Tải bản đầy đủ (.pdf) (4 trang)

Kỳ thi tốt nghiệp thpt năm 2009 môn: Toán – trung học phổ thông phân ban

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (167.75 KB, 4 trang )

<span class='text_page_counter'>(1)</span>SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH THUẬN TRƯỜNG THPT NGUYỄN VĂN TRỖI TỔ TOÁN – TIN. KỲ THI TỐT NGHIỆP THPT NĂM 2009 MÔN:TOÁN – Trung học phổ thông phân ban Thời gian:150 phút, không kể thời gian giao đề. I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7.0 điểm) Câu 1 (3.0 điểm): Cho hàm số y = f(x) =. x2 x 1. 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2.Viết phương trình tiếp tuyến của (C) tại tiếp điểm có hoành độ x0 là nghiệm của phương trình f’(x0) = 3. Câu 2 (1.0 điểm) : Giải phương trình log 22 x  3 log 2 x  4 Câu 3 (2.0 điểm): 1/ Tìm giá trị lớn nhất và nhỏ nhất của hàm số f(x) = x3 + 3x2 + 1 trên đoạn [-3 ; -1]. 0. 2/ Tính tích phân I =  2 x ln( x  2)dx 1. Câu 4 (1.0 điểm) : Cho hình chóp S.ABC, đáy tam giác ABC có AB = 3, AC = 4, góc A = 300, cạnh bên SA vuông góc với đáy và SA = 3. Tính thể tích của khối chóp S.ABC. II. PHẦN DÀNH RIÊNG (3.0 điểm)Thí sinh học chương trình nào chỉ được làm phần dành cho chương trình đó (phần A hoặc phần B) A.Thí sinh theo chương trình chuẩn Câu 5a (1.0 diểm) : Giải phương trình z4 + z2 - 6 = 0 trên tập số phức. Câu 5b (2.0 diểm) : Cho mặt cầu (S) có phương trình (x - 3)2 + (y + 2)2 + (z – 1)2 = 100. 1. Viết phương trình đường thẳng  đi qua tâm I của mặt cầu (S) và vuông góc với mặt phẳng (  ) có phương trình 2x – 2y – z + 9 = 0. 2 Viết phương trình mặt phẳng tiếp xúc với mặt cầu tại tiếp điểm A(-3 ; 6 ; 1). B.Thí sinh theo chương trình nâng cao . Câu 6a (1.0 diểm) : 1.Giải phương trình z4 + 3z2 - 10 = 0 trên tập số phức. Câu 6b (2.0 diểm) : Cho mặt cầu (S) có phương trình (x - 3)2 + (y + 2)2 + (z – 1)2 = 100 và mặt phẳng (  ) có phương trình 2x – 2y – z + 9 = 0. Mặt phẳng (  ) cắt mặt cầu (S) theo đường tròn (C). 1.Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) và song song với mặt phẳng (  ). 2.Tìm tâm H của đường tròn (C). ..............Hết............ Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh :...............................................Số báo danh :............................................ Chữ ký của giám thị 1 :..................................... Chữ ký của giám thị 2:.............................. Lop12.net.

<span class='text_page_counter'>(2)</span> SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH THUẬN TRƯỜNG THPT NGUYỄN VĂN TRỖI TỔ TOÁN – TIN. KỲ THI TỐT NGHIỆP THPT NĂM 2009 MÔN:TOÁN – Trung học phổ thông phân ban. ĐÁP ÁN VÀ THANG ĐIỂM CÂU Câu 1 (3.0 điểm). ĐÁP ÁN 1.(2 điểm) 1)Tập xác định : D = R\{-1} 2)Sự biến thiên y’ =. ĐIỂM 0.25. 3  0 x  1 ( x  1) 2. .Hàm số đồng biến trên mỗi khoảng (-  ;-1) và (-1 ;+  ) .Cực trị : Hàm số không có cực trị .Giới hạn : lim y   ; lim y   x  1. 0.75. x  1.  Đồ thị của hàm số có tiệm cận đứng là đường thẳng x = -1 lim y  1 ; lim y  1 x  . x  .  Đồ thịcủa hàm số có tiệm cận ngang là đường thẳng y =1. .Bảng biến thiên 0.5. 3)Đồ thị Đồ thị đi qua các điểm (-2 ; 4), (0 ; -2), (2 ; 0) và nhận điểm I (-1 ;1) làm tâm đối xứng.. 0.5. 2.(1.0 điểm) Ta có : f’(x0) = 3 .  x 0 3 = 3  (x0 + 1)2 = 1   0 2 ( x0  1)  x0  2. x0 = 0  y0 = -2, phương trình tiếp tuyến là : Lop12.net. 0.5 0.5.

<span class='text_page_counter'>(3)</span> Câu 2 (1.0 điểm). y = 3(x - 0) – 2 = 3x - 2 x0 = -2  y0 = 4, phương trình tiếp tuyến là : y = 3(x + 2) + 4 = 3x + 10 Đặt t = log 2 x , x > 0, ta được phương trình t2 - 3t - 4 = 0 t  1  t 4. t = -1  log 2 x = -1  x = Câu 3 (2.0 điểm). 1 2. 0.5. t = 4  log 2 x = 4  x = 16 1.(1.0 điểm) Trên đọan [-3 ; -1] ta có : f’(x) = 3x2 + 6x, f’(x) = 0  x = - 2 f (-3) = 1 ; f(-2) = 5 ; f(-1) = 3 Min f ( x) = 1 tại x = - 1 ; Max f ( x) = 5 tại x = -2 [ 3; 1]. 0.5. [ 3; 1]. 0.25 0.75. 2.(1.0 điểm).. 0.25. 1  u  ln( x  2) dx du  Đặt   x2  dv  2 xdx  v  x 2  4 0.  2 x ln( x  2)dx = (x2 – 4)ln(x+ 2). 1. 0 1. 0. -  ( x  2)dx 1. 0.75. 0 x 5 = -4ln2 - ( - 2x) = - 4ln2 1 2 2 2. Câu 4 (1.0 điểm). Vì SA  (ABC) nên SA là đường cao Diện tích dáy S = =. 1 AB.AC.sinA 2. 1 .3.4.sin300 = 3 2. 1.0. Thể tích của khối chóp V=. 1 .3.3 =3 (đvtt) 3. ( 1điểm) Câu 5a (1.0 điểm). Câu 5b (2.0 điểm). Z 2. Đặt Z = z2, ta được phương trình Z2 + Z - 6 = 0    Z  3 Vậy phương trình có nghiệm là  2 ;  i 3 1.(1.0 điểm) Tâm mặt cầu (S) : I(3 ; -2 ; 1)  Vectơ pháp tuyến của mặt phẳng (  ) : n = (2; -2; -1) Vì đường thẳng  vuông góc với mặt phẳng (  ) nên nhận vectơ  n = (2; -2; -1) làm vectơ chỉ phương  x  3  2t  Phương trình đường thẳng  là:  y  2  2t  z  1 t . 2.(1.0 điểm) Lop12.net. 1.0. 1.0.

<span class='text_page_counter'>(4)</span> Vì mặt phẳng (  ) tiếp xúc với mặt cầu (S) tại A(-3; 6; 1) nên có 1.0. vectơ pháp tuyến AI = ( 6; -8; 0) Phương trình mặt phẳng (  ) là:6x - 8y + 66 = 0 ( 1.0 điểm) Câu 6a (1.0 điểm). Z 2  Z  5. Đặt Z = z2, ta được phương trình Z2 + 3Z - 10 = 0  . 1.0. Vậy phương trình có nghiệm là  2 ;  i 5 1.(1.0 điểm) Tâm mặt cầu (S) : I = (3 ; -2 ; 1), bán kính mặt cầu (S): R = 10 Vì mặt phẳng (  ) song song với mặt phẳng (  ) nên có dang : 2x -2y - z + D = 0, D  9 Vì mặt phẳng (  ) tiếp xúc với mặt cầu (S) nên ta có: d(I, (  ) ) = R .  D  21  10  |9 + D| = 30    D  39 2  (2)  1. | 6  4 1 D | 2. 2. 1.0. Vậy có hai phương trình mặt phẳng (  ) tthoả mãn là: 2x - 2y – z + 21 và 2x - 2y – z - 39 Vì đường thẳng  vuông  góc với mặt phẳng (  ) nên nhận vectơ n = (2; -2; -1) làm vectơ chỉ phương Câu 6b (2.0 điểm).  x  3  2t  Phương trình đường thẳng  là:  y  2  2t  z  1 t . 2.(1.0 điểm) Đường thẳng  đi qua I và vuông góc với mặt phẳng (  ) nên  nhận vectơ pháp tuyến của mặt phẳng (  ) là n = (2; -2; -1) làm vectơ chỉ phương  x  3  2t  Phương trình đường thẳng  là:  y  2  2t  z  1 t . Toạ độ tâm H của đường tròn (C) thoả hệ phương trình  x  3  2t  y  2  2t    z  1 t  2 x  2 y  z  9  0.  t  2  x  1   y  2  z  3. Lop12.net. Vậy H(-1; 2; 3). 1.0.

<span class='text_page_counter'>(5)</span>

×