Tải bản đầy đủ (.pdf) (100 trang)

Organic chemistry 6e by morrison and boyd 1 pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (35.61 MB, 100 trang )


KCAL/MOL'
HOMOLYTIC BOND DISSOCIATION ENERGIES'
A:B+A.+'B
H-H
H-F
H-Ct
I{-Br
H-r

D(A-B)
llll = Homolytic bond dissociation eliergy or

104 435
136 569
103 431
88 36E
7\ 297

104 435
cH!-Ir
c2H5-H 9E 4lo
n-C3H7-H 98 410
95 397
ic.H"-H
92 385
r.c;He-H
108 452
H,c:cH-H
88 368
H,c:bHcHr-H


c.H.-H ll0 460

c"nrinr-H ss rso

cH3-H
cH3-F
cH!-cl
CH3-Br
cH3-I

3E 159
58 243
6 lgt
36 151

F-F
cl-cl
Br-Br
I-l

CH.-Br 70 293
84 352
C'H.-Br 69 2E9
8l 339
69 ZAS
*C.ff'-Sr
eZ flf
ic;H?-Br 6t 285
81 339
t'C4He-Bt 61.?#

79 331 \
E4 352
47 197
60 251 H'CC6H5-Br 72 301
E6 360
CaHsCHz-Br 51 213
68 285

cH3-cl
EE 36E
c,II.-{l
E5 356
n-C.ffr--Ct
85 356
icaH?-cl
8n 352
t-c4He-{l
E0 335
H"HH_CI
92 3E5
72 3ol H,c+HcHr-cl
c6H5-{l
93 389
c6HscH2-{l
70 293

cH3{H3
crHs{H3
n-C.Hr-{Hr

i-c.tt,-cH,
r-c.He-{H3
H,C:CH-{H3
H,c=iHcHr-cH3
c6Hs-{H3
c6HscH2-{H3

oValuesin blue representkJ/mol

CHAR,ACTERISTIC
PROTON CIIEMICAL SHIFTS
Chemical shift 6,
ppm

Type ofproton

CycloproPane

0.2
H
I

Primary

0.9

RC-H
H
H
.


l

SecondarY
Tertiary
Vinylic
Acetylenic
Aromatic
Bendic

R2c-H
R3c-H
C-C-H

Allylic

c:c{-H

1.3
1.5
4.G5.9
T3
G8.5
2.2-3

c<-H

Ar-H
Ar-C-H
H

l
I
H
F

H-{-,
Fluorides
H-{-Cl
Chlorides
Ht-Br
Bromides
H-c-d
Iodides
H-{--bH
Alcohols
H,C--OR
Ethers
Rcoo-{-H
Esters
' Esters
H-C-COOR
H-C--COOII
Aciis
CarbonylcomPounds H-C--c{

1.7
'44.5
34
2.54


24
3,H
3.34
3.74.1
2 2.2
I-zs
2-2;.7

H

I

Hldroxylic
Phenolic
Enolic
CarboxYlic

RC:O
RO_H
ArO-H
c:C--fH
RCOO-H

Arnino

nr\-n

nidenyaic

104435

108452
84 352
70 293
56 234

9-10
1-5.5
4-t2
I 5-17
10.5-12

H

l-s


ITETEROLYIIC BOND DTSSOCIATION ENERGIES, KCALn\{OL4
A:B +

A+ + :BH-H
H-F
H-Cl
H-Br
H-I
H--OH

CH3-CL
C2Hs-{l
r'C3H7-Cl
iCaHT-Cl

,-C4He-Cl
HrCH1C{HCH2-{|
C6H5-{l
C6HsCH2-{l

AII : Hacrolytic bond dirsociationcncrgl or D(A*-B-)
401
370
3v
324
315
390

1678
l54E
1397
1356
l3lE
1632

227 95O
. CH3-Br
C2H5-Br
l9t 799
rC3H7-Br
185'774
r-C:Hz-Br
170 7ll
15? 657

tc+Hg-Bt
209 866
HrC:CH-Br
173 724 H2FCHCH2-Br
219 916
C5H5-Br
166 695
C5H5CHr-Br

cH3-H
cH3-F
cH3-{l
CH3-Br
CHr:-I
cH3--oH

219 916
CH3-I
C2H5-I
184 770
l?t 745
rCaHT:I
164 686
FCaH?-I
t-C.He-I
149 623
2(X) 837
H2FCH-I
165 690 H2FCHCHI-I
C6II5-I

210 879
157 657
C6H3CH2-I

313
256
227
219
212
n4

l3l0
lOTl
950
916
887
1146

CH3{H
212 E87
176 736
C2H5-OH
D'CiHr-{H
l7l 715
i-CaH?--OH
156 653
,-CrHe--Oll
1.$ 5E6
|
194 812

159 665 HrC-CHCH2--OH
C6H5-OH
202 t45
C6H5CH2-OH
149 623

o Valuesin blue representkJ/mol

CHARACTERISTIC INFRARED ABSIORPTIONFREQUENCIESO
Bond

Compoundtype

C-H

Alkaneq

C-H

Alkenes

C-H

Aromaticrings

C-H
C:C
FC
q-=C
C-{


Alkynes
Alkenes
Altynes
Aromatic rings
Alcohols,ethers,carboxylicacids,esters

Frpquencyrangc,
cm'
28s0-2960
1350-1470
3020-308O(rr)
675-1000
3000-3100(nr)
675-870
3300
(u)
1640-1680
2r00-?.?-ffi(a)
15fl),16fi)(u)
l0to-1300

Rcfcrcnce
Sec.l7.5
S€c.17.5
Sec.17.5

S€c.17.5
Sec.17.5
S€c.17.5

S€c.17.5
Sec.17.6
Sec.17.7
S€c.19.22
S€c.20.25
b:O
Aldctydcsbkctones,carboxylicacids,esters 1690-1760
S€c.18.23
Sec.19.22
S€e.20.25
(u)
O-H Monomcricaloobols,phenols
3610-3640
Sec.17.6
tu.24.17
Hydrqgen-b@dodalcohols,phenols
320/J-3ffi0(broa$ S€c.17.6
S€c.24.17
Carboxylicacide
25W-3W0(broad) Sec.19.?2
N-H Amines
3300-3500(nr)
S€c.23.21
C-N Amines
I 180-1360
S€c.23.21
,
Gw ryt*t"s
(u)
221teu--2260

-NO2 Nitrocompounds
r5r5-l560
1345-1385
aAll bandsstrongunlessmark€d: zr, modprate;u,variable

n4
U2
235
Xn
208

1146
l0l3
98t
929
E70

T23 93t
275 ll5l
215 900


SIXTH EDITION

OrganicChemistry
RobertThorntonMorrison
RobertNeilsonBoYd
NewYorkUniversitY

ffimnfiffed

Frfosrfie
Prentice-Hsll
ol Indis
New Delhi 110001
2002


This Thirty-flrst Indian Reprint-Rs. 350.00
(OriginalU.S. Edition-Rs.4902.00)
ORGANICCHEMISTRY,
6th Ed.
by RobertThorntonMorrisonand RobertNeilsonBoyd
@ 1992by Prentice-Hall,
Inc. (now knownas PearsonEducationlnc.),One Lake Street,Upper
Saddle River, New Jersey 07458, U.S.A. All rights reserved.No part of this book may be
reproducedin any form,by mimeograph
or any othermeans,withoutpermissionin writingfrom the
publisher.
tsBN-81-203-0765-8
Thirty-first Printing (Sixth Edition)

June, 2002

Publishedby AsokeK. Ghosh,Prentice-Hall
of IndiaPrivateLimited,M-97,ConnaughtCircus,
New DelhF110001
and Printedby Jay Print Pack PrivateLimited,New Delhi-1
10015.



Contents
Preface xxiii
Acknowledgmentsxxvii

PART ONE
The Fundamentals
StructureandProPerties
l.l
1.2
1.3
1.4
1.5
i:a
1.7
1.8
1.9
l.l0
1.11
l.L2
1.13
i.i4
1.15
l.16
l.l7
1.18
l.l9
l.2O
l.2r

OrganicchemistrY I

The structuraltheory 3
The chemicalbondbefore1926 4
Quantummechanics 5
Atomic orbitals 6
Electronicconfiguration.Pauli exclusionprinciple 8
Molecularorbitals 9
The covalentbond 9
Hybrid orbitals:sP 1I
Hybrid orbitals:sP2 13
15
Hybrid orbitals:sl
Unsharedpairsof electrons 17
Intramolecularforces 20
energy.Homolysisandheterolysis 21
Bonddissociation
PolaritYof bonds 23
PolaritYof molecules 23
Structureandphysicalproperties 26
MeltingPoint 27
forces 28
Intermolecular
BoilingPoint 30
Solubility 31


vl

CONTENTS

r.22 Acidsand bases 33

t.23 Isomerism 36
Methane
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.ll
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
?.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28

2.29
2.30

Energy of Activation.

Transition State

Hydrocarbons 39
Slructureof methane 40
Physicalproperties 4l
Source 41
Reactions 42
Oxidation.Heatof combustion 42
Chlorination:a substitutionreaction 43
Controlof chlorination 44
Reactionwith other halogens:halogenation 44
Relativereactivity 45
Reactionmechanisms 45
Mechanismof chlorination.Freeradicals 46
Chainreactions 48
Inhibitors 49
Heatof reaction 50
Energyof activation SI
Progress
ofreaction:energychanges 52
Rateof reaction 55
Relativeratesof reaction i8
Relativereactivitiesof halogenstowardmethane 59
An alternativemechanismfor halogenation 6I
Structureof the methyl radical.sptHybridization 64

Transitionstate 65
Reactivityand developmentof the transitionstate 67
Chlorofluorocarbons
and the ozoneshield 69
Molecularformula: its fundamentalimportance 72
Qualitativeelementalanalysis T2
Quantitativeelementalanalysis:carbon,hydrogen,and
halogen 73
Empiricalformula Z4
Molecularweight.Molecularformula T4

J Alkenes Free-Radicatsabstitution
3.1
3.2
3.3
3.4
3.5
3.6
3.1
3.8
3.9
3.10

Classification by structure: the family 77
Structure ofethane 78
Free rotation about the carbon-carbon single bond.
Conformations. Torsionalstrain 79
Propaneand the butanes 83
Conformations of n-butane. Van der Waals repulsion
Higher alkanes. The homologous series 86

Nomenclature 87
Alkyl groups 88
Common namesof alkanes g0
IUPAC namesof alkanes 90

85


CONTENTS

92
t lassesof carbonatomsand hydroggnatoms
:
'
92
:
PhrsrcalProPerties
" :
Ildustnalsource 94
96
: .t
lndustrialsourceus'laboratorypreparation
' :
97
PreParation
99
: .i
The Grignardreagentan org€nometalliccompound
101
compounds

j .Couplingof Afvf"ftufideswiitr organometallic
Reactions102
...i
,. .'r Halogenation 104
Mechanismof halogenation 1-q6: lrl
Orientationof halogenation 107
f ai
halogenation. /09
3.22 Relativereactivitiesof alkanestoward
3,23Easeofabstractionofhydrogenatoms.Energyofactivationll0
3.24 Stabilityof freeradicals 11I
Easeofformation of freeradicals 113
\.is
113
1,.-ZS Transitionstatefor halogenation
114
reactivity
3:.ti orientationand
3.Zg Reactivityand selectivity 115.
Isotopictracers 116
3.2g Non-rearran;;;;"i of fieeradicals'
3.30 Combustion 118
effect 119
Thegreenhouse
l.lf
3.32 PlrolYsis:cracking 120
Determinationof structure 121
3:3,
3.34 AnalYsisof alkanes 122


I' Stereoisomers
4 Stereochemistry
4.1
4.2
4.,
4.4
4.5
q.A
4:.1
+.g
4:.g
4.10
4.11
4.12
Ltl
4.14
+.iS
4.16
4.17
4.18
4.19
I l0
..ii
: ll

and stereoisomerism125
Stereochemistry
126
Isomernumbeiandtetrahedralcarbon
128

light
Opticalactivity'Plane-polarized
128
The Polarimeter
rotation 129
SPecific
the discovery 130
Enantiomerism:
carbon I 31
Enantiomerismand tetrahedral.
and opticalactivity 133' ^
Enantiomerism
13i
Predictionofenantiomerism'Chirality
Thechiralcenter 135
Enantiomers136
Theracemicmodifieation 138
Opticalactivity:a closerlook 139
Configuration 140
R and S 140
Speci[cxionof configuration:
rules 141
Sequence
Diastereomers144
Mesostructures 146
148
oi toong"'"tion:^morethan onechiralcenter
Specincalio*i
ionformationalisomers 149
150

involvingstereoisomers
Reactions
.
and opticalactivity 1 5 1
Generationof u tiiitJ *nter' Synthesis


vtu

CONTENTS

4.23
4.24
4.25
4.26
4.27
4.28

Reactionsof chiral molecules.Bond-breaking IS3
Reactionsof chiral molecules.Relatingconfiiurations Is4
Opticalpurity 156
Reactionsof chiral molecures.Generationof a secondchiral
center 156
Reactionsof chiral molecureswith opticallyactivereagents.
Resolution 158
Reactionsof chiral molecules.Mechanismof free-radicar
chlorination 160

Alkyl Halides


Nucleophilic Aliphatic Sabstitution
5.1
Homolyticandheterolyticchemistry 165
5.2
Relativeralesof competingreactions 166
5.3
Structure.The functionalgroup 167
5.4
Classification
and nomenclature 16g
5.5
Physicalproperties 169
5.6
Preparation 170
5.7
Reactions.
Nucleophilicaliphaticsubstitution 172
5.8
Nucleophilicaliphaticsubstitution.Nucleophilesand leaving
groups 175
5.9
Rateof reaction:effectof concentration.
Kinetics lZ7
5.10 Kinetics of nucleophilicaliphaticsubstitution.second-orderand
first-orderreactions 178
5.1I
Nucleophilicaliphaticsubstitution:dualityof mechanism
s 179
5.12 The S"2 reaction:mechanismand kinetici lgl
5.13 The Sng2

reaction:stereochemistry.
Inversionof
configuration /,82
5.14 The S"2 reaction:reactivity.Sterichindrance Ig5
5.15 The $*1 reaction:mechanismand kinetics.Rate-determining
step 188
5.16 Carbocations 191
5.17 Structureof carbocations 193
5.18 The S"l reaction:stereochemistryIg4
5.I 9 Relativestabilitiesof carbocations I 96
5.20 Stabilizationof carbocations.Accommodationof charge.polar
effects 199
5.21 The Snnlreaction:reactivity.Easeof formationof
carbocations 200
5.22 Rearrangement
of carbocations 203
5.23 $or2as.S"l 208
5.24 Analysisof alkyl halides 2I I

6 AlcoholsandEthers
6.1
6.2
6.3
6.4
6 .5

Introduction 213
Structureof alcohols 214
Classification
of alcohols 214

Nomenclatureof alcohols 2ls
Physicalpropertiesofalcohols 2ls


CONTENTS

l
: l
- i

I rU
f ; i

6t7
f. lJ

6 .l 4
6 .l 5

i:

Industrial source 218
Fermentationof carbohydrates 219
Fuel from carbohydrates.Carbon dioxide balance 219
Ethanol 221
Preparationofalcohols 222
Reactionsof alcohols 224
Alcohols as acidsandbases 227
Reaction of alcohols with hydrogen halides. Acid catalysis 229
Formation of alkyl sulfonates 233

Oxidation of alcohols 235
ETHERS

6 .l 6
6.t7
6.18
6.t9
6.20

6.2r
6.22
6.23

Structureand nomenclatureof ethers 237
Physicalpropertiesofethers 238
Industrial sourcesof ethers.Dehydration of alcohols 238
Preparationofethers 240
Preparationof ethers.Williamson synthesis 241
Reactions of ethers. Cleavageby acids 242
Analysis of alcohols 243
Analvsis of ethers 244

Bonding
7 Roleof the Solvent Second'ary
Roleof the solvent 249
Secondarybonding250
Solubility:non-ionicsolutes 252
Ion pairs 254
Proticandaproticsolvents.
Solubility:ionicsolutes.

258
bonds
Ion-dipole
solvent.
the
role
of
reaction:
The $*l
aprotic
Protic
and
the
solvent.
role
of
reaction:
The S,*2
solvents 261
catalysis 264
The S,*2reaction:phase-transfer
7.7
267
solvent
effect
ofthe
7.8
$.2 us.Snl:
by the solvent 268
assistance

Nucleophilic
Solvolysis.
7.9
' 1 . t 0 The medium:a message 271

7.1
7.2
7.3
7.4
7.5
7.6

8 AlkenesI. StructureandPreparation Elimination
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
i 9
r
i
i
i

hydrocarbons 273
Unsaturated
doublebond 273

Structureof ethylene.The carbon-carbon
Propylene 276
Hybridizationand orbital size 276
The butylenes 277
Geometricisomerism 279
Higheralkenes 282
Namesof alkenes 282
Physicalproperties283
Theoryanicchemistryof vision 285
Industrialsource 287
Preparation 287
ofalkyl halides:l,2-elimination 290
Dehydrohalogenation
Duality of mechanism 293
Kineticsof dehydrohalogenation.


CONTENTS

The E2 mechanism 294
Evidencefor the E2 mechanism.Kineticsand absencrof
rearrangements 294
Isotopeeffects 295
8.17 Evidencefiorthe E2 mechanism.
Absenceof hydrogen
8.18 Evidencefor the E2 mechanism.
exchange 297
The elementeffect 299
8.19 Evidencefor the E2 mechanism.
8.20 The E2 reaction:orientationand reactivity 300

8.21 TheEl mechanism'303
8.22 Evidencefor the El mechanism 304
8.23 The El reaction:orientation 306
8.24 Elimination:E2us.El 308
'Elinoination
us.substitution 308
8.25
8.26 Dehydrationof alcohols 310

8.15
8,16

Alkenes II. Reactions of the Carbon-Carbon Double Bond
Electrophilic end Free-Rodical Addition
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16

9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
?.26
9.27

Reactionsof alkenes 317
Reactionsat the carbon-carbondoublebond. Addition 317
Hydrogenation.Heat of hydrogenation 323
.Ileat of hydrogenationand stability of alkenes 326
Addition of hydrogenhahdes.Markovnikov'srule. Regioselective
reactions 327
Addition of hydrogenbromide.Peroxideeffect 330
Addition of sulfuricacid 331
Addition of water.Hydration 332
Electrophilicaddition: mechanism 332
Electrophilicaddition:rearrangements
334
Electrophilicaddition:orientationand reactivity 335
Addition of halogens 339
Mechanismof additionof halogens 340
Halohydrinformation:additionof the elementsof hypohalous.
acids 342
Addition of alkenes.Dimerization 343

Addition of alkanes.Alkylation 344
Oxymercuration-demercuration346
Hydroboration-oxidation 347
Orientationof hydroboration -148
Mechanismof hydroboration 349 Free-radicaladdition.Mechanismof the peroxide-initiated
additionof HBr 35/,
Orientationof free-radical
addition 352
Otherfree-radicaladditions J55
Free-radicalpolymerizationof alkenes 356
Hydroxylation.Formationof l,2diols 357
Cleavage:determinationof structureby degradation.
Ozonolysis 358
Analysisof alkenes 360


CONTENTS

xl

andStereospecific
II. Stereoselective
I ( t stereochemistry
Reactions
Organicchemistryin threedimensions 367
to alkenes.syt?-andantiof additionof halogens
Stereochemistry
addition 368
to alkenes 372
10.3 Mechanismof additionof halogens

377
syn-andantl-elimination
10.4 StereochemistryoftheE2reaction.
reactions 381
10.5 StereosPecific
382
10.6 Stereoselectivityus.stereospecificity
10.7 A look ahead 383
I0.I
10.2

t 1 Conjugation and Resonance Dienes
doublebondasa substituent 387
The carbon-carbon
halogenation
of alkenes:substitutionus.
Free-radical
addition 388
substitutionin alkenes:orientationand
I 1.3 Free-radical
reactivity 390
substitutionin alkenes:allylicrearrangement392
Free-radical
ll.4
t 1.5 Symmetryof the allyl radical 393
11.6 Thetheoryofresonance 394
hybrid 395
The allyl radicalasa resonance
ll.7
I1.8 Stabilityof the allyl radical 397

11.9 Orbitalpictureof the allyl radical 397
theory 399
1l.l0 Usingtheresonance
siabilizationof alkyl radicals.Hyperconjugation 40I
I I .I I Resonance
hybrid 402
ll.l2 The allyl cationasa resonance
So,l. Reactivity.
I I . 13 Nucleophilicsubstitutionin allylicsubstrates:
Allylicrearrangement 404
the resonance
effect 406
ll.l4 Stabilizationofcarbocations:
S"2 407
I l.l5 Nucleophilicsubstitutionin allylicsubstrates:
Vinylic
I 1.16 Nucleophilicsubstitutionin vinylic substrates.
cations 407
I l.17 Dienes:structureandproperties 409
dienes 410
I I . I 8 Stabilityof conjugated
in conjugated
dienes 411
I 1.19 Resonance
in alkenes.Hyperconjugation 413
11.20 Resonance
dienes:orientationof
ll.2L Easeof formationof conjugated
elimination 414
dienes.1,4-Addition 414

11.22 Electrophriicadditionto conjugated
Rateus.equilibrium 417
11.23 1,2-us.1,4-Addition.
polymerizationof dienes.Rubberand rubber
11.24 Free-radical
substitutes 419
I1.25 Isopreneandthe isoprenerule 421
11.26 Analysisof dienes 421

1l.t
ll.2

l2

Alkynes
l2.l
12.2
l:.3

Introduction 425
Structureof acetyleue.The carbon-carbontriple bond 425
Nomenclature 428
Higheralkynes.


CONTENTS

Physicalpropertiesof alkynes 428
/
Industrial sourceof acetylene 429

Preparationof alkynes 429
Reactionsof alkynes 430
ReductionofSfunes 433
Electrophilic'addtionto alkynes 434
Hydrationof alkines.TautomeriSm 435
Acidity of alkynes.Very weakacids 436
Reactionsof metal acetylides.Synthesisof alkynes 438
bonds.Roleplayedby
Formationof carbon-carbon
organometalliccompounds 439
''12.14 Analysisof alkynes 440
12.4
12.5
t2.6
122
12.8
l2.g
12.10
l2.ll
12.12
12.13

t3 CyclicAliphatic Compounds
Open-chainand cyclic compounds 443
Nomenclature 443
Industriaisource 446
Pleparation 447
Reactions 448
Reactionsof small-ringcompounds.Cyclopropaneand
cyclobutane 449 .'

13.7 Baeyerstraintheory 450
13.8 Heatsof combustionand relativestabilitiesof the
cycloalkanes 450
139
Orbital picture of anglestrain 453
13.10 Factorsaffectingstabilily.slesnformations 454
-L3,Jl Conformations
of cycloalkanes 455
bondsin cyclohexane 460
and
axial
Equatorial
13.12
cisandtransisomers 463
compounds:
of
cyclic
Stereoisomerism
13.13
Conformational
compounds.
of
cyclic
Stereoisomerism
13.14
analysis 466
of eliminationfrom alicycliccompounds 471
13.15 Stereochemistry
Cycloaddition 473
Methylene.

Carbenes.
13.16
l,l-Elinination 476
carbenes.
substituted
of
Addition
13.17
478
ethers
13.18 Cyclic
13.19 Crownethers.Host-guestrelationship 478
13.20 Epoxides.Structureand preparation 481
13.21 Reactionsof epoxides 482
13:22 Acid-catalyzedcleavageof epoxides.anti-Hydroxylation 483
cleavageof epoxides 485
13.4 Base-catalyzed
of epoxides 485
of
cleavage
8.1.4 Orientation
487
compounds
of
alicyclic
13.25 Analysis
l3.l ,'
l?;2
i3.3
13.4

13.5
13.6

14 Aromaticity Benzene
t4.l Aliphatic and aromaticcompounds 493
t4.2 Structureof benzene 494
r4.3 Molecularformula. Isomernumber.Kekul6 structure 494
t4.4 Stabilityof the benzenering. Reactionsof benzene 497


CONTENTS

Stability of the benzenering. Heats of hydrogenation and
combustion 498
i4.6
Carbon-carbon bond lengthsin benzene 499
i 1 1
Resonancestructure ofbenzene 500
1 4 . 8 Orbital picture of benzene 501
14.9 Representationof the benzenering 503
1 4 . 1 0 Aromatic character.The Hiickel 4n * 2 rule 504
1 4 . 1 I Nomenclature of benzenederivatives 508
t 4 . 1 2 Polynucleararomatic hydrocarbons.Naphthalene 510
1 4 . 1 3Quantitative elementalanalysis:nitrogen and sulfur 513
.

l5

i


ElectrophilicAromatic Substitution
Introduction 517
Effectof substituent$oups 519
Determinationof orientation 520
Determinationof relativereactivity 521
Classificationof substituentgroups 522
benzenes 522
Orientationin disubstituted
Orientationand synthesis 524
Mechanismof nitration 525
r5.9 Mechanismof sulfonation 527
1 5 . r 0Mechanismof Friedel-Craftsalkylation 528
1 5 .I1 Mechanismof halogenation 529
Mechanismof protonation 529
t5.r2 Desulfonation.
1 5l.3 Mechanismof electrophilicaromaticsubstitution:a
summary fiA
15,l4 Mechanismof electrophilicaromaticsubstitution:the two
steps 53I
1 5 . 1 5Reactivityand orientation 535
15 . 1 6 Theoryof reactivity 536
1 5 . 1 7Theoryof orientation 5-t8
via resonance 540
1 5 . 1 8Electronrelease
15 . 1 9 Effectof halogenon electrophilicaromaticsubstitution 542
15.20 Relationto othercarbocationreactions 544
t5.2r Electrophilicsubstitutionin naphthalene 545

l5.l


t5.2
15.3
15.4
15.5
15.6
t5.7
15.8

16 Aromatic-Aliphatic Compounds Arenesand Their
Derivatives
16.1
t6.2
16.3
t6.4
16.5
16.6
16.'l
16.8
16.9
1 6l.0

The aromaticring asa substituent 549
Aromatic-aliphatichydrocarbons:arenes 549
Structureand nomenclatureof arenesand their derivatives 551
Physicalproperties552
Industrialsourceofalkylbenzenes 555
Preparationofalkylbenzenes 556
Friedel-Craftsalkylation 557
Mechanismof Friedel-Ctaflsalkylation 558
Limitations of Friedel-Craffsalkylation 561

Reactionsof alkylbenzenes 561


CONTENTS

16.lI
16.12
16.13
16.14
16.15
16.16
16.17
16.18
16.19
16.20
t6.21
16.22
16.23

Oxidationof alkylbenzenes 563
Electrophilicaromaticsubstitutionin alkylbenzenes 564
Halogenation
of alkylbenzenes:
ring a.. sidechain 565
Side-chain
halogenationofalkylbenzenes566
Resonance
stabilizationof the benzylradical 568
Triphenylmethyl:a stablefreeradical 570
Stabilityof the benzylcation 574

Nucleophilicsubstitutionin benzylicsubstrates 575
Preparationof alkenylbenzenes.
Conjugationwith the ring 576
Reactionsof alkenylbenzenes578
Addition to conjugated
alkenylbenzenes579
Alkynylbenzenes 580
Analysisof arenes 580

t 7 SpectroscopyandStructure
17.l
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.ll
17.12
17.13
17.14
17.15
17.16
17.17
17.18
17.19
17.20

17.21
17.22
17.23

Determinationof structure:spectroscopic
methods J85
The massspectrum 586
The electromagnetic
spectnrm 589
The infraredspectrum 590
Infraredspectraofhydrocarbons 592
Infraredspectraofalcohols 594
Infraredspectraofethers 596
The ultravioletspectrum 597
The nuclearmagneticresonanoe
(NMR) spectrum 600
NMR. Numberof signals.Equivalentand non+quivalent
protons 601
NMR. Positionsof signals.Chemicalshift 604
NMR. Peakareaand protoncounting 609
NMR. Sprtittingof signals.Sprn-sprncoupling 610'
NMR. Couplingconstants 620
NMR. Complicatedspectra.Deuteriumlabeling 623
Equivalence
of protons:a closerlook 625
Carbon-l3iNMR (CMR) spectroscopy629
CMR. Splitting 630
CMR. Chemicalshift 634
NMR and CMR spectraof hydrocarbons 639
NMR and CMR spectraof alkyl halides 640

NMR and CMR spectraof alcoholsand ethen. Hydrogen
bonding.Proton exchange 64A
The electronspin resonance{EsR)spectrum 642

I8 Aldehydesand Ketonee NucleophilicAddition
lE.l

Stnrcture 657

r8.2 Nomenclature 658
lE.3
lE.4
18.5
8.6

Physicalproperties660
Preparation 661
Preparationof ketqnesby Friedcl{rafts acylation ffi
Pn:parationofketonesby useoforganocoppercompounds 668


CONTENTS

: t . ' t Reactions.Nucleophilicaddition 669
i t . t Oxidation 675
I t . 9 Reduction 677
1 8 . 1 0Addition of cyanide 678
r 8 . l l Addition of derivativesof ammonia 679
r 8 . r 2 Addition of alcohols.Acetalformation 680
1 8 . 1 3 Cannuzaroreaction 683

1 8r. 4 Addition of Grignardreagents 685
r 8 . 1 5 Productsof the Grignardsynthesis 686
1 8 . 1 6 Planninga Grignardsynthesis 688
usingalcohols 692
1 8 . 1 7Syntheses
1 8 . 1 8Limitations of the Grignardsynthesis 695
18 . 1 9 Tetrahydropyranyl(THP) ethen: the useof a protecting
group 696
18.20 Analysisof aldehydesand ketones 697
1 8 . 2 1 Iodoformtest 697
r8.22 Analysisof l,2-diols.Feriodicacid oxidation 699
analysisof irldehydesand ketones 700
18.23Spectroscopic

19 CarboxylicAcids
Structure 713
Nomenclature 714
Physicalproperties 717
Saltsof carboxylicacids 718
r9.5 Industrialsource 719
r9.6 Preparation 720
19.7 Grignardsynthesis 723
19.8 Nitrile synthesis 724
19.9 Reactions 725
1 9r. 0 ' Ionization of carboxylicacids.Acidity constant 729
l 9 . l I Equilibrium 730
19.r2 Acidity of carboxylicacids 732
r3 Structureof carboxylateions 733
19.
t9.14 Effectof substituentson acidity 735

1 9 . 1 5 Convenioninto acidchlorides 737
r 9 .l 6 Conversioninto esters 737
19.t7 Convenioninto amides 740
1 9 . r 8 Reductionof acidsto alcohols 740
I
'74'I
1 9 . 1 9 Halogenationof aliphaticacids.Substitutedacids
19.20 Dicarboxylicacids 742
t9.2r Analysisof carboxylicacids.Neutralizationequivalent 744
analysisofcarboxylic acids 745
19.22Spectroscopic

1 9I.
19.2
19.3
19.4

20 Functional Derivatives of Carboxylic Acids Nucleophilic
Acyl Substitution
20.1 Strusture 753
20.2 Nomenclature 754
properties 754
20.3 Physical


xvl

CONTENTS

?0 4

20.5

Nucleophilicacyl substitution.Role of the carbonylgroup
Nucleophilicsubstitution:alkyl us.acyl TSg
ACID CHLORIDES

20.6
20.7
20.8

Preparationof acid chlorides 760
Reactionsof acidchlorides 761
Conversionof acidchloridesinto acidderivatives 762
ACID ANHYDRIDES

20.9 Preparationof acid anhydrides 763
20J0 Reactionsof acidanhydrides 764
AMIDES

20.1I
20.12
20.13
20.14

Preparationof amides 766
Reactionsof amides 766
Hydrolysisof amides 767
lmides 767
ESTERS


20.15
20.16
20.17
20.18
20.t9
20.20
20.21
20.22
20.23
20.24

Preparationof esters 768
Reactionsof esten 770
Alkalinehydrolysisof esters 773
Acidic hydrolysisof esters 776
Ammonolysisof esters 778
Transesterification 778
Reactionof esterswith Grignardreagents 779
Reductionof esters 780
Functionalderivativesof carbonicacid 7A0
Analysisof carboxylicacid derivatives.Saponification
equivalent 784
20.25 Spectroscopic
analysisof carboxylicacidderivatives 7gs

21 CarbanionsI Aldol and,ClqisenCondensstions
2l.l
21.2
21.3
21.4

21.5
21.6
21.7
21.8
21.9
21.10
2l.ll
2t-L2:;

Acidity of a-hydrogens 792
Reactionsinvolvingcarbanions Zg9
Base-promoted
halogenation
of ketones 802
Acid-catalyzedhalogenationof ketones.Enolization A04
Aldol condensation 805
Dehydrationof aldolproducts 807
Useof aldol condensation
in synthesis 808
Crossedaldol condensation 809
Reactionsrelatedto the aldol condensation BI0
The Wittigreaction 81/,
Claisencondensation.
FormationofB-ketoesters gI3
Crossed
Claisencondensation 816

22 AminesI. PreparationandPhysicalProperties
2 2 .r
22.2

22.3
22.4
22.5

Structure 821
Classification 821
Nomenclature 822
Physicalpropertiesof amines 823
Sdtsof amines 823

7Ss


CONTENTS

of nitrogen 825
Stereochemistry
Industrialsource 827
PreParation 828
Reductionof nitro compounds 832
of halides 832
AmmonolYsis
Reductiveamination 834
of amides 836
Hofmanndegradation
andtertiaryamines 836
of secondary
Synthesis
amines 837
HeterocYclic

Miglationto electron-deficient
Hofmannrearrangement.
nitrogen 838
at the migrating
stereochemistry
22.16 Hofmannrearrangement.
group 840
Timing of the steps 841
22.17 Hofmannrealrangement.

22.6
22.7
22.8
22.9
22.10
22.11
22.12
22.13
22.14
22.15

23 AminesII. Reactions
Reactions 845
Basicityof amines.Basicityconstant 849
StructureandbasicitY 850
Effectof substituentson basicityof aromaticamines 85-3
854
Quaternaryarnmoniumsalts.Hofmannelimination
E2
transition

variable
The
orientation.
Hofmann
Ei elimination:
state 855
amides 857
23.7 Conversionof aminesinto substituted
860
amines
in
aromatic
23.8 Ring substitution
ions 862
Diplar
amines.
aromatic
239 Sulfbnationof
863
drugs
sulfa
The
23.1Q Sulfanilamide'
23.11 Reactionsof amineswith nitrousacid 864
23.12 Diazoniumsalts.Preparationandreactions 866
by halogen.Sandmeyer
23.13 Dazonium salts.Replacement
reaction 869
-cN. synthesisof carboxylic
23.14 Dazonium salts.Replacementby

acids 870
of
by -OH. Synthesis
23.15 Diazoniumsalts.Replacement
phenols 870
871
by -H
23.16 Diazoniumsalts'Replacement
871
usingdiazoniumsalts
23.17 Syntheses
of azocompounds 873
23.18 ioupting of diazoniumsalts.Synthesis
876
test
23.19 Analysisof amines.Hinsberg
amides 877
23.20 Analysisof substituted
analysisof aminesand substitutedamides 877
23.21 Spectroscopic

23.1
23.2
23.3
23.4
23.5
23.6

24 Phenols
Structureand nomenclature 889

24.2 Physicalproperties 890
24.3 Saltsofphenols 893
24.4 Industrialsource 893
Migration to electron'
of hydroperoxides.
24.5 Rearrangement
deficientoxygen 895
24.1

--i-.


xvul

CONTENTS

24.6
24.7
24.8
24.9
24.t0
24.11

Rearrangement
of hvdroperoxides.
Migratoryaptitudc g%
heparation 8gS
Reactions 899
Acidity of phenols 903
Esterformation.Friesrearrangement g0S

Ring substitution 906
24.r2 Kolbe reaction.Synthesisof phenolic
g0g
2 4 . t3 Kermer-I remannreaction.Synthesisacids
of phenolicaldehydes.
Dchlorocarbene g0g

24.t4 Formationof aryl ethers g0g
24.15 Reactionsof aryl ethers gII
24.t5 Analysisof phenols gt2
24.17 Spectroscopic
analysisofphenols gt2

25 carbanionsll
25.1
25.2
25.3
25.4
25.5
?2.9
?2.7
25.8

Malonic EsterandAcetoocetic
Estersynthoses

Carbanionsin organicsynthesis g23
Malonic estersynthesis6f carUoxylicacids g24
Acetoaceticeste,synttesisof l"tooo
g27

Decarboxyratio"oi'ptelo "riol, -o maronic
acids g30
Direct and indirect hryrutioo oresters
and ketones g3I
Synthesis
of acids"oOirt * uiu 2-oxazolines g32
Organoborane
synthesisof acidsand ketones glj
Arkylationof carbonyl"o-pouoa, via
enamine
s 935

PART TWO
SpecialTopics
26 Aryl Halides Nucreophilicaromatic substitation
26.1
26.2
26.3
26.4
26.5
26.6
26.7

Structure 943
Physicalproperties g44
Preparation 946
Reactions g4g
Low reactivityof aryl and vinyl halides g4g
Structureof aryl and vinyl nAiOa gS0
\ucleophilic aromaticrubutitrtioo: bimolecular

displacement 952
26.8 Bimoleculardispracement
mechanismfor nucleophilicaromatic
substitution g5S
?6-.?
^ Reactivityin nucleophilicaromaticsubatitution 956

z'.to orientation
i". nucre-ophili.
il;;tilil;;irii"'

g\

t
26.11 Electronwithdrawalby,r*o"o. e 95g
26.12 Evidencegr rng trposiepsin bimolecular
displacement gii
?9.!1 Nucleophilicsub,sritution:aliphatic""0 arodatic-*i6 t
26.|4 Elimination-addition mectraiismf;;o;l*;;ili.
oo.uti.
substitution.Benzpe 962
26.15 Analysisof aryl nAiOas 967


CONTENTS

27 a,&UnsaturatedCarbonylCompounds ConiugateAddition
27.1
27.2
27.3

27.4
27.5
27.6
27.7
27.8
27.9

StructureandProPerties 971
Preparation 973
Interactionof functionalgroups 974
Electrophilicaddition 974
Nucleophilicaddition 976
Comparisonof nucleophilicand electrophilicaddition
The Michaeladdition 979
The Diels-Alderreaction 982
Quinones 984

28 MolecularOrbitals.Orbital Symmetry
28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
28.10

Molecularorbitaltheory 991

Waveequations.Phase 992
Molecularorbitals.LCAO method 993
Bondingand antibondingorbitals 994
Electronicconfigurationsof somemolecules 996
The Htickel4n* 2 tule 1000
Aromaticcharacter.
Orbital symmetryand the chemicalreaction 1004
reactions 1005
Electrocyclic
Cycloadditionreactions 1013
reactions 1019
Sigmatropic

29 Symphoria f,leighboringGroupEffects.Catalysishy
TransitionMetal ComPlexes
29.1 Symphoria 1031
29.2 Neighboringgroupeffects:the discovery.Stereochemistry 1032
29.3 Neighboringgroupeffects:intramolecularnueleophilic
attack 1035

29.4 Neighboringgroupeffects:rateof reaction.Anchimeric
assistance 1037

hydrogenation.Transitionmetalcomplexes 1042
29.s Homogeneous
29.6
29.7
29.8
29.9


hydrogenation:
of homogeneous
Stereochemistry
diastereoselectivity 1046
hydrogenation:
of homogeneous
Stereochemistry
€nantioselectivity 1049
The oxo process 1052
Enzymeaction 1054

3A HeterocycHcConPounds
30.1

Heterocyclicsystems 1457
FIVE.MBMBERED RINGS

30.2 Structureof pyrrole,furan, and thiophene 1059
30.3 Sourceof pynole, furan, and thiophene 1061
30.4 Electrophdicsubstitutionin pyrrole,furan, and thiophene.
Reactivityand orientation 1062


CONTENTS

30.5

Saturatedfive-memberedheterocycles
1065
SIX-MEMBERED RINGS


30.6
30.7
30.8
30.9
30.10
30.1I
30.12

31

Structureof pyridine 1066
Sourceof pyridine compounds 1067
Reactionsof pyridine 106g
Electrophilissubstitutionin pyridine 106g
Nucleophilicsubstitutionin pyridine 1069
Basicityof pyridine t07I
Reductionof pyridine 1073

Macromolecules. Polymers and polymerization
31.1 Macromolecules1077
31.2 Polymersand polymerization I07g
31.3 Free-radical
vinyl polymerization I0g0
31.4 Copolymerization l0B3
Living polymen I0g4
?1.5 Ionic polymerization.
31.6 Coordinationpolymerization |OAZ
31,7 StepreactionpolymerizationI0g0
31.8 Structureand propertiesof macromoleculesl0g3


32 ste_reochemistryIII. Enantiotopii and DiastereotopicLigands
andFaces
32.1
32.2

Introduction I I0l
Biologicaloxidationand reduction.Ethanoland
acetaldehydeI ILt
32.3 Biologicaloxidationand reduction.Deuteriumlabeling
experiments 1103
3?.4 Biologicaloxidationand reduction.stereochemistry l I04
125J Enantiotopicand diastereotopicligands I I07
32.6 Enantiotopicand diastereotopicfaces I I t0
32.7 Origln ofienantiospecificity I I 12

PART THREE
Biomolecules
33 Lipids Fats s.ndSteroids
33.1
33.2
33.3
33.4
33.5
33.6
33.7
33.8
33.9

The organicchemistryof biomolecules I I Ig

Lipids 1120
Occurrence
and compositionof fats I I 20
Hydrolysisof fats.Soap.Micelles I I24
Fatsassouroesof pure acidsand alcohols t I2S
Detergents 1126
Unsaturatedfats.H4rdeningof oils. Drying oils II27
Phosphoglycerides.phosphateesterr.
IltS
Phospholipidsand cell membraqes IIJ|


CONTENTS

of fatty.aoids 1132
33.10 Biosynthesis
1134
Steroids
33.11

34 CarbohydratesI. Monosaccharides
Introduction 1143
Definition and classification I 144
(*)-Glucose: an aldohexose I 144
(-)-Fructose: a 2-ketohexose 1146
of aldose
Stereoisomersof (*)-glucose. Nomenclature
derivatives 1146
34.6 Oxidation. Effect of alkali 1149
34;7 Osazoneformation. EPimers I 151

34.8 Lengthening the carbon chain of aldoses.The Kiliani-Fischer
synthesis I 152
34.9 Shorteningthe carbon chain of aldoses'The Ruff
degradation 1154
3 4 . 1 0 Conversionof an aldoseinto its epimer 1154
3 4 . 1 r Configuration of (*)-glucose. The Fischerproof I155
34.r2 Configurationsofaldoses 1160
34.r3 Optical families. o and t- 1162
34.14 Tartaric acid 1164
Families of aldoses.Absolute configuration 1166
34.r5 -Cv.ii.
rir".,"re of o-(*)-glupose. Formation of glucosides 1168
34.16
34.r7 Configuration about C-1 1173
34 .1 8 Methylation 1174
34.t9 Determination of ring size I176
34.20 Conformation 1178

34.r
34.2
34.3
34.4
34.5

andPolysaccharides
35 carbohydratesII. Disaccharides
35.I Disaccharidesl18f
35.2 (*)-Maltose 1185
35.3 (*)-Cellobiose 1188
35.4 (*)-Lactose 1j,89

35.5 (*)-Sucrose 1191
35.6 Polysaccharides1192
35.7 Starch 1193
35.8 Structureof amylose.End groupanalysis /,193
35.9 Structureof amYloPectin 1195
35.10 CYclodextrins1198
35.1I Structureof cellulose 1200
35.12 Reactionsof cellulose 1200
36 Proteins and Nucleic Acids Molecular Biology
36.1 Proteins 1205
36.2 Structureof aminoacids 1206
36.3 Amino acidsasdipolarions 1208
36.4 Isoelectricpoint of aminoacids 1211


CONTENTS

@Ohfigurationof
naturalamino acids I2t2
Pireparation
of amino acids l2I3
Reactionsof amino acids l2ts
36,p Pepqides.
Gdometryof the peptidelinkage l2Is
36,9 Doremrinadonof structureof peptides.Terminal residue
analysls.Partialhydrolysis I2I7
36.10 Synthesisofpeptides 1221
3 5 . 1 Proteins.Classificationand function. Denaturation I22S
36.12 Structureof proteins 1226
36.t3 Peptidechain 1226

36.r4 Sidechains.Isoelectncpoinl Electrophoresis 1227
36.1
5 Conjugatedproteins.Prostheticgroups.Coenzymes l22g
36.r6 Secondarystructureofproteins l22g
36.17 Biochemistry,molecularbiology,and organicchemistry I2JJ
3 6 . r 8 Mechanismof enzymeaction.Chymotrypsin 1236 '
36.t9 Nucleoprciteins
and nucleicacids t24l
36.20 Chemistryand heredity.The geneticcode 1246
36.5
36.6
36.7

Suggested
Readings 12SI
Answersto Problems 1263
Index 1279


Preface
thing that teachersof organicchemistrytodayareagreedon
Perhapstheonly
-have
And
frown too big.And theyhave includingour own'
is ttratttretextbooks
We
havc
book'
the

shorten
was
to
*, *t.fti"f airn in prepaiingthis sixth edition
150pagesiiom it aid, mostimportant,haverewrittentheearlychaptcn
;;;;
to -"te ttris funaamentalmaterialmore accesibleto the student.
principle we hlve
In shorteningthe book, however,we have stuck to the
helptheycanget'
the
all
need
and they
alwaysheld:thesi arebeginningstyde.nts,
we
can;the book is
as
Whenwe takeup a topiC we eiplain it asfully and clearly
shortersimplybecausewe takeup iewertopics'
aschapters.Someof their content
A oo-G, of chaptershavedisappeared,
problems,andis
hasbeenmovedto otlier chapters.Somehasbeenpresentedas
help studentsto
to
"-pf"io.A it the StudyGuidi; this materialis thus available
of the textlimits
the
Uto"O.otheir understandingof organicchemistrybeyond

new
material
than
book.Much hasbeendelrt"i *og"tfter asbeinglessimportant
it.
that
---- replaces
to
it. systematictreatmentof alcoholsand ethershasbeenmovedfonn'ard
Introduced
halides.
Ct apte.O,Jn"re it immediatelyfollowsthe chapteron alkyl
to applyaj.d
"itfri,5poioq thechemistryof alcoholsgivesstudentstheopportunity
They
substitution'
buitd onwhattheyhavejust beenstudyingaboutnucleophilic
introare
They
seeAcofrofsx sibstratis, asnucleophiles,andasteaviltsq;ou7s'
orpnic chemis"
["."Oto the mostimportant-andsimplest-catalytic efect in
playing
still anotherstar
(In ihapter 7, alcotrolswill appearagain,
ti, iiri*ion.
laboimportant
most
With the
;;-i; ;;;iropttiti. subititution: that of solvent.)

'oto.y
carry
to
begin
can
*utr. of aipn"ti. compoundsin their hands,students
out organicsynthesisin a realisticway'
it wasa slim volumeof
Thirty-oddyeanago,whenour fint editionappeared,
onlyg00p"go.Yet,inouropinion-then,andnow-itpfettJwellpresented
of ageand
Gi" o"gu-"iichemistryasit wasthen:a sciencewhosetheoryhadcome
orpattern
underlying
The
*"fO d understoodland enjoyed-by begrnners.
the
it
to
reveal
to
aim
and it was our
g""i. .ft .irtry had begunto emerge,^
them, it soonbecameapparent'stubefore
theory
structurat
With
the
i.rO"ott.



xxtv

PREFACE

dents could begin to.study organic chemistry, not through rote rnemorization,
but
through/ understanding.
But organic chemistry has,of course,continud to grow, and at
a tremendous
r4te, Theories have been refined and exceptions to geniralizations
found; tniog,
are not so simple asthey once seemed.New conceptsand new tools haveappearei
and establishedthemselvesas part of basic organic chemistry: orbital
s6;.t.y,
for example, or nuclear magnetic resonance.Vtany factors have been
found to be
much more important than waspreviouslyrealized:the role ofthe solvent,
stereochemistry in all its aspects,the juxtaposition of reacting grorrpr. Hosts
of new
reaBentshave been devised: chemoselective,regioselectiieJtereoselective.
with all this grofih, the pattern underlying organic chemistry
has become
broader and more complex. But it is still there.eno iiis more important
than ever
that we pick out and focus on_thebasicdesign.In our opinion, organic
chemistry
hasnotbeen growingrandomly but along certain broad iines. Seeniingrv
unrelared

areasof researchare found, on examination, to involve simply different
aspectsof
the samebasicconcept.Just asthe conceptof the carboc"tioo ftur rc*.d
to relate
reactionsof many different kindg so thesenew conceptsform threads
running
through the basic patterU. It has been gur aim to identify thesenewer concepts,
to
selectthe ones that are clearly fundamental to the learning of organic chemisiry
and then to build them into the framework of the book-ilatioi.oofor them
by deletingmaterial that seemedto.sles important than the niw.
The cornerstoneof this framework hasbeen,asalways,the premise
on which
thescience of organic chemistry rests: that chemical bihavior-is determiniiy
molbcular structure. chemical behavior-what happens,where in a molecule
it
happens,even whether it happens-comes down to a matter of relative
ratesof
competingreactions.By and large,moleculestend to do what is easiest
for them;
rate dependschiefly on the energydifferencebetweenthe reactantsand
the transitiol state. we approach the matter of reactivity, then, by examining-mentally
and, by meansof models,physically-the structuresinvolved. But what
is meant
by "molecular structure"
_isconstanfly expanding, and our interpretation of
chemical behavior must reflect this.
In solution, all participants in a chemical reaction are solvated:the reactants
and the products-and the transition state.our examination of thesemust include any solvent moleculesthat help make up the structures and help determine
their stabilities.And so, in chapter 7, using as our examplesthe nucleophilic

substitution reactions the students have just studied, we shbw how reactivityand, with it, the courseof reaction-is affectedby the solvent.we showjust how
enorrnoussolventeffectscan be: that the presenceof a solventcan speedup_or
slow down-a reaction by a factor of lbr; that a changefrorn one solvent to
another can bring about a millionfold changein reaction rate.
At the same time, in chapter 7 the students are becoming acquainted with
secondarybonding.They learn that theseforces- ion - dipole, dipole - dipole, van
der waals-are involved in much more than solvent itre"ts. They learn
that,
acting-not only betweendifferent moleculesbut betweendifferent parts of
the
samemolecule, secondarybonding plays a key role in determining the shapes
ot
large moleculeslike proteins and DNA, shapesthat determine,-in turn,
their
biological properties. The sameforcesthat bring about dissolution of a solute in a
solvent also make the DNA hebx doubleand enablean enzymeto hold a substrate.
It is becoming increasingly clear that any examination of a molecular struc_
ture must be threedimensional.To emphasizethis, and to help guidethe students


×