Tải bản đầy đủ (.pdf) (2 trang)

Sử dụng nhị thức Newton để tính tổng của một chuỗi số

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (701.47 KB, 2 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

“Bạn cũng làm được như tôi” Nguyễn Chí Phương


5


<b>Bài học 4: [Chuyên đề tổ hợp & nhị thức NewTon] </b>


<b>SỬ DỤNG NHỊ THỨC NEWTON ĐỂ TÍNH TỔNG CỦA MỘT CHUỖI SỐ </b>






<i> </i>
<i> </i>


Công thức nhị thức Newton


(𝑎 + 𝑏)𝑛= ∑ 𝐶𝑛𝑘𝑎𝑛−𝑘𝑏𝑘
𝑛


𝑘=0


= 𝐶𝑛0𝑎𝑛+ 𝐶𝑛1𝑎𝑛−1𝑏 + ⋯ + 𝐶𝑛𝑛−1𝑎1𝑏𝑛−1+ 𝐶𝑛𝑛𝑏𝑛.
Thay 𝑎 = 1, 𝑏 = 𝑥 ta được


𝐶𝑛0+ 𝐶𝑛1𝑥 + ⋯ + 𝐶𝑛𝑛−1𝑥𝑛−1+ 𝐶𝑛𝑛𝑥𝑛= (1 + 𝑥)𝑛. (1)

<b>Biến đổi 1 (thay thế): Thay </b>

𝑥 = 1 vào (1) ta được tổng


𝑆1= 𝐶𝑛0+ 𝐶𝑛1+ ⋯ + 𝐶𝑛𝑛−1+ 𝐶𝑛𝑛 = 2𝑛.

<b>Biến đổi 2 (đạo hàm): Đạo hàm 2 vế của </b>

(1) ta được


𝐶𝑛1+ 2𝐶𝑛2𝑥 … + (𝑛 − 1)𝐶𝑛𝑛−1𝑥𝑛−2+ 𝑛𝐶𝑛𝑛𝑥𝑛−1= 𝑛(1 + 𝑥)𝑛−1. (2)
Lập lại biến đổi 1 cho (2) ta được tổng



𝑆2= 𝐶𝑛1+ 2𝐶𝑛2… + (𝑛 − 1)𝐶𝑛𝑛−1+ 𝑛𝐶𝑛𝑛= 𝑛2𝑛−1.

<b>Biến đổi 3 (nhân thêm): Nhân cả hai vế của </b>

(1) một lượng 𝑥 ta được


𝐶𝑛0𝑥 + 𝐶𝑛1𝑥2+ ⋯ + 𝐶𝑛𝑛−1𝑥𝑛+ 𝐶𝑛𝑛𝑥𝑛+1= 𝑥(1 + 𝑥)𝑛. (3)
Lập lại bước biến đổi 2 cho (3) ta được


𝐶𝑛0+ 2𝐶𝑛1𝑥 + ⋯ + 𝑛𝐶𝑛𝑛−1𝑥𝑛−1+ (𝑛 + 1)𝐶𝑛𝑛𝑥𝑛 = (1 + 𝑥)𝑛+ 𝑛𝑥(1 + 𝑥)𝑛−1. (3′)
Lập lại bước biến đổi 2 cho (3′) ta được tổng


𝑆3= 𝐶𝑛0+ 2𝐶𝑛1+ ⋯ + 𝑛𝐶𝑛𝑛−1+ (𝑛 + 1)𝐶𝑛𝑛= 2𝑛+ 𝑛2𝑛−1= (2 + 𝑛)2𝑛−1.

<b>Biến đổi 4 (lấy tích phân): Tích phân 2 vế cận từ 0 tới 1 cho </b>

(1) ta được tổng


𝑆4= 𝐶𝑛0∫ 𝑑𝑥
1
0


+ 𝐶𝑛1∫ 𝑥𝑑𝑥
1
0


+ ⋯ + 𝐶𝑛𝑛−1∫ 𝑥𝑛−1𝑑𝑥
1


0


+ 𝐶𝑛𝑛∫ 𝑥𝑛𝑑𝑥
1
0



= ∫ (1 + 𝑥)𝑛𝑑𝑥
1


0
⇔ 𝑆4= 𝐶𝑛0+


1
2𝐶𝑛


1<sub>+ ⋯ +</sub>1


𝑛𝐶𝑛


𝑛−1<sub>+</sub> 1


𝑛 + 1𝐶𝑛


𝑛 <sub>=</sub>2𝑛+1− 1


𝑛 + 1 .
Trên đây là 4 bước biến đổi cơ bản, tùy thuộc vào bài toán mà bạn phối hợp chúng với nhau để đưa về
kết quả như mong muốn. Bây giờ xét một ví dụ mẫu sau để xem ta thực hiện các bước biến đổi nào nhé.

<b>Ví dụ: Tính tổng chuỗi sau </b>



𝑆 = 𝐶20121 +
2
3𝐶2012


2 <sub>+</sub>3



4𝐶2012


3 <sub>+ ⋯ +</sub>2011


2012𝐶2012


2011<sub>+</sub>2102


2013𝐶2012
2012<sub>.</sub>
<i>Giải.</i> Từ (1) ứng với 𝑛 = 2012 ta có


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

“Bạn cũng làm được như tôi” Nguyễn Chí Phương


6


𝐶20120 + 𝐶20121 𝑥 + ⋯ + 𝐶2012𝑛−1𝑥2011+ 𝐶20122012𝑥2012= (1 + 𝑥)2012. (4)
Thực hiện phép biến đổi 2 cho (4) ta có


𝐶<sub>2012</sub>1 <sub>+ 2𝐶</sub>


20122 𝑥 + 3𝐶20123 𝑥2… + 2011𝐶20122011𝑥2010+ 2012𝐶20122012𝑥2011= 2012(1 + 𝑥)2011. (4′)
Thực hiện phép biến đổi 3 cho (4′) ta có


𝐶20121 𝑥 + 2𝐶20122 𝑥2+ 3𝐶20123 𝑥3… + 2011𝐶20122011𝑥2011+ 2012𝐶20122012𝑥2012= 2012𝑥(1 + 𝑥)2011. (4′′)
Thực hiện phép biến đổi 4 cho (4′′) ta được tổng cần tìm


𝑆 = 𝐶20121 +
2
3𝐶2012



2 <sub>+</sub>3


4𝐶2012


3 <sub>+ ⋯ +</sub>2011


2012𝐶2012


2011<sub>+</sub>2102


2013𝐶2012


2012<sub>=</sub>2011. 22012+ 1


2013 .


Như vậy bài toán trên thực hiện phối hợp theo 3 bước lần lượt theo thứ tự là 2,3,4 để đưa về kết quả
như mong muốn.


Và bạn lưu ý là bài tốn xuất phát ban đầu của mình là cho 𝑎 = 1, 𝑏 = 𝑥 nếu bây giờ mình đổi lại là cho
𝑎 = 1, 𝑏 = −𝑥 thì ta sẽ có một loạt bài tốn tính tổng mới dựa trên đẳng thức (1′) sau


𝐶𝑛0− 𝐶𝑛1𝑥 + ⋯ + (−1)𝑛−1𝐶𝑛𝑛−1𝑥𝑛−1+ (−1)𝑛𝐶𝑛𝑛𝑥𝑛= (1 − 𝑥)𝑛. (1′)
Từ đây ta cũng sẽ có một biến đổi mới


<b>Biến đổi 5 (cộng đa thức): Cộng </b>

(1) và (1′) ta được


2𝐶𝑛0+ 2𝐶𝑛2𝑥2+ 2𝐶𝑛4𝑥4+ ⋯ + (1 + (−1)𝑛−1)𝐶𝑛𝑛−1𝑥𝑛−1+ (1 + (−1)𝑛)𝐶𝑛𝑛𝑥𝑛 = (1 + 𝑥)𝑛+ (1 − 𝑥)𝑛
Tương tự ta cũng có biến đổi 5’ (trừ đa thức). Sau đó bằng cách thực hiện các biến đổi 1,2,3,4 ta có được


những tổng mới. bạn nhớ là để có thể lựa chọn được các bước sao cho phù hợp với kết quả địi hỏi bạn
phải có khả năng quan sát và đánh giá tốt bài tốn. Hy vọng những ví dụ sau sẽ giúp cho bạn làm quen với
loại toán này.


<b>Tính tổng của các chuỗi sau </b>
(𝑎) 𝑆1=


𝐶20120


1 +


𝐶20121


2 +


𝐶20122


3 + ⋯ +


𝐶20122012
2013.


(𝑏) 𝑆<sub>2</sub>= 12𝐶20121 + 22𝐶20122 + 32𝐶20123 + ⋯ + 20122𝐶20122012.
(𝑐) 𝑆3 = 𝐶200 𝐶1211+ 𝐶201 𝐶1210+ ⋯ + 𝐶2010𝐶121 + 𝐶2011𝐶120 .


(𝑑) 𝑆4 = 2𝐶200 + 5𝐶201 + 8𝐶202 + ⋯ + 62𝐶2020.


(𝑒) Cho khai triển đa thức (1 + 3𝑥)20 = 𝑎0+ 𝑎1𝑥 + 𝑎2𝑥3+ ⋯ + 𝑎20𝑥20. Tính tổng,
𝑆5= 𝑎1+ 2𝑎2+ ⋯ + 19𝑎19+ 20𝑎20.



(𝑓) 𝑆<sub>6</sub>= 2. 22𝐶20122 𝑥 + 4. 24𝐶20124 𝑥3+ 6. 26𝐶20124 𝑥5+ ⋯ + 2012. 22012𝐶20122012𝑥2011.


</div>

<!--links-->

×