 7. Cho hình lập phương ABCD.A 'B 'C'D' cạnh a . Chứng minh  ACC'A'   A'BD  . Bài 8. Hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau. Khi nào.  AA'C'C    BB'D'D  .. 18. Lop12.net.

<span class='text_page_counter'>(21)</span>

×