Tải bản đầy đủ (.pdf) (6 trang)

trường thcs hoàng xuân hãn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (208.68 KB, 6 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

2011

WorldMathematicsTeamChampionship


JuniorLevel



Team Round

·

Problems



1.Givenfournumberswithanaverageof12.Supposethisaverageis9greaterthanthesmallest
ofthesefournumbers,5lessthanthesecondlargestnumber,anditssum withthesecond
smallestnumberissameasthelargestnumber.Writeoutthesefournumbersinascending
order.


Fig.1


2.TheHopeCupCompetitionstartedin1990.Thisyearis2011.If
wewrite2011<sub>1990asacontinuedfraction</sub>


a+ 1


b+ 1


c+ 1


d +<sub>e</sub>1
.


Fig.2


(a)Whatisthelargestnaturalnumberamongtheintegersa,


b,c,d,ande?


(b)Whatisthesumofa,b,c,d,ande.



3.Placefourregularhexagons withedge1onadesk without
overlappingasintheFig.1.Supposetheyareallowedtotouch
eachothermatchingcompletelysidebysideandformdifferent


figures.IfLrepresentstheperimeteroftheformingfigure,findallpossibleL.


4.Asinthe Fig.2,given an opentopcubictin box (with only 5 sides)ofdimensions
6cm×6cm×6cm.Supposewewanttochangeitintoanopentopboxwithnaturalnumber
edgesandwithonly5<sub>6 oftheoriginalvolume</sub>.


(a)Amongallthesepossibleboxes,findthelargestbaseareaincm2<sub>?</sub>


(b)Whenthebaseareaisthelargest,andtheleastmaterialareused,findthesumoflength
widthandheightincm.


Fig.3


5.AsintheFig.3,alargerectangleispartitionedinto9smallerrectangles.
The numbersinside the smallrectangle representtheir areas. The
numbersoutsidethesmallrectanglesrepresentthelengthsoftheedges.
Findtheareaoftheoriginallargerectangle.


6.Asinthe Fig.4,ABCDEFGH isaregular Octagon.Iftheareaof
isoscelestrapezoidABCDis12,findtheareaofthisoctagon.


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

8.Aproperlyworkingclockhasitshourhandandminutehandforminga30°at11o'clockinthe
morning.Whenisthenexttimewhenthisclock'shourandminutehandsagainformthatsame
angle?



Fig.5


9.Whatisthesmallestprimenumberpsothat29p +3isequaltotheproductoftwo
consecutivenon-zeronaturalnumbers?


10.Drawtwoidenticaltrianglestotallyinsideapieceofrectangularpapersothatnovertexor
edgeofeithertrianglewouldtouchtheedgeofthepaper.Thesetwotriangleswoulddivide
thepaperintonregions.


Whatareallthepossiblevalueforn?


11.Leta,b,c,dbenon-zeronaturalnumbersthatarenotmorethan4.Twoofthemare
identical,and(a+b)(b+c)(c+d)(d +a)=900.Finda+b+c+d.


12.Supposethesumofthedigitsofa4 digitnumberis4andthisnumberisstilla 4 digit
numberifwereversetheorderofitsdigits.Amongallsuchpossible4 digitnumbers,find
theonethatisclosesttotheperfectsquareofsome2 digitnumber.


13.Apieceof13×13squarepaperisbeingcutupintomanysmallerpieces.Ifthesepiecesare
puttingbacktogethertoform3squaresofdifferentsizesandeachedgeisintegernumber.
Findthesumofthese3squares'perimeters.


Fig.6


14.AsintheFig.6,ABCDisarectangle,AB =6,AD =10.IfpointEison
thediagonalAC,AE =2EC,andS△AEF=1


7SABCD,findAF∶FD.


15.How manypairsofnaturalnumbersxandysatisfying3x +5y=121?



16.Acompanysold30% ofacertainmerchandisefromitsinventoryfor$150


each,andeachlost5%.Now,acustomerpaidx<sub>dollarseach buyinguptheremaining</sub>


inventory.Thistransactionresultsthecompany makingatotalof5% profitonthewhole
inventory.Findtheratioofxtothecostofeachitem.


Fig.7


17.Letnbeanynonzeronaturalnumberandmistheproductofn-1,n,


n+1,andn×n+1.


(a)Ismamultipleof6?
(b)Ismamultipleof5?


18.Whatistheremainderwhen82011<sub>-3</sub>2011<sub>-6</sub>2011<sub>isdividedby10?</sub>


19.AsquarefieldABCDhas32holesasintheFig.7(9holesoneachside).
A workercarries32flagsandplacingthemintotheseholesclockwise.
HestartswithHoleAandskips5holesbeforeheplacesanotherflagin


thenexthole.Afterhehasbeenaroundthesquarefieldanumberoftimes,hediscovers
thattherearestillnholeswithoutaflag.Findn.


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

Team RoundAnswers


1.3,8,17,20.


2.(a)94;(b)104.



3.24,22,20,18,16,14.


4.(a)180cm2;(b)28cm.
5.77.


6.48.


7.4.


8.11o′clock546


9.3.


10.2,3,4,5,6,7,8.


11.11.


12.1021.


13.76.


14.3∶4.


15.8.


16.153<sub>140.</sub>


17.(a)Yes;(b)Yes.



18.9.


19.16.


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

RelayRound

·

Problems



FirstRound


1A.Theedgelengthsofarectangleareprimenumbersanditsperimeteris60.


Findthelargestareaofsuchrectangle.


Fig.1


1B.<sub>LetT</sub><sub>=</sub><sub>TNYWR (TheNumberYou WillReceive)</sub><sub>.</sub>


AsintheFig.1,DisonthelinesegmentCGandthesumoftheareasof
squareABCD<sub>andsquare</sub>CEFGisT.Ifthesidesofthesetwosquaresdiffer
by1,findtheareaofquadrilateralAEFG.


SecondRound


2A.Giventhata,b,c,darenaturalnumbersandaisequaltotheareaofasquareP.Ifa<sub><</sub>b+


c,b<2c,c<3d,d<500,thenwhichoneofthefournumbers268,272,276,280isthe
perimeterofP?


2B.LetT<sub>=</sub>TNYWR (TheNumberYou WillReceive).


IfthesumofthesquaresofthreeconsecutivenaturalnumbersisT-23,thenwhatisthesum


ofthesethreeconsecutivenaturalnumbers?


ThirdRound


3A.<sub>Ateamof5000some(morethan5000butlessthan6000)athletesisgatheredinafootball</sub>


field.Theseathletescaneitherbegroupedintoseveralarraysof12×12orseveralarraysof
18×18.How manyathletesarethere?


3B.LetT<sub>=</sub>TNYWR (TheNumberYou WillReceive).


SupposeT′isthenumberderivedbyreversingthedigitsofTandT+T′+1isthesquareof
acertain naturalnumber.Ifthis naturalnumberisthesum of5 consecutive natural
numbers,findthese5consecutivenaturalnumbers.


RelayRoundAnswers



1A.221.
1B.<sub>121</sub><sub>.</sub>


2A.268.
2B.<sub>27</sub><sub>.</sub>


3A.5184.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

IndividualRound

·

Problems



FirstRound


1.Inacertainyear,thereareexactly4Wednesdaysand4SundaysinJanuary.Whichdayofthe


weekisFebruary14th<sub>inthatyear?</sub>


2.BothaeroplaneA<sub>andaeroplane</sub>B<sub>canflyfor6000kilometerswhentheyhaveafulltankof</sub>


fuel.Ifbothoftheaeroplanesdepartfrom AirportCwithafulltankandaeroplaneAcan
refuelaeroplaneB<sub>fromitsowntankatsomepointintheair.</sub>Inorderto makesureboth
aeroplaneAandBcanreturnto AirportCbeforetheir fuelrunout,whatisthelongest
distanceaeroplaneBcanreach (inkilometers)?


Fig.1


3.ConsiderthelinesegmentABasintheFig.1.


IfCD =2<sub>5</sub>AD,DB =2<sub>5</sub>AB -1,andAB =12,findCB.
4.Ifthedigitsina3-digitnumberabc<sub>satisfy</sub>c(a+c)=40and


a(a+b)=36,findallpossibleabc.


SecondRound


Fig.2


5.From130to1300,inclusive,therearennaturalnumbersthataremultiples
of17or71.Findn.


6.Acompanyhadx college-graduate-employees,whichis45% ofthetotal
employees.Now,another120college-graduate-employeesarehired,
makingthepercentageofcollege-graduate-employeesreaches75%.
How manyemployeesthecompanyhadbeforethislatesthiring?



7.AsintheFig.2,△ABCiscomposedwithidenticalrighttriangles and


rectangles .Fromtopdown,itsfirstlayeriscomposedwith2righttriangles.Its2nd<sub>layeris</sub>


composedwith2righttrianglesand2rectangles,andsoon.Eachrighttrianglehasanareaof
1andeachrectanglehasanareaof2.Whichlayerhasanareaof8042?


Fig.3


8.AsintheFig.3,supposethebaseABofaparallelogramABCDis8cm
longanditsheightis4cm.IftheareaoftriangleBEFis6cm2<sub>largerthan</sub>


theareaofCDF,findthelengthofBEincm.


ThirdRound


9.Findthenumberoffactorsofthenaturalnumber371250thatarenotlargerthan11.Also,
how manyofthesefactorsareprimenumbers?


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

11.Place2011ofthenumber2011sidebysideandforma(4×2011)-digitnumber.Findthe


Fig.4


remainderwhenthisnumberisdividedby8.


12.AsintheFig.4,ABCDisasquarewithedgeas2a.Let ☉Obethe
largestcircleinsidesquareABCDandletEFGH <sub>bethelargestsquare</sub>


inside☉O.IfS1,S2,andS3areusedtorepresenttheareaof△EOF,



theareaofthe arch-shapedregionEmF,andtheareaofcurvedregion


EBF,respectively.FindS1∶S2∶S3(Expresstheanswerintermsofπ).


FourthRound


13.StevenstandsonabridgeAB.HisdistancefromAis7<sub>16ofthedistance</sub>


AB.AtrainiscomingtowardAataspeedof80km/h.Stevenhastwochoices.Hecan
eitherruntowardAandhewillmeetthetrainatA,orhecanruntowardBatthesame
speedthenthetrainwillcatchuphimatB.Findhisspeedinkmperhour.


14.Ina12-hourclock,whattimebetween1∶00amand2∶00am whenthehourhandandthe
minutehandformastraightline?


FifthRound


Fig.5


15.As in the Fig.5, △A1B1C1, △A2B2C2 and △A3B3C3 are


equilateraltriangles.LetD1trisectsA1C1andbisectsA2B2.And


letD2trisectsA2C2andbisectsA3B3.Also,thebasesofallthree


trianglesareallonastraightline.Iftheareaof △A1B1C1is


54cm2<sub>,thenfindtheareaofthefigurethatisformedbythezigzag</sub>


linesegmentB1A1D1A2D2A3C3B1.



16.Awebcam,aDVDdrive,andaharddiskdrivetogethercost$100.


SupposeoneDVDdrivecostsmorethantwowebcams,twoharddiskdrivescostmorethan
sevenDVDdrives,andeight webcamscostmorethanoneharddiskdrive.Assumingthe
costofeachoftheseitemsisawholenumberofdollars,how muchdoeseachitemcost?


IndividualRoundAnswers



FirstRound


1.Saturday.
2.4000
kilometers.


3.7.08.
4.604or395.


SecondRound


5.85.
6.100.
7.2011.
8.11mm.


ThirdRound


9.8,4.
10.12.
11.3.



12.2∶(π -2)∶(4-π).


FourthRound


13.10km/h.


14.1∶382<sub>11am.and1∶05</sub><sub>11am</sub>5 .


FifthRound


15.80cm2<sub>.</sub>


</div>

<!--links-->

×