Tải bản đầy đủ (.doc) (2 trang)

Bài giảng ĐỀ THI THỬ ĐẠI HỌC NĂM 2010: MÔN TOÁN - KHỐI A

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (104.84 KB, 2 trang )

ĐỀ THI THỬ ĐẠI HỌC NĂM 2010
Môn toán - KHỐI A
Thời gian 180 phút ( không kể giao đề )
PHẦN A : DÀNH CHO TẤT CẢ CÁC THI SINH .
Câu I (2,0 điểm) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : y = x
3
– 3x
2
+ 2
2) Biện luận theo m số nghiệm của phương trình :
2
2 2
1
m
x x
x
− − =


Câu II (2,0 điểm ) 1) Giải phương trình :
5
2 2 os sin 1
12
c x x
π
 
− =
 ÷
 
2) Giải hệ phương trỡnh:
2 8


2 2 2 2
log 3log ( 2)
1 3
x y x y
x y x y

+ = − +


+ + − − =


.
Câu III(1,0 điểm ) Tớnh tớch phõn :
/4
2
/4
sin
1
x
I dx
x x
π
π

=
+ +


Câu IV ( 1,0 điểm ) : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB =

a , AD = 2a .
Cạnh SA vuông góc với mặt phẳng đáy , cạnh bên SB tạo với mặt phắng đáy một góc
60
0
.Trên cạnh SA
lấy điểm M sao cho AM =
3
3
a
, mặt phẳng ( BCM) cắt cạnh SD tại N .Tính thể tích khối
chóp S.BCNM
Câu V (1,0 điểm ) Cho x , y , z là ba số thực thỏa mãn : 5
-x
+ 5
-y
+5
-z
= 1 .Chứng minh
rằng :

+ + +
+ +
+ + +
25 25 25
25 5 5 5 5 5
x y z
x y z y z x z x y


+ +

5 5 5
4
x y z

PHẦN B ( THÍ SINH CHỈ ĐƯỢC LÀM MỘT TRONG HAI PHẦN ( PHẦN 1 HOẶC
PHẦN 2)
PHẦN 1 ( Dành cho học sinh học theo chương trình chuẩn )
Câu VI.a 1.( 1,0 điểm ) Trong mặt phẳng Oxy cho tam giỏc ABC với A(1; -2), đường
cao
: 1 0CH x y− + =
, phõn giỏc trong
: 2 5 0BN x y+ + =
.Tỡm toạ độ các đỉnh B,C và tớnh
diện tớch tam giỏc ABC
2.( 1,0 điểm ) Trong không gian với hệ tọa độ 0xyz cho hai đường thẳng :
d
1
:
2 1
4 6 8
x y z− +
= =
− −
; d
2
:
7 2
6 9 12
x y z
− −

= =

a) Chứng minh rằng d
1
và d
2
song song . Viết phương trình mặt phẳng ( P) qua d
1
và d
2
.
b)Cho điểm A(1;-1;2) ,B(3 ;- 4;-2).Tìm điểm I trên đường thẳng d
1
sao cho IA +IB đạt giá
trị nhỏ nhất
Cõu VII.a (1 điểm): Giải phương trỡnh sau trờn tập số phức C:
2
4 3
1 0
2
z
z z z− + + + =

PHẦN 2 ( Dành cho học sinh học chương trình nâng cao )
Cõu VI.b 1. (1.0 điểm) Trong mặt phẳng với hệ trục toạ độ Oxy cho hình chữ nhật ABCD
có diện tích bằng 12, tâm I là giao điểm của đường thẳng
03:
1
=−− yxd



06:
2
=−+ yxd
. Trung điểm của một cạnh là giao điểm của d
1
với trục Ox. Tìm toạ độ
các đỉnh của hình chữ nhật.
2. (1,0điểm) Trong không gian với hệ tọa độ 0xyz cho hai đường thẳng :
D
1
:
2 1
1 1 2
x y z
− −
= =

, D
2
:
2 2
3
x t
y
z t
= −


=



=

a) Chứng minh rằng D
1
chéo D
2
và viết phương trình đường vuông góc chung của D
1

D
2

b) Viết phương trình mặt cầu có đường kính là đoạn vuông góc chung của D
1
và D
2

CâuVII.b ( 1,0 điểm) Tớnh tổng:
0 4 8 2004 2008
2009 2009 2009 2009 2009
...S C C C C C= + + + + +
…….Hết .......

×