Tải bản đầy đủ (.pdf) (52 trang)

Đề thi Olympic Hóa học IChO năm 2014

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (871.11 KB, 52 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>46</b>

<b>th</b>

<b> International Chemistry Olympiad </b>



<b>July 25, 2014 </b>



<b>Hanoi, Vietnam </b>



<b>THEORETICAL EXAMINATION </b>



WITH ANSWER SHEETS GRADING



<b>Country: </b>


<b>Name as in passport: </b>
<b>Student Code: </b>


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<b>GENERAL INTRODUCTION </b>



ƒ You have <b>additional 15 minutes</b> to read the whole set.


ƒ This booklet is composed of 9 problems. You have <b>5 hours to fulfill the </b>
<b>problems.</b> Failure to stop after the STOP command may result in zero points for
the current task.


ƒ Write down answers and calculations within the designated boxes. Give your
work where required.


ƒ Use only the pen and calculator provided.


ƒ The draft papers are provided. If you need more draft paper, use the back side of
the paper. Answers on the back side and the draft papers will NOT be marked.



ƒ There are <b>52 pages</b> in the booklet including the answer boxes, Cover Sheet and
Periodic Table.


ƒ The official English version is available on demand for clarification only.


ƒ Need to go to the restroom – raise your hand. You will be guided there.


ƒ <b>After the STOP signal</b> put your booklet in the envelope (do not seal), leave at


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

<b>Physical Constants, Units, Formulas and Equations </b>
Avogadro's constant <i>N</i>A = 6.0221 × 1023 mol–1
Universal gas constant <i>R = </i>8.3145 J·K–1·mol–1
Speed of light <i>c = </i>2.9979 × 108 m·s–1
Planck's constant <i>h= </i>6.6261 × 10–34<sub> J·s </sub>
Standard pressure <i>p</i>° = 1 bar = 105<sub> Pa </sub>


Atmospheric pressure 1 atm = 1.01325 × 105<sub> Pa = 760 mmHg </sub>
Zero of the Celsius scale 273.15 K


Mass of electron me = 9.1094 × 10–31 kg


1 nanometer (nm) <i>= </i>10–9 m ; 1 angstrom (Å) = 10–10 m
1 electron volt (eV) = 1.6022 × 10–19<sub> J = 96485 J·mol</sub>–1


Energy of a light quantum with
wavelength λ


<i>E</i> = <i>hc</i> / λ


Energy of one mole of photons <i>E</i>m = <i>hcN</i>A / λ



Gibbs energy <i>G</i> = <i>H</i> – <i>TS</i>


Relation between equilibrium constant


and standard Gibbs energy = exp
<i>G</i>
<i>K</i>


<i>RT</i>


⎛ <sub>Δ</sub> ⎞


⎜− ⎟


⎜ ⎟


⎝ ⎠


o


van’t Hoff equation in integral form <sub>⎟⎟</sub>




⎜⎜







Δ


=


2
1
0
1


2 1 1


ln


<i>T</i>
<i>T</i>
<i>R</i>
<i>H</i>
<i>K</i>


<i>K</i>


Relationship between internal energy,


heat and work ∆<i>U</i> = <i>q</i> + <i>w</i>


Molar heat capacity at constant volume


<i>v</i>
<i>m</i>



<i>v</i>


<i>dT</i>
<i>dU</i>


<i>C</i> ⎟







=
,


Change in internal energy from <i>T</i>1 to <i>T</i>2
assuming constant <i>Cv,m</i>


<i>U</i>(<i>T</i>2)=<i>U</i>(<i>T</i>1)+<i>nCv,m</i>(<i>T</i>2–<i>T</i>1),
Spin only formula relating number of


unpaired electrons to effective magnetic
moment


B.M.
)
2
( +



= <i>n</i> <i>n</i>


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<b>Problem 1. Particles in a box: polyenes </b>


In quantum mechanics, the movement of π electrons along a neutral chain of
conjugated carbon atoms may be modeled using the ‘particle in a box’ method. The
energy of the π electrons is given by the following equation:


2
2
2


8<i>mL</i>
<i>h</i>
<i>n</i>
<i>E<sub>n</sub></i> =


where <i>n</i> is the quantum number (<i>n</i> = 1, 2, 3, …), <i>h</i> is Planck’s constant, <i>m</i> is the mass
of electron, and <i>L</i> is the length of the box which may be approximated by <i>L</i> = (<i>k</i> +
2)×1.40 Å (<i>k</i> being the number of conjugated double bonds along the carbon chain in
the molecule). A photon with the appropriate wavelength λ may promote a π electron
from the highest occupied molecular orbital (HOMO) to the lowest unoccupied
molecular orbital (LUMO). An approximate semi-empirical formula based on this
model which relates the wavelength λ, to the number of double bonds <i>k</i> and constant <i>B</i>
is as follows:


λ (nm) = <i>B</i>


)
1


2
(


)
2


( 2


+
+
×


<i>k</i>
<i>k</i>


Equation 1


<b>1. </b>Using this semi-empirical formula with <i>B</i> = 65.01 nm<b> calculate</b> the value of the
wavelength λ (nm) for octatetraene (CH2 = CH – CH = CH – CH = CH – CH = CH2).


1. From the given semi-empirical formula, the wavelength λ (nm) is
calculated as follows:


)
1
2
(


)
2


(
01
.
65
)
(


2
+
+
×
=


<i>k</i>
<i>k</i>
<i>nm</i>


λ


For octatetraene molecule, with k = 4; <b> λ = 260.0 nm</b> 3 points


<b>Code:</b> Question 1 2 3 4 5 Total


<b>Examiner </b> Mark 3 7 6 4 7 <b>27 </b>


Theoretical


<b>Problem 1 </b>
<b>5.0 %</b> of the



</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>2.</b> <b>Derive</b> Equation 1 (an expression for the wavelength λ (nm) corresponding to the
transfer of an electron from the HOMO to the LUMO) in terms of <i>k</i> and the
fundamental constants, and hence <b>calculate</b> theoretical value of the constant <i>B</i>calc..


2. The formula: 2 2<sub>2</sub>


8<i>mL</i>
<i>h</i>
<i>n</i>


<i>E</i>= (1)


ΔE is calculated as:


λ


ν <i>hc</i>


<i>h</i>
<i>E</i>


<i>E</i>


<i>E</i>= <i><sub>LUMO</sub></i>− <i><sub>HOMO</sub></i> = =


Δ (2)


In which,λ and ν are wavelength and frequency for the corresponding
photon respectively, <i>k </i>is the quantum number for the HOMO, which is equal
to the number of double bonds. So, we have:



(3)

]
1
2
[
8
]
)
1
[(
8 2
2
2
2
2
2
+
=
=

+
=
Δ <i>k</i>
<i>mL</i>
<i>h</i>
<i>hc</i>
<i>k</i>
<i>k</i>


<i>mL</i>
<i>h</i>
<i>E</i>
λ


Replace <i>L</i> = (<i>k</i> + 2) × 1.40 Å into (3):


2
10
2
]
10
40
.
1
)
2
[(
8
)
1
2
(

×
×
+
+
=
<i>k</i>


<i>m</i>
<i>k</i>
<i>h</i>
<i>hc</i>


λ (2 1)


]
10
40
.
1
)
2
[(


8 10 2


+
×
×
+
=
⇒ −
<i>k</i>
<i>h</i>
<i>k</i>
<i>mc</i>
λ
)


1
2
(
)
2
(
10
6261
.
6
)
10
40
.
1
(
10
9979
.
2
10
1094
.
9
8 2
34
2
10
8
31

+
+
×
×
×
×
×
×
×
×
=
⇒ − <sub>−</sub> −
<i>k</i>
<i>k</i>
λ
)
1
2
(
)
2
(
10
462
.
6
)
(
2
8

+
+
×
×
=
⇒ −
<i>k</i>
<i>k</i>
<i>m</i>


λ ; (4)


)
1
2
(
)
2
(
62
.
64
)
(
2
+
+
×
=


<i>k</i>
<i>k</i>
<i>nm</i>
λ
<i>B</i>calc. = 64.6 nm




5 points


2 points


<b>3</b>. We wish to synthesize a linear polyene for which the excitation of a π electron from
the HOMO to the LUMO requires an absorption wavelength of close to 600 nm. Using
your expression from part 2, <b>determine</b> the number of conjugated double bonds (<i>k</i>) in
this polyene and <b>give</b> its structure. [<i>If you did not solve Part 2, use the semi-empirical </i>
<i>Equation 1 with B = 65.01 nm to complete Part 3.</i>]


3. With λ = 600 nm, we have


0
285
.
5
57
.
14
285
.
9


)
2
(


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

Thus, <i>k</i> = 15.


So, the formula of polyene is:


<b>CH2 = CH – (CH = CH)13 – CH = CH2</b> 2 points


<b>4. </b>For the polyene molecule found in Part 3, <b>calculate </b>the difference in energy
between the HOMO and the LUMO, Δ<i>E</i>, (kJ·mol–1).


<i>In case Part 3 was not solved, take k = 5 to solve this problem. </i>


[

2 2

]



2
2


)
1
(


8<i>mL</i> <i>k</i> <i>k</i>


<i>h</i>
<i>E</i>


<i>E</i>



<i>E</i>= <i><sub>LUMO</sub></i>− <i><sub>HOMO</sub></i> = + −
Δ






+
+
×
×
×
×
×
×
×
×
×
=


Δ −34 2<sub>−</sub><sub>31</sub> −3 <sub>−</sub><sub>10</sub> <sub>2</sub>23 <sub>2</sub>


)
2
(
1
2
)


10
40
.
1
(
10
1094
.
9
8
10
022
.
6
10
)
10
6261
.
6
(
<i>k</i>
<i>k</i>


<i>E</i> (kJ·mol–1)









+
+
×
=
Δ <sub>2</sub>
)
2
(
1
2
1851
<i>k</i>
<i>k</i>


<i>E</i> (kJ/mol)


For polyene <b>with </b><i>k</i> = 15 ; ΔE = <b>199 </b>kJ·mol–1.


Taking the value of <i>k</i> = 5; ΔE = <b>415 </b>kJ·mol–1 4 points


<b>5. </b>The model for a particle in a one-dimensional box can be extended to a three
dimensional rectangular box of dimensions <i>L</i>x, <i>L</i>y and <i>L</i>z, yielding the following


expression for the allowed energy levels:











+


+



=

<sub>2</sub> <sub>2</sub>2


2
2
2
2
,
,

8

<i><sub>z</sub></i>
<i>z</i>
<i>y</i>
<i>y</i>
<i>x</i>
<i>x</i>
<i>n</i>
<i>n</i>
<i>n</i>

<i>L</i>


<i>n</i>


<i>L</i>


<i>n</i>


<i>L</i>



<i>n</i>


<i>m</i>


<i>h</i>


<i>E</i>

<i><sub>x</sub></i> <i><sub>y</sub></i> <i><sub>z</sub></i>




The three quantum numbers<i> nx, ny</i>, and<i> nz</i> must be integer values and are independent


of each other.


<b>5.1 Give</b> the expressions for the three <b>different</b> lowest energies, assuming that the box
is cubic with a length of <i>L</i>.


2
2
2
2
2
8
)
(
;
<i>mL</i>
<i>n</i>
<i>n</i>
<i>n</i>
<i>h</i>
<i>E</i>
<i>L</i>


<i>L</i>


<i>L<sub>x</sub></i> = <i><sub>y</sub></i> = <i><sub>z</sub></i> <i><sub>xyz</sub></i> = <i>x</i> + <i>y</i> + <i>z</i>


2
2
2
2
2
2
2
111
8
3
8
)
1
1
1
(
<i>mL</i>
<i>h</i>
<i>mL</i>
<i>h</i>


<i>E</i> = + + =


1 point


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

211


121
2
2
2


2
2
2
2


112 <sub>8</sub>


6
8


)
2
1
1
(


<i>E</i>
<i>E</i>
<i>mL</i>


<i>h</i>
<i>mL</i>


<i>h</i>



<i>E</i> = + + = = =


221
212
2
2
2


2
2
2
2
122


8
9
8


)
2
2
1
(


<i>E</i>
<i>E</i>
<i>mL</i>


<i>h</i>
<i>mL</i>



<i>h</i>


<i>E</i> = + + = = =


1 point


<b>5.2</b> Levels with the same energy are said to be degenerate. <b>Draw</b> a sketch showing all
the energy levels, including any degenerate levels, that correspond to quantum
numbers having values of 1 or 2 for a cubic box.


E111: only a single state.


E112: triple degenerate, either nx, ny or nz can equal to 2.


E122: triple degenerate, either nx, ny or nz can equal to 1.


E222: single state.


Energy diagram:


Cubic box


4 pts


E222


E122 These are no longer degenerate





E112 These are no longer degenerate


E111


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

<b>Problem 2.Dissociating Gas Cycle </b>


Dininitrogen tetroxide forms an equilibrium mixture with nitrogen dioxide:


<b>N2O4(g) </b>⇌<b> 2NO2(g)</b>


1.00 mole of N2O4 was put into an empty vessel with a fixed volume of 24.44 dm3.


The equilibrium gas pressure at 298 K was found to be 1.190 bar. When heated to
348 K, the gas pressure increased to its equilibrium value of 1.886 bar.


<b>1a.Calculate </b>∆G0 of the reaction at 298K, assuming the gases are ideal.


<b>1b. Calculate</b> ∆H0 and ∆S0 of the reaction, assuming that they do not change
significantly with temperature.


<b>1a.</b> N2O4 ⇌ 2 NO2


Initial molar number 1 0
At equilibrium 1 - x 2x
ntotal,equi. = 1 - x + 2x = 1 + x (mol)


Ptotal,equi = Pini(1 + x)


(Pini - initial pressure; ntotal,equi. – total molar number of gases at equilibrium;



Ptotal,equi - total pressure of gases at equilibrium; x – number of moles N2O4


dissociated).


(mol)
174
.
1
K)


298
)(
K


J
3145
.
8
(


dm
1000


m
1
)
dm
44
.


24
(
bar
1


Pa
10
bar)
190
.
1
(


1
1




-3
3
3


5


, <sub>⋅</sub> <sub>⋅</sub> =


⎟⎟


⎜⎜





⎟⎟




⎜⎜




=


= <sub>−</sub>


<i>mol</i>
<i>RT</i>


<i>PV</i>
<i>n<sub>total</sub><sub>equi</sub></i>


1.174 = 1 + x


4pts


<b>Code:</b> Question 1a 1b 2 3 Total


<b>Examiner </b> Mark 12 8 3 10 <b>33 </b>


Theoretical



<b>Problem 2 </b>
<b>5.0 %</b> of the


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

x = 0.174 (mol)


<b>∆G0 at 298 K</b>
At equilibrium:
bar
837
.
0
bar)
190
.
1
(
174
.
0
1
174
.
0
1
1
1
4


2 + × =




=
×
+

= <i><sub>total</sub></i>
<i>O</i>


<i>N</i> <i><sub>x</sub></i> <i>P</i>


<i>x</i>
<i>P</i>
bar
353
.
0
bar)
190
.
1
(
174
.
0
1
174
.
0
2


1
2


2 + × =


×
=
×
+
= <i><sub>total</sub></i>
<i>NO</i> <i>P</i>
<i>x</i>
<i>x</i>
<i>P</i>
1489
.
0
1
837
.
0
1
353
.
0 2
0
2
0
298
4


2
2
=












=
⎟⎟


⎜⎜


⎟⎟


⎜⎜


=
<i>P</i>

<i>P</i>
<i>P</i>
<i>P</i>
<i>K</i>
<i>O</i>
<i>N</i>
<i>NO</i>


At 298 K,


)
mol
kJ
(
72
.
4
)
(
4719
)
1489
.
0
ln(
298
3145
.
8



ln 1 -1


298


0 <sub>=</sub><sub>−</sub> <sub>=</sub><sub>−</sub> <sub>×</sub> <sub>×</sub> <sub>=</sub> <sub>⋅</sub> <sub>=</sub> <sub>⋅</sub>


Δ<i><sub>G</sub></i> <i><sub>RT</sub></i> <i><sub>K</sub></i> <i><sub>J</sub></i> <i><sub>mol</sub></i>−


<b>1b. ∆G0 at 348 K </b>


(mol)
593
.
1
K)
348
)(
K
J
3145
.
8
(
dm
1000
m
1
)
dm
44


.
24
(
bar
1
Pa
10
bar)
886
.
1
(
1
1

-3
3
3
5
, <sub>⋅</sub> <sub>⋅</sub> =
⎟⎟


⎜⎜


⎟⎟


⎜⎜



=
= <sub>−</sub>
<i>mol</i>
<i>RT</i>
<i>PV</i>
<i>n<sub>total</sub><sub>equi</sub></i>


1.593 = 1 + x
x = 0.593 (mol)
At equilibrium:
bar
482
.
0
bar)
886
.
1
(
593
.
0
1
593
.
0
1
1


1
4


2 + × =



=
×
+

= <i><sub>total</sub></i>
<i>O</i>
<i>N</i> <i>P</i>
<i>x</i>
<i>x</i>
<i>P</i>
bar
404
.
1
bar)
886
.
1
(
593
.
0
1
593


.
0
2
1
2


2 + × =


×
=
×
+
= <i><sub>total</sub></i>
<i>NO</i> <i>P</i>
<i>x</i>
<i>x</i>
<i>P</i>
0897
.
4
1
482
.
0
1
404
.
1 2
0
2


0
348
4
2
2
=












=
⎟⎟


⎜⎜


⎟⎟


⎜⎜



=

<i>P</i>
<i>P</i>
<i>P</i>
<i>P</i>
<i>K</i>
<i>O</i>
<i>N</i>
<i>NO</i>


At 348 K,


4pts


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

<b>∆S0</b>


<b>∆</b>G0348 = - 4.07 kJ = ∆H – 348∆S (1)
∆G0298 = 4.72 kJ = ∆H – 298∆S (2)


(2) - (1) →<b>∆S = 0.176 kJ·mol–1·K–1</b>


<b>∆H0</b>


<b>∆H0 = 4.720 + 298 × 0.176 = 57.2 (kJ·mol–1) </b>


4pts


4pts



<i>If you cannot calculate ∆H0, use ∆H0= 30.0 kJ·mol–1 for further calculations. </i>


The tendency of N2O4 to dissociate reversibly into NO2 enables its potential use in


advanced power generation systems. A simplified scheme for one such system is
shown below in Figure (a). Initially, "cool" N2O4 is compressed (1→2) in a


compressor (<b>X</b>), and heated (2→3). Some N2O4 dissociates into NO2. The hot mixture


is expanded (3→4) through a turbine (<b>Y</b>), resulting in a decrease in both temperature
and pressure. The mixture is then cooled further (4→1) in a heat sink (<b>Z</b>), to promote
the reformation of N2O4. This recombination reduces the pressure, thus facilitates the


compression of N2O4 to start a new cycle. All these processes are assumed to take


place reversibly.


<b>X</b>

<b>Y</b>



<b>1</b>


<b>1</b>


<b>q in</b>


<b>work out</b>


<b>2</b> <b>3</b> <b>4</b>



<b>4</b>


<b>q out</b>


<b>Z</b>



(a)


To understand the benefits of using reversible dissociating gases such as N2O4, we will


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

<b>2</b>. <b>Give the equation</b> to calculate the work done by the system <i>w</i>(air) during the


<b>reversible adiabatic</b> expansion for 1 mol of air during stage 3 → 4. Assume that
<i>C</i>v,m(air) (the isochoric molar heat capacity of air) is constant, and the temperature


changes from T3 to T4.


∆<i>U</i> = <i>q</i> + <i>w</i>; work done by turbine w(air)=-w 1 pt
<i>q</i> = 0, thus <i>w</i>(air) = ∆<i>U</i> = <i>Cv,m</i>(air)[T3-T4] 2 pts


<b>3.Estimate</b> the ratio <i>w</i>(N2O4)/<i>w</i>(air), in which <i>w</i>(N2O4) is the work done by the gas during


the reversible adiabatic expansion process 3 → 4 with the cycle working with 1 mol of
N2O4, T3 and T4 are the same as in Part 2. Take the conditions at stage 3 to be T3 = 440


K and P3 = 12.156 bar and assume that:


<i>(i)</i> the gas is at its equilibrium composition at stage 3;
<i> (ii) Cv,m</i> for the gas is the same as for air;



<i>(iii)</i> the adiabatic expansion in the turbine takes place in a way that the
composition of the gas mixture (N2O4 + NO2) is unchanged until the expansion is


completed.





⎛ <sub>−</sub>
=





⎛ <sub>−</sub>
Δ
=
440
1
348
1
3145
.
8
57200
440
1
348


1
ln 0
348
440
<i>R</i>
<i>H</i>
<i>K</i>
<i>K</i>
542
.
5
440
1
348
1
314
.
8
57200
0897
.
4
ln
440
1
348
1
3145
.
8

57200
ln


ln <sub>440</sub> <sub>348</sub> ⎟=






⎛ <sub>−</sub>
×
+
=





⎛ <sub>−</sub>
×
+
= <i>K</i>
<i>K</i>


→<b>K440 = 255.2 </b>


N2O4 ⇌ 2 NO2 (1)


Initial molar number 1 0
At equilibrium 1 - x 2x


ntotal = 1 - x + 2x = 1 + x (mol); Ptotal = 12.156 bar


At equilibrium: 12.156(bar)
1


1
4


2 + ×



=


<i>x</i>
<i>x</i>


<i>P<sub>N</sub><sub>O</sub></i> ; 12.156(bar)


1
2
2 = +<i>x</i>×


<i>x</i>
<i>P<sub>NO</sub></i>


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

2
.
255
1
156


.
12
1
1
1
156
.
12
1
2 2
0
2
0
440
4
2
2
=
⎟⎟




⎜⎜



⎛ <sub>×</sub>
+


⎟⎟




⎜⎜



⎛ <sub>×</sub>
+
=
⎟⎟


⎜⎜


⎟⎟


⎜⎜


=

<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>

<i>P</i>
<i>P</i>
<i>P</i>
<i>P</i>
<i>K</i>
<i>O</i>
<i>N</i>
<i>NO</i>


(P0 = 1 bar) → = ⇒




=






+







+


99
.
20
1
4
99
.
20
1
1
1
2
2
2
2
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>


4x2 = 20.99 – 20.99 x2


→ 24.99 x2 = 20.99 → x = 0.92; ntotal = 1 + x = 1.92
→ <i>wN</i><sub>2</sub><i>O</i><sub>4</sub> = 1.92 × <i>C</i>v,air × (T3 – T4); → 2 4 =1.92


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

<b>Problem 3. High-valent Silver Compounds </b>


Silver chemistry is dominated by Ag (I) compounds. Compounds of silver in higher


oxidation state (from +2 to +5) are not very abundant due to their instability with
respect to reduction. High-valent silver compounds are very reactive and can be
synthesized from Ag(I) compounds in electro-chemical oxidations or in chemical
oxidations using powerful oxidizing agents.


<b>1.</b> In some peroxydisulfate (S2O82-) oxidations catalyzed by Ag+, black solid (<b>A</b>) with the


composition AgO can be isolated.


<b>1a</b>. <b>Choose</b> the appropriate magnetic behaviour of <b>A</b> if it exists as AgIIO.


Diamagnetic Paramagnetic


x 1 point


Single crystal X - ray studies reveal that the lattice of <b>A</b> contains two nonequivalent Ag
atom sites (in equal proportions) of which one denoted as Ag1 and the other denoted as
Ag2. Ag1 shows a linear O atom coordination (O-Ag-O) and Ag2 shows a square-planar
O atom coordination. All O atoms are in equivalent environments in the structure. Thus,


<b>A</b> should be assigned as AgIAgIIIO2 rather than AgIIO.
<b>1b</b>. <b>Assign </b>the oxidation number of Ag1 and Ag2.
Oxidation number of Ag1 : ……….+1


Oxidation number of Ag2 : ……… +3 2 points


<b>Code:</b> Question 1 2 3 4 Total


<b>Examiner </b> Marks 8 14 2 12 <b>36 </b>



Theoretical


<b>Problem 3 </b>


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

<b>1c.What</b> is the coordination number of O atoms in the lattice of <b>A</b>?


The coordination number of O atoms =……… 3 1 point
<b>1d.How many</b> AgI and AgIII bond to one O atom in the lattice of <b>A</b>?
Number of AgI = ……… 1


Number of AgIII = ……. 2 2 points


<b>1e.Predict </b>the magnetic behaviour of <b>A. Check</b> the appropriate box below.


Diamagnetic Paramagnetic


x 1 point


The AgI is d10 hence diamagnetic; the AgIII is square planar d8 also diamagnetic


<b>1f.</b> The compound <b>A</b> can also be formed on warming a solution of Ag+ with
peroxydisulfate. <b>Write down</b> the equation for the formation of <b>A</b>.


S2O82-(aq) + 2Ag+(aq) + 2H2O (l) 2SO42-(aq) + AgIAgIIIO2 (s) + 4H+(aq)


1 point


<b>2. </b>Among the silver oxides which have been crystallographically characterized, the
most surprising is probably that compound <b>A</b> is not a AgIIO. Thermochemical cycles
are useful to understand this fact. Some standard enthalpy changes (at 298 K) are


listed:


Atom


Standard enthalpy
of formation


(kJ·mol–1<sub>) </sub>


1st ionization
(kJ·mol–1)


2ndionization
(kJ·mol–1)


3rd ionization
(kJ·mol–1)


1st electron
affinity
(kJ·mol–1<sub>) </sub>


2nd electron
affinity
(kJ·mol–1<sub>) </sub>


Cu(g) 337.4 751.7 1964.1 3560.2
Ag(g) 284.9 737.2 2080.2 3367.2


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

Compounds Δ<i>H</i>of (kJ·mol–1)



AgIAgIIIO2 (s) –24.3


CuIIO (s) –157.3


The relationship between the <b>lattice dissociation energy</b> (<i>U</i>lat) and the <b>lattice </b>
<b>dissociation enthalpy</b> (Δ<i>H</i>lat) for monoatomic ion lattices is: Δ<i>Hlat</i> =<i>Ulat</i> +<i>nRT</i>, where <i>n </i>
is the number of ions in the formula unit.


<b>2a.</b> <b>Calculate</b> <i>U</i>lat at 298 K of AgIAgIIIO2 and CuIIO. Assume that they are ionic


compounds.


<i><b>U</b></i><b>lat of AgIAgIIIO2</b>


Calculations:


Δ<i>H</i>lat (AgIAgIIIO2) = 2 Δ<i>H</i>of (O2-) + Δ<i>H</i>of (Ag+) + Δ<i>H</i>of (Ag3+) –Δ<i>H</i>of (AgIAgIIIO2)


= (2×249 – 2 × 141 + 2 × 844) + (284.9 + 737.2) + (284.9 + 737.2
+ 2080.2 + 3367.2 ) – (–24.3)


= +9419.9 (kJ·mol<i>–1</i>)<b> </b>


U lat (AgIAgIIIO2) = Δ<i>H</i>lat (AgIAgIIIO2) – 4RT


= + 9419.9 – 10.0 = + <b>9409.9 </b>(kJ·mol<i>–1</i>)<b> </b> 3 points
(no penalty if negative sign)
<i><b>U</b></i><b>lat of CuIIO </b>



Calculations for:<i><b> U</b></i><b>lat of CuIIO</b>


Δ<i>H</i>lat (CuIIO) = Δ<i>H</i>of (O2–) + Δ<i>H</i>of (Cu2+) – Δ<i>H</i>of (CuIIO)


= (249 – 141 + 844) + (337.4 + 751.7 + 1964.1) – (–157.3)
= 4162.5 (kJ<i>·</i>mol<i>–1</i>)


<b>U lat (CuIIO)</b> = Δ<i>H</i>lat (CuIIO) – 2RT = 4162.5 – 5.0 = <b>4157.5 </b>(kJ<i>·</i>mol<i>–1</i>)<b> </b>
3 points
(no penalty if negative sign)


<i>If you can not calculate the Ulat of AgIAgIIIO2 and CuIIO, use following values for </i>


<i>further calculations: Ulat of AgIAgIIIO2 = <b>8310.0 </b>kJ·mol–1; Ulat of CuIIO = <b>3600.0 </b></i>


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

The lattice dissociation energies for a range of compounds may be estimated using this
simple formula:


3
1


1


C <sub>⎟⎟</sub>




⎜⎜



×
=


<i>m</i>
<i>lat</i>


<i>V</i>
<i>U</i>


Where: <i>V</i>m (nm3) is the volume of the formula unitand <i>C</i> (kJ·nm·mol–1) is an empirical


constant which has a particular value for each type of lattice with ions of specified
charges.


The formula unit volumes of some oxides are calculated from crystallographic data as
the ratio between the unit cell volume and the number of formula units in the unit cell
and listed as below:


Oxides <i>V</i>m (nm3)


CuIIO 0.02030


AgIII2O3 0.06182


AgIIAgIII2O4 0.08985


<b>2b.Calculate</b><i>U</i>lat for the hypothetical compound AgIIO. Assume that AgIIO and CuIIO


have the same type of lattice, and that <i>V</i>m (AgIIO) = <i>V</i>m (AgIIAgIII2O4) – <i>V</i>m (AgIII2O3).



Calculations:


<i>V</i>m (AgIIO) = <i>V</i>m (AgIIAgIII2O4) - <i>V</i>m (AgIII2O3) <b>= </b>0.08985 – 0.06182 =<b> 0.02803 nm3</b>


From the relationship <i>U</i>lat = <i>C</i>×(<i>V</i>m)–1/3 we have


<i>U</i>lat (AgIIO) = 3


02803
.
0


02030
.
0
5
.


4157 × = <b>3733.6</b> (kJ<i>·</i>mol-1) 3 points


Answer: <b>3733.6 </b> (kJ.mol-1) [or 3232.9 kJ<i><b>·</b></i>mol–1 if using Ulat CuIIO = 3600 kJ·mol-1]


<b>2c.</b> By constructing an appropriate thermodynamic cycle or otherwise, <b>estimate</b> the
enthalpy change for the solid-state transformation from AgIIO to 1 mole of AgIAgIIIO2.


<i> (Use Ulat AgIIO = 3180.0 kJ·mol-1 and Ulat AgIAgIIIO2 = 8310.0 kJ·mol-1 if you cannot </i>


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

2AgIIO(s) AgIAgIIIO2 (s)


2Ag2+<sub>(g)</sub> + 2O2-<sub>(g)</sub> Ag+<sub>(g)</sub> + Ag3+<sub>(g)</sub> + 2O2-<sub>(g)</sub>


<i>H</i>rxn


<i>2U</i><sub>lat</sub>(AgO) + 4<i>RT</i> <i>- U</i><sub>lat</sub>(AgI<sub>Ag</sub>III<sub>O) - 4</sub><i><sub>RT</sub></i>


<i>IE</i><sub>3</sub>(Ag) -<i>IE</i><sub>2</sub>(Ag)


Calculations:


Δ<i>H</i>rxn = 2<i>U</i>lat (AgIIO) + 4RT + IE3 – IE2 – <i>U</i>lat (AgIAgIIIO2) – 4RT


= 2 × 3733.6 + 3367.2 – 2080.2 – 9409.9


= <b>– 655.7 (kJ/mol) </b>or<b> - 663.0 kJ/mol</b> using given Ulat values 4 pts


<b>2d.</b> <b>Indicate</b> which compound is thermodynamically more stable by checking the


appropriate box below.


AgIIO AgIAgIIIO2


<b>x </b> <b> </b> 1 point


<b>3. </b> When AgIAgIIIO2 is dissolved in aqueous HClO4 solution, a paramagnetic


compound (<b>B</b>) is first formed then slowly decomposes to form a diamagnetic
compound (<b>C</b>). Given that <b>B</b> and <b>C </b>are the only compounds containing silver formed
in these reactions, <b>write down</b> the equations for the formation of <b>B</b> and <b>C</b>.


For <b>B</b>:



AgIAgIIIO2(s) + 4 HClO4(aq) 2Ag(ClO4)2(aq) + 2 H2O (l) 1 point


</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

<b>4.</b> Oxidation of Ag+ with powerful oxidizing agents in the presence of appropriate
ligands can result in the formation of high-valent silver complexes. A complex <b>Z</b> is
synthesized and analyzed by the following procedures:


An aqueous solution containing 0.500 g of AgNO3 and 2 mL of pyridine (d =


0.982 g/mL) is added to a stirred, ice-cold aqueous solution of 5.000 g of K2S2O8. The


reaction mixture becomes yellow, then an orange solid (<b>Z</b>) is formed which has a mass
of 1.719 g when dried.


Elemental analysis of <b>Z</b> shows the mass percentages of C, H, N elements are
38.96%, 3.28%, 9.09%, respectively.


A 0.6164 g <b>Z</b> is added to aqueous NH3. The suspension is boiled to form a clear


solution during which stage the complex is destroyed completely. The solution is
acidified with excess aqueous HCl and the resulting suspension is filtered, washed and
dried (in darkness) to obtain 0.1433 g of white solid (<b>D</b>). The filtrate is collected and
treated with excess BaCl2 solution to obtain 0.4668 g (when dry) of white precipitate


(<b>E</b>).


<b>4a.</b> <b>Determine</b> the empirical formula of <b>Z</b> and calculate the percentage yield in the
preparation.


<b>Calculations: </b>



- Mole Agin 0.6164 g of <b>Z</b> = mole of AgCl = 0.001 mole
- Mole SO42- from 0.6160 g of <b>Z</b> = mole BaSO4 = 0.002 mol


- Mass percentage of Ag = 0.001×107.87/0.6164 = 17.50 %
- Mass percentage of SO42- = 0.002×96.06/0.6164 = 31.17 %


- From EA:


Ratio Ag2+ : SO42- : C : H : N =


01
.
14


09
.
9
:
01
.
1


28
.
3
:
01
.
12



96
.
38
:
12
.
192


17
.
31
:
87
.
107


50
.
17


= 1 : 2 : 20 : 20: 4
The empirical formula of <b>Z</b> is: C20H20AgN4O8S2 <b>2 points </b>


<b> </b> Yield = 100%


4
.
616
169.87



0.500


1.719 <sub>×</sub>


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

<b>4b.</b> Ag (IV) and Ag (V) compounds are extremely unstable and found only in few
fluorides. Thus, the formation of their complexes with organic ligands in water can be
discounted. To confirm the oxidation number of silver in <b>Z</b>, the effective magnetic
moment (<i>µeff )</i> of <b>Z</b> was determined and found to be 1.78 BM. Use the spin only


formula to <b>determine</b> the number of unpaired electrons in Z and the molecular
formula of <b>Z.</b> (<b>Z</b> contains a mononuclear complex with only one species of Ag and
only one type of ligand in the ligand sphere.)


- <i>n</i>(<i>n</i>+2) =1.78 (<i>n</i> is number of unpaired electron of Ag)
- <i>n</i> = 1, corresponds to AgII (d9)


- Most rational molecular formula of <b>Z </b>is<b> [AgII(Py)4](S2O8) 3 point</b>
<b>4c. Write down</b> all chemical equations for the preparation of <b>Z</b>, and its analysis.
Formation of <b>Z</b>:


2Ag+(aq) + 8Py (l) + 3S2O82–(aq) 2[AgII(Py)4](S2O8) (s) + 2SO42–(aq) 2 pts
Destruction of <b>Z</b> with NH3:


[AgII(Py)4](S2O8) (s) + 6NH3(l) [Ag(NH3)2]+(aq) + ½ N2(g) + 2SO42-(aq)+3NH4+
(aq) + 4Py (l) 2 pts


<i> (All reasonable N –containing products and O2 are acceptable)</i>
Formation of <b>D</b>:


[Ag(NH3)2]+(aq) + 2H+(aq) + Cl– (aq) AgCl (s) + 2NH4+(aq) 1 pt


Formation of <b>E</b>:


</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

<b>Problem 4. Zeise’s Salt </b>


<b>1. </b>Zeise's salt, K[PtCl3C2H4], was one of the first organometallic compounds to be


reported. W. C. Zeise, a professor at the University of Copenhagen, prepared this
compound in 1827 by reacting PtCl4 with boiling ethanol and then adding potassium


chloride (Method 1). This compound may also be prepared by refluxing a mixture of
K2[PtCl6] and ethanol (Method 2). The commercially available Zeise's salt is


commonly prepared from K2[PtCl4] and ethylene (Method 3).


<b>1a.Write</b> balanced equations for each of the above mentioned preparations of Zeise's
salt, given that in methods 1 and 2 the formation of 1 mole of Zeise’s salt consumes 2
moles of ethanol.


PtCl4 + 2 C2H5OH → H[PtCl3C2H4] + CH3CH=O + HCl + H2O


H[PtCl3C2H4] + KCl → K[PtCl3C2H4] + HCl


K2[PtCl6] + 2 C2H5OH → K[PtCl3C2H4] + CH3CH=O + KCl + 2 HCl + H2O


K2[PtCl4] + C2H4 → K[PtCl3C2H4] + KCl


1pt for each (2 pts if the first two reactions combined), total of 4 pts


<b>1b.</b> Mass spectrometry of the anion [PtCl3C2H4]– shows one set of peaks with mass



numbers 325-337 <i>au</i> and various intensities.


<b>Calculate the mass number</b> of the anion which consists of the largest natural
abundance isotopes (using given below data).


<b>Code:</b> Question 1a 1b 2a 3a 3b 3c Total


<b>Examiner </b> Mark 4 1 10 2 <b>6 4 27 </b>


Theoretical


<b>Problem 4 </b>


</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

Isotope 192Pt


78 Pt
194


78 Pt
195


78 Pt
196


78 Pt
198


78 C


12



6 C


13
6


Natural abundance,


% 0.8 32.9 33.8 25.3 7.2 75.8 24.2 98.9 1.1 99.99
Calculations:


195 + 3×35 + 2×12 + 4×1 = 328 1 pt


<b>2.</b> Some early structures proposed for Zeise’s salt anion were:


In structure <b>Z1</b>, <b>Z2</b>, and <b>Z5</b> both carbons are in the same plane as dashed square. [You
should assume that these structures do not undergo any fluxional process by
interchanging two or more sites.]


<b>2a.</b> NMR spectroscopy allowed the structure for Zeise’s salt to be determined as
structure <b>Z4</b>. For each structure <b>Z1</b>-<b>Z5</b>, <b>indicate</b> in the table below how many
hydrogen atoms are in different environments, and how many different environments
of hydrogen atoms there are, and how many different environments of carbon atoms
there are?


<b>Structure </b> Number of different


environments of hydrogen


Number of different


environments of carbon


<b>Z1 </b> 2


1pt


2


1 pt


<b>Z2 </b> 2


1pt


2


1 pt


<b>Z3 </b> 2


1pt


2


1 pt


<b>Z4 </b> 1


1pt



1


</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

<b>3.</b> For substitution reactions of square platinum(II) complexes, ligands may be
arranged in order of their tendency to facilitate substitution in the position <i>trans</i> to
themselves (<i>thetrans effect</i>). The ordering of ligands is:




CO , CN- , C2H4 > PR3 , H- > CH3- , C6H5- , I- , SCN- > Br- > Cl- > Py > NH3 > OH- , H2O


In above series a left ligand has stronger<i> trans effect</i> than a right ligand.


Some reactions of Zeise’s salt and the complex [Pt2Cl4(C2H4)2] are given below.




<b>3a.Draw the structure of</b> <b>A</b>, given that the molecule of this complex has a centre of
symmetry, no Pt-Pt bond, and no bridging alkene.


Structure of <b>A</b>


</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>

<b>3b.Draw</b> the structures of <b>B</b>, <b>C</b>, <b>D</b>, <b>E</b>, <b>F</b> and <b>G</b>.


<b>B </b>


1 pt


<b>C </b>


Pt



Cl NH2C6H5


Cl


1 pt


<b>D </b>


1 pt


<b>E </b>


1 pt


<b>F </b>


1 pt


<b>G </b>


1 pt


<b>3c.Suggest</b> the driving force(s) for the formation of <b>D</b> and <b>F </b>by choosing one or more
of the following statements (for example, i and ii):


i) Formation of gas
ii) Formation of liquid
iii) Trans effect



iv) Chelate effect


Structure <b>D F </b>


Driving force(s) i iii and iv


</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24>

<b>Problem 5. Acid-base Equilibria in Water</b>


A solution (<b>X)</b> contains two weak monoprotic acids (those having <i>one</i> acidic
proton); HA with the acid dissociation constant of <i>KHA</i> = 1.74 × 10–7, and HB with the


acid dissociation constant of <i>KHB</i>= 1.34 × 10–7. The solution <b>X</b> has a pH of 3.75.


<b>1</b>. Titration of 100 mL solution <b>X</b> requires 100 mL of 0.220 M NaOH solution for
completion.


<b>Calculate</b> the initial (total) concentration (mol·L–1) of each acid in the solution <b>X</b>.


Use reasonable approximations where appropriate. [<i>K</i>W = 1.00 × 10–14at 298 K.]


<b>Solution:</b> In solution <b>X</b>, H+ was produced from the reactions :


<b>HA </b> <b> H+ + A– </b> and <b>HB </b> <b> H+ + B–</b> and <b> H2O </b> <b> H+ + OH–</b>
The positive and negative charges in an aqueous solution must balance. Thus the charge
balance expression is:


[OH–] + [A–] + [B–] = [H+] (Eq.1)


In the acidic solution (pH = 3.75), [OH–] can be neglected, so:



[A–] + [B–] = [H+] (Eq. 2)


From equilibrium expression: <i>KHA</i>


<i>HA</i>
<i>A</i>


<i>H</i>+ × − <sub>=</sub>


]
[


]
[
]
[


and [HA] = [HA]i – [A–] (<i>where [HA]i is the initial concentration</i>)


So: [<i>H</i>+]×[<i>A</i>−]= <i>K<sub>HA</sub></i>×[<i>HA</i>]=<i>K<sub>HA</sub></i>

(

[<i>HA</i>]<i><sub>i</sub></i> −[<i>A</i>−])

)



Thus, the equilibrium concentration of [A–] can be presented as:


[ ]



]
[


]
[



+


+
×
=


<i>H</i>
<i>K</i>


<i>HA</i>
<i>K</i>


<i>A</i>


<i>HA</i>


<i>i</i>
<i>HA</i>


Similarly, the equilibrium concentration of [B–] can be presented as:


<b>Code:</b> Question 1 2 3 4 Total


Examiner Mark 6 4 4 6 <b>20 </b>


Theoretical


<b>Problem 5 </b>


<b>6.5 %</b> of the


</div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25>

[ ]



]
[


]
[


+


+
×
=


<i>H</i>
<i>K</i>


<i>HB</i>
<i>K</i>


<i>B</i>


<i>HB</i>


<i>i</i>
<i>HB</i>



Substitute equilibrium concentrations of [A–] and [B–] into Eq.2:


[ ]

+
+


+ <sub>+</sub> =


×
+
+


×


<i>H</i>
<i>H</i>


<i>K</i>


<i>HB</i>
<i>K</i>


<i>H</i>
<i>K</i>


<i>HA</i>
<i>K</i>


<i>HB</i>


<i>i</i>


<i>HB</i>


<i>HA</i>


<i>i</i>
<i>HA</i>


]
[


]
[
]


[
]
[


2 pts


Since <i>KHA, KHB</i> are much smaller than [H+], thus:


[ ]

+
+


+ =


×
+
×



<i>H</i>
<i>H</i>


<i>HB</i>
<i>K</i>


<i>H</i>
<i>HA</i>


<i>K<sub>HA</sub></i> <i><sub>i</sub></i> <i><sub>HB</sub></i> <i><sub>i</sub></i>


]
[


]
[
]


[


]
[


or 1.74 × 10–7 × [HA]i + 1.34 × 10–7 × [HB]i = [H+]2 = (10–3.75 )2


1.74 × [HA]i + 1.34 × [HB]i= 0.316 (Eq. 3)


Neutralization reactions show:



HA + NaOH NaA + H2O


HB + NaOH NaB + H2O


nHA + nHB = nNaOH


or ([HA]i + [HB]i) <b>×</b> 0.1 L = 0.220 M × 0.1 L 2 pts


[HA]i + [HB]i= 0.220 M (Eq. 4)


Solving Eq.3 and Eq.4 gives: [HA]i = 0.053 M and [HB]i = 0.167 M


<b>Concentration of HA = 0.053 M </b>


<b>Concentration of HB = 0.167 M 2 pts</b>


<b>2</b>. <b>Calculate</b> the pH of the solution <b>Y</b> which initially contains 6.00×10-2 M of NaA and
4.00×10-2 M of NaB.


Solution:


Solution <b>Y</b> contains NaA 0.06 M and NaB 0.04 M. The solution is basic, OH– was
produced from the reactions:


NaA + H2O HA + OH– <i>Kb,A</i> = <i>Kw/KHA</i> = 5.75 ×10-8


NaB + H2O HB + OH– <i>Kb,B</i> = <i>Kw/KHB</i> = 7.46 ×10-8


</div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>

[H+] + [HA] + [HB] = [OH–] (Eq. 5)
In the basic solution, [H+] can be neglected, so:



[HA] + [HB] = [OH–] (Eq. 6)


From equilibrium expression: <i>KbA</i>


<i>A</i>
<i>HA</i>
<i>OH</i>
,
]
[
]
[
]
[ × <sub>=</sub>



and [A–] = 0.06 – [HA] 1 pt
Thus, the equilibrium concentration of HA can be presented as:

[ ]



]
[
06
.
0
.
,

+


×
=
<i>OH</i>
<i>K</i>
<i>K</i>
<i>HA</i>
<i>A</i>
<i>b</i>
<i>A</i>
<i>b</i>


Similarly, the equilibrium concentration of HB can be presented as:

[ ]



]
[
04
.
0
.
,

+
×
=
<i>OH</i>
<i>K</i>
<i>K</i>
<i>HB</i>
<i>B</i>
<i>b</i>


<i>B</i>
<i>b</i>


Substitute equilibrium concentrations of HA and HB into Eq. 6:


]
[
06
.
0
.
,

+
×
<i>OH</i>
<i>K</i>
<i>K</i>
<i>A</i>
<i>b</i>
<i>A</i>


<i>b</i> <sub> + </sub>


]
[
04
.
0
.


,

+
×
<i>OH</i>
<i>K</i>
<i>K</i>
<i>B</i>
<i>b</i>
<i>B</i>


<i>b</i> <sub> = </sub><b><sub>[</sub></b><sub>OH</sub>–<sub>] 2 points</sub>


Assume that <i>Kb,A</i>and <i>Kb,B</i> are much smaller than [OH–] (*), thus:


[OH–] 2 = 5.75 × 10 –8 × 0.06 + 7.46 × 10 –8 × 0.04
[OH–] = 8.02 × 10 –5 (the assumption (*) is justified)


So pOH = 4.10 and <b>pH = 9.90</b> <b>1 point</b>


<b>3</b>. Adding large amounts of distilled water to solution <b>X</b> gives a very (infinitely) dilute
solution where the total concentrations of the acids are close to zero. <b>Calculate </b>the
percentage of dissociation of each acid in this dilute solution.


Solution: HA in the dilute solution:
[A–] = α × [HA]i


[HA] = (1 - α ) × [HA]i


[H+] = 10–7



Substitute these equilibrium concentrations into <i>KHA</i> expression:
<i>HA</i>
<i>i</i>
<i>i</i> <i><sub>K</sub></i>
<i>HA</i>
<i>HA</i> <sub>=</sub>
×

×
×

]
[
)
1
(
]
[
10 7
α
α


or 7 <sub>1</sub><sub>.</sub><sub>74</sub> <sub>10</sub> 7


)
1
(


10− <sub>=</sub> <sub>×</sub> −




×
α


α <sub> </sub> <sub> 2 pts</sub>


Solving the equation gives: α = 0.635


Similarly, for HB: 7 <sub>1</sub><sub>.</sub><sub>34</sub> <sub>10</sub> 7


)
1
(


10− <sub>=</sub> <sub>×</sub> −


×
α


</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27>

Solving the equation gives: α = 0.573


- The percentage of dissociation of HA = <b>65.5 %</b>


- The percentage of dissociation of HB = <b>57.3 % 2 points</b>


<b>4</b>. A buffer solution is added to solution <b>Y</b> to maintain a pH of 10.0<i>. </i>Assume no
change in volume of the resulting solution <b>Z</b>.



<b>Calculate</b> the solubility (in mol·L–1) of a subtancce M(OH)2 in <b>Z</b>, given that the anions


A– and B– can form complexes with M2+:


M(OH)2 M2+ + 2OH– <i>Ksp</i> = 3.10 ×10-12


M2+ + A– [MA]+ <i>K1</i>= 2.1 × 103


[MA]+ + A– [MA2] <i>K2</i> = 5.0 × 102


M2+ + B– [MB]+ <i>K’1</i> = 6.2 × 103


[MB]+ + B– [MB2] <i>K’2</i> = 3.3 × 102
Solution:


M(OH)2 M2+ + 2OH– Ksp = 3.10 ×10-12


H2O H+ + OH– Kw = 1.00 × 10-14


M2+ + A– [MA]+ K1 = 2.10 × 103


[MA]+ + A– [MA2] K2 = 5.00 × 102


M2+ + B– [MB]+ K’1 = 6.20 × 103


[MB]+ + B– [MB2] K’2 = 3.30 × 102


Solubility of M(OH)2 = s = [M2+] + [MA+] + [MA2] + [MB+] + [MB2]


pH of <b>Z</b> = 10.0



4
2


4
12
2


2 <sub>3</sub><sub>.</sub><sub>10</sub> <sub>10</sub>


)
10
(


10
10
.
3
]
[
]


[ −






+ <sub>=</sub> <sub>=</sub> × <sub>=</sub> <sub>×</sub>



<i>OH</i>
<i>K</i>


<i>M</i> <i>sp</i> <sub> M Eq.1 </sub>


<b>At pH = 10.0 </b>


06
.
0
)
10
(


06
.
0
]


[ <sub>10</sub> =


+
×


= <sub>−</sub>




<i>HA</i>
<i>HA</i>


<i>total</i> <i><sub>K</sub></i>


<i>K</i>
<i>A</i>


[MA+] = <i>K1</i>[M2+][A-–] = 2.1 × 103 × 3.10 × 10–4 ×[A–] = 0.651 ×[A–] Eq. 3


</div>
<span class='text_page_counter'>(28)</span><div class='page_container' data-page=28>

Solve this equation: [A-] = <b>8.42× 10 </b>–<b>3 M</b>


Substitute this value into Eq. 3 and Eq. 4:
[MA+] = 0.651 × [A–] = <b>5.48 × 10 </b>–<b>3 M</b>


[MA2] = 325.5 × [A–]2 = <b>2.31 × 10 </b>–<b>2 M</b>


Similarly,


[B–]total = 0.04 M


]
[
92
.
1
]
[
10
10
.
3
10


2
.
6
]
][
[
]


[ ' 2 3 4


1 + − − − −


+ <sub>=</sub><i><sub>K</sub></i> <i><sub>M</sub></i> <i><sub>B</sub></i> <sub>=</sub> <sub>×</sub> <sub>×</sub> <sub>×</sub> <sub>×</sub> <i><sub>B</sub></i> <sub>=</sub> <sub>×</sub> <i><sub>B</sub></i>


<i>MB</i> Eq. 6


2
2


2
'
2
'
1


2] [ ][ ] 634.3 [ ]


[<i><sub>MB</sub></i> <sub>=</sub><i><sub>K</sub></i> <i><sub>K</sub></i> <i><sub>M</sub></i> + <i><sub>B</sub></i>− <sub>=</sub> <sub>×</sub> <i><sub>B</sub></i>− <sub> Eq.7 </sub>


[B–]total = [B-] + [MB+] + 2 × [MB2] = 0.04 M Eq. <b>8 2pts</b>



Substitute Eq. 6 and Eq. 7 into Eq. 8:
[B–] + 1.92 × [B–] + 2 × 634.3 × [B–]2 = 0.04
Solve this equation: <b>[B–] = 4.58 × 10–3 M </b>
Substitute this value into Eq. 6 and Eq. 7:
[MB+] = 1.92 ×[B–] = <b>8.79 × 10 –3 M </b>


[MB2] = 634.3 ×[B–]2 = <b>1.33 × 10–2 M</b>


Thus, solubility of M(OH)2 in <b>Z</b> is<b> s’ </b>


</div>
<span class='text_page_counter'>(29)</span><div class='page_container' data-page=29>

<b>Problem 6. Chemical Kinetics </b>



The transition-metal-catalyzed amination of aryl halides has become one of the most
powerful methods to synthesize arylamines. The overall reaction for the
nickel-catalyzed amination of aryl chloride in basic conditions is:


in which NiLL’ is the nickel complex catalyst. The reaction goes through several steps
in which the catalyst, reactants, and solvent may be involved in elementary steps.


<b>6a. </b>To determine the reaction order with respect to each reactant, the dependence of
the initial rate of the reaction on the concentrations of each reagent was carried out
with all other reagents present in large excess. Some kinetic data at 298 K are shown
in the tables below. <b>(Use the grids if you like) </b>


[ArCl]
(M)


Initial rate
(M s–1)



0.1 1.88 × 10-5


0.2 4.13×10-5


0.4 9.42 × 10-5


0.6 1.50 × 10-4 0


2
4
6
8
10
12
14
16


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8


<b>Code:</b> Question 6a 6b 6c 6d 6e Total


<b>Examiner </b> Marks 6 8 4 12 2 <b>32 </b>


Theoretical


<b>Problem 6 </b>
<b>7.0 %</b> of the


</div>
<span class='text_page_counter'>(30)</span><div class='page_container' data-page=30>

[NiLL’]


(M)


Initial rate
(M s–1<sub>) </sub>


6 × 10–3 <sub>4.12 × 10</sub>–5


9 × 10–3 <sub>6.01 × 10</sub>–5


1.2 × 10–2 <sub>7.80 × 10</sub>–5


1.5 × 10–2 <sub>1.10 × 10</sub>–4


0
2
4
6
8
10
12


0 0.3 0.6 0.9 1.2 1.5 1.8


[L’]
(M)


Initial rate
(M s–1)


0.06 5.8 × 10–5



0.09 4.3 × 10–5


0.12 3.4 × 10–5


0.15 2.8 × 10–5


0
1
2
3
4
5
6


0 0.03 0.06 0.09 0.12 0.15 0.18


<b>Determine</b> the order with respect to the reagents assuming they are integers.


- Order with respect to [<b>ArCl</b>] = = 1
- Order with respect to <b>[NiLL’</b>] = = 1


</div>
<span class='text_page_counter'>(31)</span><div class='page_container' data-page=31>

<b>6b. </b>To study the mechanism for this reaction, 1H, 31P, 19F, and 13C NMR spectroscopy
have been used to identify the major transition metal complexes in solution, and the
initial rates were measured using reaction calorimetry. An intermediate, NiL(Ar)Cl,
may be isolated at room temperature. The first two steps of the overall reaction involve
the dissociation of a ligand from NiLL’ (step 1) at 50 oC, followed by the oxidation
addition (step 2) of aryl chloride to the NiL at room temperature (rt):


Using the steady state approximation,<b> derive</b> an expression for the rate equation for


the formation of [NiL(Ar)Cl].


The rate law expression for the formation of NiLAr(Cl)


rate =


]
)[
/
(
]
'
[


]
[
]
'
)[
/
(
]
[
]
'
[


]
[
]


'
[


1
2
1
2
1
2


1
2
1


<i>ArCl</i>
<i>k</i>


<i>k</i>
<i>L</i>


<i>ArCl</i>
<i>NiLL</i>


<i>k</i>
<i>k</i>
<i>k</i>
<i>ArCl</i>
<i>k</i>


<i>L</i>


<i>k</i>


<i>ArCl</i>
<i>NiLL</i>


<i>k</i>
<i>k</i>





− +


=


+ <b>8 pts </b>


</div>
<span class='text_page_counter'>(32)</span><div class='page_container' data-page=32>

The next steps in the overall reaction involve the amine (RNH2) and <i>t</i>BuONa.


To determine the order with respect to RNH2 and <i>t</i>BuONa, the dependence of the


initial rates of the reaction on the concentrations of these two reagents was carried with
the other reagents present in large excess. Some results are shown in the tables below.


[NaO<b>tBu], </b>
(M)


Initial rate
(M·s–1)



0.2 4.16 × 10–5


0.6 4.12 × 10–5


0.9 4.24 × 10–5


1.2 4.20 × 10–5 0


0.5
1
1.5
2
2.5
3
3.5
4
4.5


0 0.2 0.4 0.6 0.8 1 1.2 1.4


[RNH<b>2</b>]


(M)


Initial rate
(M s–1)


0.3 4.12 × 10–5


0.6 4.26 × 10–5



0.9 4.21 × 10–5


1.2 4.23 × 10–5 0


0.5
1
1.5
2
2.5
3
3.5
4
4.5


0 0.3 0.6 0.9 1.2 1.5


</div>
<span class='text_page_counter'>(33)</span><div class='page_container' data-page=33>

<b>6c</b>. <b>Determine</b> the order with each of these reagents, assuming each is an integer.


<b>(Use the grids if you like)</b>


- Order with respect to [NaOtBu] = 0 2 pts
- Order with respect to [RNH2] = 0 2 pts


During a catalytic cycle, a number of different structures may be involved
which include the catalyst. One step in the cycle will be rate-determining.


A proposed cycle for the nickel-catalyzed coupling of aryl halides with amines is as
follows:



<b>6d.</b> <b>Use</b> the steady-state approximation and material balance equation to <b>derive</b> the
rate law for d[ArNHR]/dt for the above mechanism in terms of the initial
concentration of the catalyst [NiLL’]0 and concentrations of [ArCl], [NH2R],


[NaOtBu], and [L’].


Using the mechanism depicted by Reaction (1) through (4), the rate equation:


]
'
][
[
]
'
[
]
'
[
1


1 <i>NiLL</i> <i>k</i> <i>NiL</i> <i>L</i>


<i>k</i>
<i>dt</i>
<i>NiLL</i>
<i>d</i>

+

=


]
)
(
[
]
][
[
]
'
][
[
]
'
[
]
[
4
2
1


1 <i>NiLL</i> <i>k</i> <i>NiL</i> <i>L</i> <i>k</i> <i>NiL</i> <i>ArCl</i> <i>k</i> <i>NiL</i> <i>Ar</i> <i>NHR</i>


<i>k</i>
<i>dt</i>
<i>NiL</i>
<i>d</i>
+


= <sub>−</sub>



Apply the steady-state approximation to the concentrations for the intermediates:


0
]
[ <sub>=</sub>
<i>dt</i>
<i>NiL</i>
<i>d</i>


k1[NiLL’] = k-1[NiL][L’] + k2[NiL][ArCl] – k4[NiL(Ar)HNR] (Equation 1) 1pt


0
]
)
(
][
][
[
]
][
[
]
)
(
[
2
3


2 − =



</div>
<span class='text_page_counter'>(34)</span><div class='page_container' data-page=34>

0
]
)
(
[
]
][
][
)
(
[
]
)
(
[
4
2


3 − =


=<i>k</i> <i>NiL</i> <i>Ar</i> <i>Cl</i> <i>NH</i> <i>R</i> <i>NaOBu</i> <i>k</i> <i>NiL</i> <i>Ar</i> <i>NHR</i>
<i>dt</i>
<i>NHR</i>
<i>Ar</i>
<i>NiL</i>
<i>d</i>
]
][
][


)
(
[
]
)
(
[ 2
4


3 <i>NiL</i> <i>Ar</i> <i>Cl</i> <i>NH</i> <i>R</i> <i>NaOBu</i>


<i>k</i>
<i>k</i>
<i>NHR</i>
<i>Ar</i>


<i>NiL</i> = ( Equation 3)


Substitute Equation 2 into Equation 3:


]
][
[
]
][
[
]
][
[
]


][
[
]
)
(
[
4
2
2
3
2
2
4


3 <i><sub>ArCl</sub></i> <i><sub>NiL</sub></i>


<i>k</i>
<i>k</i>
<i>NaOBu</i>
<i>R</i>
<i>NH</i>
<i>NiL</i>
<i>ArCl</i>
<i>k</i>
<i>k</i>
<i>NaOBu</i>
<i>R</i>
<i>NH</i>
<i>k</i>
<i>k</i>


<i>NHR</i>
<i>Ar</i>


<i>NiL</i> = × = (Eq. 4) 1pt


Substitute Equation 4 into Equation 1:


]
)
(
[
]
][
[
]
'
][
[
]
'


[ <sub>1</sub> <sub>2</sub> <sub>4</sub>


1 <i>NiLL</i> <i>k</i> <i>NiL</i> <i>L</i> <i>k</i> <i>NiL</i> <i>ArCl</i> <i>k</i> <i>NiL</i> <i>Ar</i> <i>NHR</i>


<i>k</i> = <sub>−</sub> + −


]
'
][


[
]
][
[
]
][
[
]
'
][
[
]
'
[ <sub>1</sub>
4
2
4
2
1


1 <i>ArCl</i> <i>NiL</i> <i>k</i> <i>NiL</i> <i>L</i>


<i>k</i>
<i>k</i>
<i>k</i>
<i>ArCl</i>
<i>NiL</i>
<i>k</i>
<i>L</i>
<i>NiL</i>


<i>k</i>
<i>NiLL</i>


<i>k</i> = <sub>−</sub> + − × = <sub>−</sub> (Eq.5)


The material balance equation with respect to the catalyst is


[NiLL’]0 = [NiLL’] + [NiL] + [NiLAr(Cl)] + [NiLAr(Cl)NHR] 2 pts


]
][
[
]
][
[
]
][
[
]
[
]
'
][
[
]
'
[
4
2
2


3
2
1
1


0 <i>NiL</i> <i>ArCl</i>


<i>k</i>
<i>k</i>
<i>NaOBu</i>
<i>R</i>
<i>NH</i>
<i>ArCl</i>
<i>NiL</i>
<i>k</i>
<i>k</i>
<i>NiL</i>
<i>L</i>
<i>NiL</i>
<i>k</i>
<i>k</i>


<i>NiLL</i> = − + + +









+
+
+
= − <sub>[</sub> <sub>]</sub>
]
][
[
]
[
1
]
'
[
]
[
]
'
[
4
2
2
3
2
1
1
0 <i>ArCl</i>
<i>k</i>
<i>k</i>
<i>NaOBu</i>
<i>R</i>

<i>NH</i>
<i>ArCl</i>
<i>k</i>
<i>k</i>
<i>L</i>
<i>k</i>
<i>k</i>
<i>NiL</i>


<i>NiLL</i> 3 pts


]
][
][
[
]
[
]
][
[
]
][
][
'
[
]
][
[
]
'


[
]
[
2
3
2
1
4
2
1
2
4
3
1
2
4
3
1
2
4
3
1


0 <i><sub>k</sub></i> <i><sub>k</sub><sub>k</sub></i> <i><sub>L</sub></i> <i><sub>NH</sub></i> <i><sub>R</sub></i> <i><sub>NaOBu</sub></i> <i><sub>k</sub><sub>k</sub></i> <i><sub>k</sub></i> <i><sub>NH</sub></i> <i><sub>R</sub></i> <i><sub>NaOBu</sub></i> <i><sub>k</sub><sub>k</sub></i> <i><sub>k</sub></i> <i><sub>ArCl</sub></i> <i><sub>k</sub><sub>k</sub></i> <i><sub>k</sub></i> <i><sub>ArCl</sub></i> <i><sub>NH</sub></i> <i><sub>R</sub></i> <i><sub>NaOBu</sub></i>


<i>NaOBu</i>
<i>R</i>
<i>NH</i>
<i>k</i>
<i>k</i>


<i>k</i>
<i>NiLL</i>
<i>NiL</i>
+
+
+
×
=

Equation 6
Substituting Equation 6 into the differential rate for [ArCl]:


]
][
[
]
[


2 <i>ArCl</i> <i>NiL</i>


<i>k</i>
<i>dt</i>


<i>ArCl</i>
<i>d</i>


=


− , results in the following predicted rate law expression for
the reaction mechanism:



<b>d[ArNHR]/dt = - d[ArCl]/dt = </b>


k2[ArCl] [NiL] = k1k2k3k4 [ArCl][NiLL’]0[NaOtBu][NH2R]


/{k-1k3k4[NH2R][NaOBu][L’] + k1k3k4[NaOBu][NH2R] + k1k2k4[ArCl] + k1k2k3


</div>
<span class='text_page_counter'>(35)</span><div class='page_container' data-page=35>

<b>6e.Give</b> the simplified form of the rate equation in 6d assuming that <i>k</i>1 is very small.
<b>d[ArNHR]/dt = - d[ArCl]/dt = k</b>2[ArCl] [NiL] = k1k2 [ArCl][NiLL’]0 / k-1[L’]


</div>
<span class='text_page_counter'>(36)</span><div class='page_container' data-page=36>

<b>Problem 7. Synthesis of Artemisinin </b>


(+)-Artemisinin, isolated from <i>Artemisia annua </i>L.
(Qinghao, <i>Compositae</i>) is a potent antimalarial
effective against resistant strains of <i>Plasmodium</i>. A
simple route for the synthesis of Artemisinin is
outlined below.


First, pyrolysis of (+)-2-Carene broke the cyclopropane ring forming, among other
products, (1<i>R</i>)-(+)-<i>trans</i>-isolimonene <b>A </b> (C10H16), which then was subjected to


regioselective hydroboration using dicyclohexylborane to give the required alcohol <b>B </b>


in 82% yield as a mixture of diastereoisomers. In the next step, <b>B </b>was converted to the
corresponding γ,δ-unsaturated acid <b>C</b> in 80% yield by Jones’ oxidation.


<b>7a.Draw</b> the structures (with stereochemistry) of the compounds <b>A-C</b>.


<b>A B C </b>



Me


Me
H
HO


4 pts (2 pts if wrong stereochemistry) 4 pts 4 pts


Code: Question 7a 7b 7c 7d 7e 7f Total


Examiner Mark 12 8 8 12 12 12 <b>64 </b>


Theoretical


<b>Problem 7 </b>
<b>8.0 % </b>of the


</div>
<span class='text_page_counter'>(37)</span><div class='page_container' data-page=37>

The acid <b>C</b> was subjected to iodolactonization using KI, I2 in aqueous. NaHCO3


solution to afford diastereomeric iodolactones <b>D</b> and <b>E</b> (which differ in
stereochemistry only at C3 ) in 70% yield.


<b>7b. Draw</b> the structures (with stereochemistry) of the compounds <b>D</b> and <b>E</b>.


The acid <b>C</b> was converted to diastereomeric iodolactones <b>D</b> and <b>E</b> (epimeric at the chiral
center C3). Look at the number-indicated in the structure <b>F</b> in the next step.


<b>D E </b>


4 pts 4pts



The iodolactone <b>D</b> was subjected to an intermolecular radical reaction with ketone


<b>X</b> using tris(trimethylsilyl)silane (TTMSS) and AIBN (azobisisobutyronitrile) in a
catalytic amount, refluxing in toluene to yield the corresponding alkylated lactone <b>F</b> in
72% yield as a mixture of diastereoisomers which differ only in stereochemistry at C7


</div>
<span class='text_page_counter'>(38)</span><div class='page_container' data-page=38>

<b>7c. Draw</b> the structures (with stereochemistry) of compound <b>H</b> and the reagent <b>X</b>.


Because alkylated lactone <b>F </b>is known, we can deduce the reagent <b>X</b> as methyl vinyl
ketone. <b>H</b> is the reduced product of <b>D</b>.


<b>X H </b>


2 pts 6 pts


The keto group of <b>F</b> reacted with ethanedithiol and BF3•Et2O in dichloromethane


</div>
<span class='text_page_counter'>(39)</span><div class='page_container' data-page=39>

<b>7d.Draw</b> the structures (with stereochemistry) of the compounds <b>I</b> and <b>J</b>.


The keto group of lactone <b>F</b> reacted with ethanedithiol and BF3·Et2O in dichloromethane


to afford thioketal lactones, <b>I</b> and the major isomer <b>J</b>.


<b>I J </b>


6 pts (3 pts if <b>I</b> and <b>J</b> are swapped) 6 pts (3 pts if <b>I</b> and <b>J</b> are swapped)


The isomer <b>J</b> was further subjected to alkaline hydrolysis followed by
esterification with diazomethane providing hydroxy methyl ester <b>K</b> in 50% yield. The


hydroxy methyl ester <b>K</b> was transformed into the keto ester <b>L</b> using <b>PCC</b> (<b>P</b>yridium


<b>C</b>hloro<b>C</b>hromate) as the oxidizing agent in dichloromethane (DCM).


</div>
<span class='text_page_counter'>(40)</span><div class='page_container' data-page=40>

<b>7e.Draw</b> the structures (with stereochemistry) of the compounds <b>K</b> and <b>L</b>.


Hydrolysis followed by esterification of <b>J</b> provided hydroxy ester <b>K</b>.


Oxidation of the hydroxy group in <b>K</b> by PCC resulted in the keto ester <b>L</b> in which two
protons adjacent to the carbonyl group are cis-oriented.


<b>K L </b>


6 pts 6 pts


The ketone <b>L</b> was subjected to a Wittig reaction with methoxymethyl
triphenylphosphonium chloride and KHMDS (<b>P</b>otassium <b>H</b>exa<b>M</b>ethyl<b>D</b>i<b>S</b>ilazid - a
strong, non-nucleophilic base) to furnish the required methyl vinyl ether <b>M</b> in 45%
yield. Deprotection of thioketal using HgCl2, CaCO3 resulted in the key intermediate <b>N</b>


(80%). Finally, the compound <b>N</b> was transformed into the target molecule Artemisinin
by photo-oxidation followed by acid hydrolysis with 70% HClO4.


<b>L</b> <b>M</b> <b>N</b>


KHMDS


Ph<sub>3</sub>P(Cl)CH<sub>2</sub>OCH<sub>3</sub> HgCl2, CaCO3 1. O2, hυ


</div>
<span class='text_page_counter'>(41)</span><div class='page_container' data-page=41>

<b>7f.Draw</b> the structures (with stereochemistry) of the compounds <b>M</b> and <b>N</b>.



The Wittig reaction of the ketone <b>L</b> resulted in the formation of methyl vinyl ether <b>M</b>.
Deprotection of the thioketal group forms the intermediate <b>N</b>.


<b>M N </b>


</div>
<span class='text_page_counter'>(42)</span><div class='page_container' data-page=42>

<b>Problem 8. Star Anise </b>



<i>Illicium verum</i>, commonly called <i>Star anise</i>, is a small native evergreen tree grown
in northeast Vietnam. <i>Star anise</i> fruit is used in traditional Vietnamese medicine. It is
also a major ingredient in the making the flavour of <i>‘phở’</i>, a Vietnamese favourite
soup.


Acid <b>A</b> is isolated from the <i>star anise</i> fruit. The constitutional formula of <b>A </b>has been
deduced from the following sequence of reactions:


(<b>I</b>): this overall process results in alkene cleavage at the C=C bond, with each carbon of this
becoming doubly bonded to an oxygen atom.


(<b>II</b>): this oxidative cleavage process of 1,2-diols breaks C(OH)–C(OH) bond and produces
corresponding carbonyl compounds.


<b>8a.Draw</b> the structures for the compounds <b>Y1 </b>and <b>Y2</b> and hence <b>deduce</b> the structure


of <b>Y3</b> and <b>A</b>, <b>B</b>, <b>C, D</b>, given that in <b>A</b> there is only one ethylenic hydrogen atom.


<b>Y1</b> <b>Y2</b> <b>Y3</b>


CH

3

OH




1pt 1 pt 2 pts


<b>Code:</b> Question 8a 8b 8c 8d Total


<b>Examiner </b> Marks 15 2 12 10 <b>39 </b>


Theoretical


<b>Problem 8 </b>
<b>8.0%</b> of the


</div>
<span class='text_page_counter'>(43)</span><div class='page_container' data-page=43>

<b>A B </b>
COOH


HO
OH


O
O


OH


COOH


HO
OH


O
HO



O
or


2 pts 2 pts


<b>C</b> <b>D</b>


3 pts 4 pts


Anethole, a main component of star anise oil, is
an inexpensive chemical precursor for the production of
many pharmaceutical drugs.


Treating anethole with sodium nitrite in acetic acid gives a crystalline solid <b>E</b>


(C10H10N2O3). The IR spectrum of <b>E</b> shows there is no non-aromatic C=C double


bond. The 1H NMR spectrum of <b>E</b> is given below.


2H 2H


</div>
<span class='text_page_counter'>(44)</span><div class='page_container' data-page=44>

<b>8b. What differences</b> in the structure between <b>E</b> and anethole can be obtained from
the 1H NMR data?


<i>i</i>) <b>E </b>contains a <i>cis</i>-C=C ethylenic bond while that of anethole is <i>trans</i>.
<i>ii</i>) <b>E </b>cannot contain a non-aromatic C=C bond.


<i>iii</i>) <b>E</b> is the adduct of anethole and N2O2.


<i>iv</i>) <b>E </b>is the adduct of anethole and N2O3.



<i>v</i>) <b>E</b> does not contain two <i>trans</i> ethylenic protons as anethole.


<b>Pick one</b> of the above statements


<b>From 1H NMR data </b> <i>v </i>[only] 2 pts


On heating at 150 oC for several hours, <b>E</b> is partially isomerized into <b>F</b>. Under the
same conditions, <b>F</b> gives the identical equilibrium mixture to that obtained from <b>E</b>. On
heating with phosphorus trichloride, both <b>E</b> and <b>F</b> lose one oxygen atom giving
compound <b>G</b>.Compounds<b> E</b> and <b>F</b> have the same functional groups.


The chemical shifts of methyl protons in <b>E</b>, <b>F</b> and <b>G </b>are given below.


<b> E F G </b>


CH3-O 3.8 ppm 3.8 ppm 3.8 ppm


CH3-C 2.3 ppm 2.6 ppm 2.6 ppm


<b>8c. Suggest </b>structures for <b>E</b>, <b>F</b> and <b>G</b>, assuming that they do NOT contain
three-membered rings.


<b>E F G </b>


</div>
<span class='text_page_counter'>(45)</span><div class='page_container' data-page=45>

A simplified structure for compound <b>E</b> is shown below; the R group does not
change throughout the rest of this question. Compound <b>E</b> is nitrated and subsequently
reduced with sodium dithionite to <b>H</b>. Treatment of <b>H</b> with sodium nitrite and
hydrochloric acid at 0–5 oC and subsequently reduced with stannous chloride to
provide <b>I</b> (R–C7H9N2O). One-pot reaction (three component reaction) of <b>H</b>,



benzaldehyde and thioglycolic acid (HSCH2CO2H) leads to the formation of <b>J</b>.


</div>
<span class='text_page_counter'>(46)</span><div class='page_container' data-page=46>

<b>8d. Give</b> the structuresfor <b>H</b>, <b>I</b>, <b>J</b> and <b>K</b>.


<b>H I</b>


2 pts 2 pts


<b>J</b> <b>K</b>


</div>
<span class='text_page_counter'>(47)</span><div class='page_container' data-page=47>

<b>Problem 9. Heterocycle Preparation </b>


Tetramethylthiurame disulfide (<b>TMTD</b>) is emerging as a useful reagent to prepare
many sulfur-nitrogen functional groups and heterocycles in organic chemistry. The
reactions of <b>TMTD</b> with primary amines, as well some corresponding
post-transformations of the resulting product(s) are presented in the following schemes:


<b>(1)</b>


<i> </i><b>(2) </b>


<b> (3) </b>


<i> </i><b> (4)</b>


<i> </i><b> (5)</b>


Similar transformations of benzohydrazides (containing nucleophilic NH group)



<b>Code:</b> Question 9a 9b 9c 9d 9e 9f Total


<b>Examiner </b> Marks 8 4 6 4 2 9 33


Theoretical


<b>Problem 9 </b>
<b>7.5 %</b> of the


</div>
<span class='text_page_counter'>(48)</span><div class='page_container' data-page=48>

In the synthetic scheme below, the thiocarbamoylation reaction of an aroyl
hydrazine with <b>TMTD</b> produces compound <b>C</b> containing a heterocyclic moiety from
<i>p</i>-aminobenzoic acid.


During the formation of <b>C</b> from <b>B</b>, an intermediate <b>B'</b> was observed. This intermediate
tautomerizes to <b>B''</b>.<b> C </b>can be formed from <b>B' </b>or <b>B''</b>.


<b>C</b>


N
H


O
N
H


N=C=S
Me2N


S



<b>B'</b>


<b>B''</b>


<b>9a.Give</b> the structures of <b>A</b>, <b>B</b>, and <b>C</b>.


<b>A B C </b>


</div>
<span class='text_page_counter'>(49)</span><div class='page_container' data-page=49>

<b>9b.</b> <b>Suggest</b> a structure for the tautomer <b>B’’ </b>and <b>give a curly-arrow mechanism</b> for
the formation of <b>C</b>.


4 pts


Compound <b>C</b> was then converted to <b>F</b> by the following pathway:


[The group R remains exactly the same throughout the rest of the question.]


<b>9c.Draw</b> the structures of <b>E</b>, and <b>F</b>. (You do not need to draw the structure for the R group
from this point)


<b>E F </b>


2 pts 4 pts


<b>E</b> was only obtained when <b>D</b> was slowly added to the solution of excess N2H4


in dioxane. If N2H4 was added to the solution of <b>D</b> in dioxane instead, a major side


</div>
<span class='text_page_counter'>(50)</span><div class='page_container' data-page=50>

4 pts



Slightly heating <b>D</b> with ethanolamine (HOCH2CH2NH2) in dioxane for 2 hours


yielded <b>G</b> (R–C9H11N2OS).


<b>9e.Dra</b>w the structural formula of <b>G</b>.


<b>G </b>


2 pts


<b>9f.</b> Heating <b>G </b>in the presence of <i>p</i>-toluenesulfonic acid as the catalyst could form a
number of different five-membered heterocyclic products.


<b>i)</b> <b>Draw</b> 2 structures that have different molecular formulae.


<b>Eg H1 </b>


(3 pts)


<b>H3 </b>


</div>
<span class='text_page_counter'>(51)</span><div class='page_container' data-page=51>

<b>E.g H1 </b>


(3 pts)


<b>H5 </b>


<b>iii)</b> <b>Draw</b> 2 structures that are stereoisomers. (3 pts)


<b>E.g H5 </b>



(3 pts)


<b>H7 </b>


<b>H1 </b> <b>H2 </b> <b>H3 </b>


2 pts 2 pts 2 pts


<b>H4 </b> <b>H5 </b> <b>H6 </b>


2 pts 2 pts 2 pts


<b>H7</b> <b>H8</b>


</div>
<span class='text_page_counter'>(52)</span><div class='page_container' data-page=52>

<b>Periodic Table of the Elements</b>


6 <sub>Lanthanides </sub>
<b>58 </b>
<b>Ce </b>
140.1
<b>59 </b>
<b>Pr </b>
140.9
<b>60 </b>
<b>Nd </b>
144.2
<b>61 </b>
<b>Pm </b>


(144.9)



<b>62 </b>
<b>Sm </b>
150.4
<b>63 </b>
<b>Eu </b>
152.0
<b>64 </b>
<b>Gd </b>
157.3
<b>65 </b>
<b>Tb </b>
158.9
<b>66 </b>
<b>Dy </b>
162.5
<b>67 </b>
<b>Ho </b>
164.9
<b>68 </b>
<b>Er </b>
167.3
<b>69 </b>
<b>Tm </b>
168.9
<b>70 </b>
<b>Yb </b>
173.0
<b>71 </b>
<b>Lu </b>


174.0
7 <sub>Actinides </sub>
<b>90 </b>
<b>Th </b>
<b>91 </b>
<b>Pa </b>
<b>92 </b>
<b>U </b>
<b>93 </b>
<b>Np </b>
<b>94 </b>
<b>Pu </b>
<b>95 </b>
<b>Am </b>
<b>96 </b>
<b>Cm </b>
<b>97 </b>
<b>Bk </b>
<b>98 </b>
<b>Cf </b>
<b>99 </b>
<b>Es </b>
<b>100 </b>
<b>Fm </b>
<b>101 </b>
<b>Md </b>
<b>102 </b>
<b>No </b>
<b>103 </b>
<b>Lr </b>


1 18


1


<b>1 </b>


<b>H </b>


1.008 2 13 14 15 16 17


<b>2 </b>
<b>He </b>
4.003
2
<b>3 </b>
<b>Li </b>
6.941
<b>4 </b>
<b>Be </b>


9.012 Transition Elements


<b>5 </b>
<b>B </b>
10.81
<b>6 </b>
<b>C </b>
12.01
<b>7 </b>


<b>N </b>
14.01
<b>8 </b>
<b>O </b>
16.00
<b>9 </b>
<b>F </b>
19.00
<b>10 </b>
<b>Ne </b>
20.18
3
<b>11 </b>
<b>Na </b>
22.99
<b>12 </b>
<b>Mg </b>


24.31 3 4 5 6 7 8 9 10 11 12


<b>13 </b>
<b>Al </b>
26.98
<b>14 </b>
<b>Si </b>
28.09
<b>15 </b>
<b>P </b>
30.98
<b>16 </b>


<b>S </b>
32.07
<b>17 </b>
<b>Cl </b>
35.45
<b>18 </b>
<b>Ar </b>
39.95
4
<b>19 </b>
<b>K </b>
39.10
<b>20 </b>
<b>Ca </b>
40.08
<b>21 </b>
<b>Sc </b>
44.96
<b>22 </b>
<b>Ti </b>
47.87
<b>23 </b>
<b>V </b>
50.94
<b>24 </b>
<b>Cr </b>
52.00
<b>25 </b>
<b>Mn </b>
54.94

<b>26 </b>
<b>Fe </b>
55.85
<b>27 </b>
<b>Co </b>
58.93
<b>28 </b>
<b>Ni </b>
58.69
<b>29 </b>
<b>Cu </b>
63.55
<b>30 </b>
<b>Zn </b>
65.41
<b>31 </b>
<b>Ga </b>
69.72
<b>32 </b>
<b>Ge </b>
72.61
<b>33 </b>
<b>As </b>
74.92
<b>34 </b>
<b>Se </b>
78.96
<b>35 </b>
<b>Br </b>
79.90

<b>36 </b>
<b>Kr </b>
83.80
5
<b>37 </b>
<b>Rb </b>
85.47
<b>38 </b>
<b>Sr </b>
87.62
<b>39 </b>
<b>Y </b>
88.91
<b>40 </b>
<b>Zr </b>
91.22
<b>41 </b>
<b>Nb </b>
92.91
<b>42 </b>
<b>Mo </b>
95.94
<b>43 </b>
<b>Tc </b>
(97.9)
<b>44 </b>
<b>Ru </b>
101.1
<b>45 </b>
<b>Rh </b>

102.9
<b>46 </b>
<b>Pd </b>
106.4
<b>47 </b>
<b>Ag </b>
107.9
<b>48 </b>
<b>Cd </b>
112.4
<b>49 </b>
<b>In </b>
114.8
<b>50 </b>
<b>Sn </b>
118.7
<b>51 </b>
<b>Sb </b>
121.8
<b>52 </b>
<b>Te </b>
127.6
<b>53 </b>
<b>I </b>
126.9
<b>54 </b>
<b>Xe </b>
131.3
6
<b>55 </b>

<b>Cs </b>
132.9
<b>56 </b>
<b>Ba </b>
137.3
<b>57 </b>
<b>La </b>
138.9
<b>72 </b>
<b>Hf </b>
178.5
<b>73 </b>
<b>Ta </b>
180.9
<b>74 </b>
<b>W </b>
183.8
<b>75 </b>
<b>Re </b>
186.2
<b>76 </b>
<b>Os </b>
190.2
<b>77 </b>
<b>Ir </b>
192.2
<b>78 </b>
<b>Pt </b>
195.1
<b>79 </b>

<b>Au </b>
197.0
<b>80 </b>
<b>Hg </b>
200.6
<b>81 </b>
<b>Tl </b>
204.4
<b>82 </b>
<b>Pb </b>
207.2
<b>83 </b>
<b>Bi </b>
209.0
<b>84 </b>
<b>Po </b>


(209.0)


<b>85 </b>


<b>At </b>


(210.0)


<b>86 </b>


<b>Rn </b>


(222.0)



7


<b>87 </b>


<b>Fr </b>


(223.0)


<b>88 </b>


<b>Ra </b>


(226.0)


<b>89 </b>


<b>Ac </b>


(227.0)


</div>

<!--links-->

×