<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
PANEL DATA MODELS
</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>
Panel data
<b>data on MANY units and SEVERAL time periods</b>
</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>
Example
Viet Nam Provincial data on
GDP : provincial GDP (mil. VND)
LABFO: number of laborers of provinces (1000
persons)
RINVEST: gross investment of provinces (mil. VND)
PCI: 100-point scaled composite index measuring
and ranking Vietnam’s provinces based on their
overall economic governance quality
</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>
Example
provcode province
year
rgdp
labfo
rinvest
pci
An Giang
1
2007 22000000
1221.3
5600000
66.4688
1
2008 25000000
1244.9
4600000
61.1247
1
2009 25000000
1227.3
4800000
58.177
1
2010 27000000
1255
4500000
61.9379
1
2011 29000000
1300.4
3900000
62.22
Bac Can
2
2007
1500000
177.2
592714
46.4687
2
2008
2000000
179.8
1100000
39.7762
2
2009
2400000
189.8
1100000
75.9563
2
2010
3400000
194
2600000
51.4864
2
2011
4200000
199.6
2900000
52.71
</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>
Why panel data?
more information
heterogeneity among units
</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>
Manipulation of panel data
delta: 1 unit
time variable: year, 2007 to 2011
panel variable: province (strongly balanced)
. xtset province year
</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>
Manipulation of panel data
58 100.00 XXXXX
58 100.00 100.00 11111
Freq. Percent Cum. Pattern
5 5 5 5 5 5 5
Distribution of T_i: min 5% 25% 50% 75% 95% max
(province*year uniquely identifies each observation)
Span(year) = 5 periods
Delta(year) = 1 unit
year: 2007, 2008, ..., 2011 T = 5
province: 1, 2, ..., 58 n = 58
. xtdescribe
</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>
Manipulation of panel data
58 100.00 XXXXX
58 100.00 100.00 11111
Freq. Percent Cum. Pattern
5 5 5 5 5 5 5
Distribution of T_i: min 5% 25% 50% 75% 95% max
(province*year uniquely identifies each observation)
Span(year) = 5 periods
Delta(year) = 1 unit
year: 2007, 2008, ..., 2011 T = 5
province: 1, 2, ..., 58 n = 58
. xtdescribe
</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>
Manipulation of panel data
within 5.445562 41.77384 79.91406 T = 5
between 4.380076 49.67015 67.33098 n = 58
pci overall 57.23728 6.969482 36.39006 77.19708 N = 290
within 1960123 -6043249 1.63e+07 T-bar = 4.7069
between 1.33e+07 1351629 8.79e+07 n = 58
rinvest overall 8788711 1.37e+07 592714.3 9.53e+07 N = 273
within 4884013 -502939.8 5.25e+07 T-bar = 4.82759
between 2.89e+07 2651895 1.39e+08 n = 58
rgdp overall 2.05e+07 2.96e+07 1485281 1.71e+08 N = 280
Variable Mean Std. Dev. Min Max Observations
. xtsum rgdp rinvest pci
</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>
Manipulation of panel data
(n = 58)
Total 290 100.00 103 177.59 56.31
1 155 53.45 54 93.10 57.41
0 135 46.55 49 84.48 55.10
pcidummy Freq. Percent Freq. Percent Percent
Overall Between Within
. xttab pcidummy
. * Tabulate panel data
pcidumy: 1 = pci above average
53.45% on average have pci above average
93.1% ever have pci above average
</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>
Manipulation of panel data
xtline pci if province<=10, overlay
40
50
60
70
80
PC
I
2007 2008 2009 2010 2011
YEAR
</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>
Pooled OLS
Fixed Effects (FE) Model
Random Effects (RE) Model
</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>
Basic considerations
Pooled OLS
Unit-specific effects
Two-way effects model
Mixed model [or Random coefficients model]
<i>it</i>
<i>it</i>
<i>it</i>
<i>y</i>
<i>X</i>
<i>u</i>
<i>it</i>
<i>i</i>
<i>it</i>
<i>it</i>
<i>y</i>
<i>X</i>
<i>u</i>
<i>it</i>
<i>i</i>
<i>t</i>
<i>it</i>
<i>it</i>
<i>y</i>
<i>X</i>
<i>u</i>
</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>
Pooled OLS
assumes identical intercept for all units and time
periods
assumes errors are independent across all units i.
</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>
Pooled OLS
assumes identical intercept for all units and time
periods
_cons 2.726831 1.10059 2.48 0.016 .5229367 4.930725
pci .0107977 .0063007 1.71 0.092 -.0018192 .0234146
linvest .6307949 .1446832 4.36 0.000 .3410717 .920518
llabor .4986047 .1981111 2.52 0.015 .1018941 .8953153
lgdp Coef. Std. Err. t P>|t| [95% Conf. Interval]
Robust
</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>
Unit-specific effects model
rho .91156075 (fraction of variance due to u_i)
sigma_e .15132407
sigma_u .48582326
</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>
Two-way effects model
xtreg lgdp llabor linvest pci i.year, fe
rho .98652813 (fraction of variance due to u_i)
sigma_e .09500439
sigma_u .81298858
_cons 14.54723 .887371 16.39 0.000 12.79774 16.29672
2011 .4228365 .0253706 16.67 0.000 .3728171 .4728559
2010 .2969721 .0238665 12.44 0.000 .2499183 .3440259
2009 .1845611 .0219074 8.42 0.000 .1413696 .2277525
2008 .0979883 .0202528 4.84 0.000 .0580589 .1379177
year
</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>
Problems of FE models
FE models are equivalent to Pooled OLS with
unit-specific dummies, and/or
time-specific dummies
included.
Problem: so many dummy variables included in the
model, result in lower degree of freedom
Solution: Random Effects [RE] Model
<i>it</i>
<i>i</i>
<i>it</i>
<i>it</i>
<i>y</i>
<i>X</i>
<i>u</i>
<i>it</i>
<i>i</i>
<i>it</i>
<i>it</i>
</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>
Random effects model
rho .86012018 (fraction of variance due to u_i)
sigma_e .15132407
sigma_u .37524081
</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>
Problem of RE model
No dummy variables added, so efficient.
Assumption
If assumption is not satisfied, then
is
inconsistent.
In summary
FE: inefficient, but consistent
RE: efficient, but probably inconsistent
RE will be better if
is consistent.
2
,
<sub></sub>
uncorrelated with
<i><sub>i</sub></i>
<i>N</i>
<i>X</i>
<i><sub>it</sub></i>
<i>FE</i>
<i>RE</i>
<i>RE</i>
</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>
Hausman test
Recall that RE will be better if is consistent
is unbiased if it is not systematically different
from
Hausman test null hypothesis
if the null hypothesis is rejected: FE is better
if the null hypothesis is not rejected: RE is better
<i>RE</i>
<i>RE</i>
<i>FE</i>
is not systematically different from
<i>RE</i>
<i>FE</i>
</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>
Hausman test
xtreg lgdp llabor linvest pci, fe
estimate store fixed
xtreg lgdp llabor linvest pci, re
estimate store random
</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>
Hausman test
(V_b-V_B is not positive definite)
Prob>chi2 = 0.0000
= 30.38
chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B)
Test: Ho: difference in coefficients not systematic
B = inconsistent under Ha, efficient under Ho; obtained from xtreg
b = consistent under Ho and Ha; obtained from xtreg
pci .0044829 .0042964 .0001865 .
linvest .258814 .3487632 -.0899493 .0160913
llabor 1.173004 .8752699 .2977342 .141169
fixed random Difference S.E.
(b) (B) (b-B) sqrt(diag(V_b-V_B))
Coefficients
</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24>
Random Coefficients Model
xtmixed lgdp llabor linvest pci || province: pci
LR test vs. linear regression: chi2(2) = 341.52 Prob > chi2 = 0.0000
sd(Residual) .1501907 .0075356 .1361241 .1657109
sd(_cons) .3422018 .0864983 .2085088 .5616171
sd(pci) .0044457 .0017468 .0020582 .0096027
province: Independent
</div>
<!--links-->