Tải bản đầy đủ (.pdf) (16 trang)

ic2006063 united nations educational scientific and cultural organization and international atomic energy agency the abdus salam international centre for theoretical physics

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (99.88 KB, 16 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

Available at: IC/2006/063


United Nations Educational Scientific and Cultural Organization
and


International Atomic Energy Agency


THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS


<b>CALCULATION OF THERMODYNAMIC QUANTITIES OF CUBIC ZIRCONIA </b>
<b>BY STATISTICAL MOMENT METHOD </b>


Vu Van Hung


<i>Hanoi National Pedagogic University, Km8 Hanoi- Sontay Highway, Hanoi,Vietnam, </i>


Nguyen Thanh Hai1


<i>Hanoi University of Technology, 01 Dai Co Viet Road, Hanoi, Vietnam </i>
<i>and </i>


<i>The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy </i>


and
Le Thi Mai Thanh


<i>Hanoi National Pedagogic University, Km8 Hanoi- Sontay Highway, Hanoi,Vietnam. </i>


<b>Abstract </b>


We have investigated the thermodynamic properties of the cubic zirconia ZrO2 using the


statistical moment method in statistical physics. The free energy, thermal lattice expansion
coefficient, specific heats at the constant volume and those at the constant pressure are derived in
closed analytic forms. The present analytical formulas, including the anharmonic effects of the
lattice vibrations, give accurate values of the thermodynamic quantities, which are comparable to
<i>those of the ab initio calculations and experimental values. The calculated results are in </i>
agreement with experimental findings. The thermodynamic quantities of cubic zirconia are
predicted by using two different inter-atomic potential models. The influence of dipole
polarization effects on the thermodynamic properties for cubic zirconia is studied.


MIRAMARE – TRIESTE
July 2006




</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<b>1. Introduction </b>


Zirconia (<i>ZrO ) with a fluorite crystal structure is a typical oxygen ion conductor. In order to </i><sub>2</sub>


understand the ionic conduction in<i>ZrO , a careful study of the local behavior of oxygen ions </i><sub>2</sub>


close to the vacancy and the thermodynamic properties of zirconia is necessary. <i>ZrO is an </i>2


important industrial ceramic combining high temperature stability and high strength [1]. Zirconia
is also interesting as a structural material: It can form cubic, tetragonal and monoclinic or
orthorhombic phases at high pressure. Pure zirconia undergoes two crystallographic
transformations between room temperature and its melting point: monoclinic to tetragonal at
T≈1443<i>K</i> and tetragonal to cubic at <i>T</i> ~2570<i>K</i>. The wide range of applications (for use as an
oxygen sensor, technical application and basic research), particularly those at high temperature,
makes the derivation of an atomistic model especially important because experimental
measurements of material properties at high temperatures are difficult to perform and are


susceptible to errors caused by the extreme environment [2]. In order to understand the
properties of zirconia and predict them, there is a need for an atomic scale simulation. Molecular
dynamics (MD) has recently been applied to the study of oxide ion diffusion in zirconia systems
[3-5] and the effect of grain boundaries on the oxide ion conductivity of zirconia ceramic [6].
Such a model of atomic scale simulation requires a reliable model for the energy and interatomic
forces. First principles, or <i>ab</i> <i>initio</i> calculations give the most reliable information about
properties, but they are only possible for very simple structures involving a few atoms per unit


cell. More <i>ab initio</i> data available concentrate on zero K structure information while


experimental information is available at high temperatures (for example, in the case of zirconia,
> 12000C [7] ). In this respect, therefore, the <i>ab initio</i>and experimental data can be considered
as complementary. Recently, it has been widely recognized that the thermal lattice vibrations
play an important role in determining the properties of materials. It is of great importance to take
into account the anharmonic effects of lattice vibrations in the computations of the
thermodynamic quantities of zirconia. So far, most of the theoretical calculations of
thermodynamic quantities of zirconia have been done on the basis of harmonic or quasi-
harmonic (QH) theories of lattice vibrations, and anharmonic effects have been neglected.


The purpose of the present study is to apply the statistical moment method (SMM) in the
quantum statistical mechanics to calculate the thermodynamic properties and the Debye-Waller
factor of cubic zirconia within the fourth-order moment approximation. The thermodynamic
quantities such as free energy, specific heats <i>C and<sub>V</sub></i> <i>C , and bulk modulus are calculated taking <sub>P</sub></i>


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

with the previous theoretical calculations as well as experimental results. In the present study, the
influence of dipole polarization effects on the thermodynamic properties, are studied. We
compare the dependence of the results on the choice of interatomic potential models.


<b> </b>



<b>2. Method of calculations </b>


<b>2.1 Anharmonicity of lattice vibration </b>


First, we derive the expression of the displacement of an atom Zr or O in zirconia, using the
moment method in statistical dynamics.


The basic equations for obtaining thermodynamic quantities of the crystalline materials are
derived in the following manner. We consider a quantum system, which is influenced by
supplemental forces <i>ai</i> in the space of the generalized coordinates <i>Q . The Hamiltonian of the i</i>


lattice system is given as


<i><sub>i</sub></i>


<i>i</i>
<i>iQ</i>
<i>a</i>
<i>H</i>


<i>H</i> = <sub>0</sub> −

(1)
where <i>H denotes the Hamiltonian of the crystal without forces</i>0 <i>a . After the action of the i</i>


supplemental forces <i>a , the system passes into a new equilibrium state. From the statistical <sub>i</sub></i>


average of a thermodynamic quantity <i>Q<sub>k</sub></i> , we obtain the exact formula for the correlation.


Specifically, we use a recurrence formula [8-10]



<i>a</i>
<i>n</i>


<i>m</i>
<i>n</i>
<i>m</i>


<i>m</i>
<i>m</i>
<i>n</i>


<i>a</i>
<i>n</i>
<i>a</i>


<i>n</i>
<i>a</i>
<i>n</i>
<i>a</i>
<i>n</i>


<i>a</i>
<i>K</i>
<i>i</i>


<i>m</i>
<i>B</i>
<i>a</i>


<i>K</i>


<i>Q</i>


<i>K</i>
<i>K</i>


1
)
2
(
2


0
2
1


1
1


)!
2


( <sub>+</sub>





+


+
+















+


=



θ
θ


θ h (2)


where θ =<i>k<sub>B</sub>T</i> and <i>K is the correlation operator of the nth order <sub>n</sub></i>


= <sub>−</sub> [[ , ]<sub>+</sub> ]<sub>+</sub>...]<sub>+</sub> ]<sub>+</sub>
2


1


3


2
1


1 <i>n</i>


<i>n</i>


<i>n</i> <i>Q</i> <i>Q</i> <i>Q</i> <i>Q</i>


<i>K</i> . (3)
In eq. (2), the symbol ... expresses the thermal averaging over the equilibrium ensemble, <i><sub>a</sub></i> <i>H</i>


represents the Hamiltonian, and <i>B</i>2<i>m</i> denotes the Bernoulli numbers.


The general formula (eq.(2)) enables us to get all the moments of the system and investigate
the nonlinear thermodynamic properties of the materials, taking into account the anharmonicity
effects of the thermal lattice vibration. In the present study, we apply this formula to find the
Helmholtz free energy of zirconia (<i>ZrO ). </i><sub>2</sub>


First, let consider the system zirconia composed of <i>N atoms Zr and </i><sub>1</sub> <i>N atoms O, we </i><sub>2</sub>


assume the potential energy of system can be written as:


( )


2
)
(


2



2


1

+ +

+


=


<i>i</i>


<i>i</i>
<i>i</i>
<i>O</i>
<i>io</i>
<i>i</i>


<i>i</i>
<i>i</i>
<i>Zr</i>


<i>io</i> <i>r</i> <i>u</i>


<i>N</i>
<i>u</i>
<i>r</i>
<i>N</i>


<i>U</i> ϕ ϕ <i>O</i> <i>O</i>


<i>Zr</i>



<i>ZrU</i> <i>C</i> <i>U</i>


<i>C</i> 0 + 0


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

where <i>Zr</i> <i>O</i>


<i>U</i>


<i>U</i><sub>0</sub> , <sub>0</sub> <i> represent the sum of effective pair interaction energies between the zeroth Zr </i>
<i>and ith atoms, and the zeroth O and ith atoms in zirconia, respectively. In eq.(4), r is the <sub>i</sub></i>


<i>equilibrium position of the ith atom, u its displacement, and i</i> , ,
<i>O</i>
<i>io</i>
<i>Zr</i>
<i>io</i> ϕ


ϕ the effective interaction


<i>energies between the zeroth Zr and ith atoms, and the zeroth O and ith atoms, respectively. We </i>


consider the zirconia <i>ZrO with two concentrations of Zr and O (denoted by </i><sub>2</sub>


<i>N</i>
<i>N</i>
<i>C</i>
<i>N</i>
<i>N</i>


<i>C<sub>Zr</sub></i> 1 <i><sub>O</sub></i> 2



, =


= , respectively).


First of all let us consider the displacement of atoms Zr in zirconia. In the fourth-order
<i>approximation of the atomic displacements, the potential energy between the zeroth Zr and ith </i>
atoms of the system is written as:



...
24
1
6
1
2
1
)
(
)
(
,
,
,
4
,
,
3
,
2


+













+












+












+
=
+




η
γ
β
α
η
γ
β
α α β γ η
γ
γ
β
α α β γ α β
β
α α β α β
ϕ

ϕ
ϕ
ϕ
ϕ
<i>i</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>eq</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>Zr</i>
<i>io</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>eq</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>Zr</i>
<i>io</i>
<i>i</i>
<i>i</i>
<i>eq</i>
<i>i</i>
<i>i</i>
<i>Zr</i>

<i>io</i>
<i>i</i>
<i>Zr</i>
<i>io</i>
<i>i</i>
<i>i</i>
<i>Zr</i>
<i>io</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>r</i>
<i>u</i>
<i>r</i>
(5)


In eq. (5), the subscript <i>eq</i>means the quantities calculated at the equilibrium state.


<i> The atomic force acting on a central zeroth atom Zr can be evaluated by taking derivatives </i>
<i>of the interatomic potentials. If the zeroth central atom Zr in the lattice is affected by a </i>
supplementary force <i>a</i><sub>β</sub>, then the total force acting on it must be zero, and one can obtain the


relation

0
12
1
4
1
2
1
,
,
,
4
,
,
3
,
2
=

>
<














+
>
<












+
>
<















β
η
γ
α
η
γ
α α β γ η
γ
γ
α α β γ α
α α β α
ϕ
ϕ
ϕ
<i>a</i>
<i>u</i>

<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>u</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>eq</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>Zr</i>
<i>io</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>eq</i>
<i>i</i>

<i>i</i>
<i>i</i>
<i>Zr</i>
<i>io</i>
<i>i</i>
<i>i</i>
<i>eq</i>
<i>i</i>
<i>i</i>
<i>Zr</i>
<i>io</i>
(6)


The thermal averages on the atomic displacements (called second- and third-order moments)


>


<<i>ui</i><sub>α</sub><i>ui</i><sub>γ</sub> and <<i>ui</i>α<i>ui</i>γ<i>ui</i>η > can be expressed in terms of <<i>ui</i>α > with the aid of eq.(2). Thus,


eq.(6) is transformed into the form:


<sub>2</sub> 3 3 ( coth 1) 0


2


2 + + + + − − =


<i>a</i>
<i>y</i>
<i>x</i>


<i>x</i>
<i>k</i>
<i>ky</i>
<i>y</i>
<i>da</i>
<i>dy</i>
<i>y</i>
<i>da</i>
<i>y</i>


<i>d</i> <sub>γθ</sub> <sub>γ</sub> <sub>γ</sub> θ


γθ (7)


with β ≠γ =<i>x</i>,<i>y</i>,<i>z</i>. and <i>y</i>≡<<i>u<sub>i</sub></i> >

<i>eq</i>
<i>i</i> <i>i</i>
<i>Zr</i>
<i>io</i>
<i>u</i>


<i>k</i>

<sub>⎟⎟</sub>




⎜⎜





= 2 <sub>2</sub>


2
1


α


ϕ * 2


<i>Zr</i>
<i>m</i> ω


≡ and


θ
ω


2


<i>Zr</i>


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>






















+
⎟⎟


⎜⎜




=
<i>eq</i>
<i>i</i>
<i>i</i>
<i>Zr</i>
<i>io</i>
<i>eq</i>
<i>i</i>
<i>Zr</i>

<i>io</i>
<i>u</i>
<i>u</i>


<i>u</i> 2 2


4
4
4
6
12
1
γ
β
α
ϕ
ϕ


γ . (9)


In deriving eq. (7), we have assumed the symmetry property for the atomic displacements in
the cubic lattice:


<<i>ui</i><sub>α</sub> >= <<i>ui</i>γ >= <<i>ui</i>η > ≡ <<i>ui</i> > (10)


Equation (7) has the form of a nonlinear differential equations, since the external force <i>a is </i>


arbitrary and small, one can find the approximate solution in the form:


2



2
1


0 <i>Aa</i> <i>A</i> <i>a</i>


<i>y</i>


<i>y</i>= + + (11)
here, <i>y is the displacement in the case of no external force a . Hence, one can get the solution </i><sub>0</sub>


of <i>y as: </i><sub>0</sub>


<i>A</i>
<i>k</i>
<i>y</i> <sub>3</sub>
2
2
0
3
2γθ


≈ (12)
In an analogical way, as for finding eq.(7), for the atoms O in zirconia <i>ZrO , the equation for </i><sub>2</sub>


the displacement of a central zero<i>th atom O has the form: </i>


<sub>2</sub> 3 ( coth 1) 2 0


2



2 + + + − + + − =


<i>a</i>
<i>y</i>
<i>da</i>
<i>dy</i>
<i>y</i>
<i>x</i>
<i>x</i>
<i>k</i>
<i>ky</i>
<i>da</i>
<i>dy</i>
<i>y</i>
<i>da</i>
<i>y</i>


<i>d</i> <sub>γθ</sub> <sub>γ</sub> θ <sub>βθ</sub> <sub>β</sub>


γθ (13)


with <i>u<sub>i</sub></i> <i><sub>a</sub></i> ≡ ; <i>y</i>


θ
ω


2


<i>O</i>



<i>x</i>= h


<sub>2</sub> * 2


2
2


1


<i>O</i>
<i>i</i> <i>i</i> <i><sub>eq</sub></i>


<i>O</i>
<i>io</i>


<i>m</i>
<i>u</i>


<i>k</i> ϕ ω


α

⎟⎟


⎜⎜






=

(14)






















+
⎟⎟


⎜⎜





=
<i>i</i>
<i>eq</i>
<i>i</i>
<i>i</i>
<i>O</i>
<i>io</i>
<i>eq</i>
<i>i</i>
<i>O</i>
<i>io</i>
<i>u</i>
<i>u</i>


<i>u</i> 2 2


4
4
4
6
12
1
γ
β
α
ϕ
ϕ



γ (15)


and







=
<i>i</i>
<i>eq</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>O</i>
<i>io</i>
<i>u</i>
<i>u</i>
<i>u</i> )
(
2
1 3
γ
β
α
ϕ


β . (16)
Hence, one can get the solution of <i>y of atom O in zirconia as </i><sub>0</sub>



]
27
2
)
1
coth
(
3
3
1
)[
6
1
(
1
3
3
2 2
2
4
2
2
3
2
0
<i>k</i>
<i>x</i>
<i>x</i>
<i>k</i>


<i>K</i>
<i>K</i>
<i>A</i>
<i>K</i>
<i>y</i>
γ
β
γθ
θ
γ
γ
β
γθ <sub>−</sub> <sub>+</sub> <sub>+</sub> <sub>+</sub> <sub>−</sub> <sub>−</sub>


≈ (17)


where the parameter <i>K</i> has the form:

γ
β
3
2

<i>= k</i>


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

<b>2.2 Helmholtz free energy of Zirconia </b>


We consider the zirconia <i>ZrO with two concentrations of Zr and O (denoted by </i><sub>2</sub>


<i>N</i>


<i>N</i>
<i>C</i>
<i>N</i>
<i>N</i>


<i>CZr</i> <i>O</i>


2
1


, =


= , respectively). The atomic mass of zirconia is simply assumed to be the


average atoms of <i>m</i> =<i>CZrmZr</i> +<i>COmO</i>
*


. The free energy of zirconia are then obtained by taking
into account the configurationally entropies <i>S , via the Boltzmann relation, and are written as: <sub>c</sub></i>


ψ =<i>C<sub>Zr</sub></i>ψ<i><sub>Zr</sub></i> +<i>C<sub>O</sub></i>ψ<i><sub>O</sub></i> −<i>TS<sub>c</sub></i> (19)
where ψ<i>Zr</i> and ψ<i>O</i> denote the free energy of atoms Zr and O in zirconia , respectively. Once


the thermal expansion <i>y of atoms Zr or O in the lattice zirconia is found, one can get the </i><sub>0</sub>


Helmholtz free energy of the system in the following form:


ψ<i><sub>Zr</sub></i> =<i>U</i><sub>0</sub><i>Zr</i> +ψ<sub>0</sub><i>Zr</i> +ψ<sub>1</sub><i>Zr</i> (20)
where ψ0<i>Zr</i> denotes the free energy in the harmonic approximation and



<i>Zr</i>
1


ψ the anharmonicity


contribution to the free energy [ 11-13]. We calculate the anharmonicity contribution to the free
energy ψ1<i>Zr</i> by applying the general formula


ψ ψ λ


λ


λ<i>d</i>


<i>V</i>
<i>UZr</i> <i>Zr</i>


<i>Zr</i> = + +

< >
0
0


0 ˆ (21)


<i>where Vˆ</i>λ represents the Hamiltonian corresponding to the anharmonicity contribution. It is
straightforward to evaluate the following integrals analytically


=

< >


1
0


1
4
1
γ
γ
<i>d</i>
<i>u</i>


<i>I</i> <i><sub>i</sub></i> , =

< > =


2
1
0
2
0
2
2
2
γ


γ <i>d</i>γ
<i>u</i>


<i>I</i> <i><sub>i</sub></i> . (22)


Then the free energy of the system is given by:


{

}














⎛ +

+

+
+

Ψ −
2
coth
1
3
2
coth
3
)]
1
ln(
[


3 2 2 1



2
2
2
2
0
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>k</i>
<i>N</i>
<i>e</i>
<i>x</i>
<i>N</i>


<i>UZr</i> <i>x</i>


<i>Zr</i>
γ
γ
θ
θ






⎧ <sub>+</sub> <sub>−</sub> <sub>+</sub> <sub>+</sub> <sub>+</sub>



+ )(1 coth )


2
coth
1
)(
2
(
2
)
2
coth
1
(
coth
3
4
3
2
1
2
1
2
2
4
3
<i>x</i>
<i>x</i>
<i>x</i>


<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>k</i>


<i>N</i>θ <sub>γ</sub> <sub>γ</sub> <sub>γ</sub> <sub>γ</sub>


(23)
where <i>U</i><sub>0</sub><i>Zr</i> represents the sum of effective pair interaction energies between zeroth Zr and ith


atoms. The first term of eq.(23) gives the harmonicity contribution of thermal lattice vibrations
and the other terms give the anharmonicity contribution of thermal lattice vibrations. The
fourth-order vibrational constants γ<sub>1</sub>,γ<sub>2</sub> are defined by:


<sub>⎟⎟</sub>


⎜⎜




=


<i>i</i> <i>i</i> <i><sub>eq</sub></i>
<i>Zr</i>
<i>io</i>
<i>u</i>4


4
1
48
1
α
ϕ
γ ,

<sub>⎟</sub>⎟









=
<i>i</i>
<i>eq</i>
<i>i</i>
<i>i</i>
<i>Zr</i>
<i>io</i>
<i>u</i>


<i>u</i>2 2


4
2
48


6
β
α
ϕ


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

In an analogical way, as for finding eq.(23), the free energy of atoms O in the zirconia <i>ZrO</i><sub>2</sub>


is given as:


{

}













⎛ +

+

+
+

Ψ −
2

coth
1
3
2
coth
3
)]
1
ln(
[


3 2 2 1


2
2
2
2
0
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>k</i>
<i>N</i>
<i>e</i>
<i>x</i>
<i>N</i>


<i>UO</i> <i>x</i>



<i>O</i>
γ
γ
θ
θ






⎧ <sub>+</sub> <sub>−</sub> <sub>+</sub> <sub>+</sub> <sub>+</sub>


+ )(1 coth )


2
coth
1
)(
2
(
2
)
2
coth
1
(
coth
3
4


3
2
1
2
1
2
2
4
3
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>x</i>
<i>k</i>


<i>N</i>θ <sub>γ</sub> <sub>γ</sub> <sub>γ</sub> <sub>γ</sub>


( coth 1)]


6
9
9
)
3
2
(


[
3
]
6
6
[
3 <sub>2</sub>
2
4
1
2
3
1
2
2
/
1
1
3
2
2
2
2
2

+
+

+



+ <i>x</i> <i>x</i>


<i>k</i>
<i>K</i>
<i>K</i>
<i>ka</i>
<i>K</i>
<i>a</i>
<i>a</i>
<i>K</i>
<i>K</i>
<i>N</i>
<i>K</i>
<i>K</i>
<i>k</i>


<i>N</i> θ β γ β β β


γ
β
γ
β


θ . (25)


Note that the parameters γ<sub>1</sub>,γ<sub>2</sub> in eq.(25) have the form analogous to eq.(24), but we must to
replace ϕ<i>ioZr</i>,<i>the effective interaction energies between the zeroth Zr and ith atoms, by </i>


<i>O</i>


<i>io</i>


ϕ


With the aid of the free energy formula ψ =<i>E</i>−<i>TS</i>, one can find the thermodynamic


quantities of zirconia. The specific heats at constant volume <i>C ,<sub>V</sub>Zr</i> <i>C<sub>V</sub>O</i> are directly derived from
the free energy of system ψ<i>Zr</i>,ψ<i>O</i> (23), (25), respectively, and then the specific heat at constant


volume of the cubic zirconia is given as:


<i>O</i>
<i>V</i>
<i>O</i>
<i>Zr</i>
<i>V</i>
<i>Zr</i>


<i>V</i> <i>C</i> <i>C</i> <i>C</i> <i>C</i>


<i>C</i> = + . (26)
We assume that the average nearest-neighbor distance of the cubic zirconia at temperature T can
be written as:


<i>r</i><sub>1</sub>(<i>T</i>)=<i>r</i><sub>1</sub>(0)+<i>C<sub>Zr</sub>y</i><sub>0</sub><i>Zr</i> +<i>C<sub>O</sub>y</i><sub>0</sub><i>O</i> (27)
in which <i>y</i><sub>0</sub><i>Zr</i>(T) and <i>y</i><sub>0</sub><i>O</i>(<i>T</i>)are the atomic displacements of Zr and O atoms from the
equilibrium position in the fluorite lattice, and <i>r</i>1(0) is the distance <i>r</i>1 at zero temperature. In


eq.(27) above, <i>y</i><sub>0</sub><i>Zr</i> and <i>yO</i><sub>0</sub> are determined from Eqs. (12) and (17), respectively. The average



nearest-neighbor distance at T = 0K can be determined from experiment or the minimum
condition of the potential energy of the system cubic zirconia composed of <i>N</i><sub>1</sub> atoms Zr and


2


<i>N</i> atoms O



1
0
1
0
1 <i>r</i>
<i>U</i>
<i>r</i>
<i>U</i>
<i>r</i>


<i>U</i> <i>Zr</i> <i>O</i>




+


=


0
)


(
2
)
(
2 1
2
1


1 ⎟=









+








=


<i>i</i>
<i>i</i>
<i>O</i>

<i>io</i>
<i>i</i>
<i>i</i>
<i>Zr</i>
<i>io</i> <i>r</i>
<i>r</i>
<i>N</i>
<i>r</i>
<i>r</i>


<i>N</i> <sub>ϕ</sub> <sub>ϕ</sub>


. (28)
From the definition of the linear thermal expansion coefficient, it is easy to derive the result


α<i><sub>T</sub></i> =<i>C<sub>Zr</sub></i>α<i><sub>T</sub>Zr</i> +<i>C<sub>O</sub></i>α<i><sub>T</sub>O</i> (29)
where

θ
α



= <i>B</i> <i>Zr</i>


<i>Zr</i>
<i>T</i>


<i>y</i>
<i>r</i>



<i>k</i> <sub>0</sub>


1(0)


,


θ
α





= <i>B</i> <i>O</i>


<i>O</i>
<i>T</i>


<i>y</i>
<i>r</i>


<i>k</i> <sub>0</sub>


1(0)


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>



<i>T</i>
<i>T</i>



<i>V</i>
<i>P</i>
<i>V</i>


<i>B</i> ⎟











= <sub>0</sub> <i>O</i>


<i>T</i>
<i>O</i>
<i>Zr</i>
<i>T</i>
<i>Zr</i>
<i>T</i>


<i>B</i>
<i>C</i>
<i>B</i>
<i>C</i>
<i>V</i>



<i>V</i> <sub>⎟⎟</sub> = +




⎜⎜




Ψ



= <sub>0</sub> 2 <sub>2</sub> (31)


where <i>P</i> denotes the pressure, <i>V</i><sub>0</sub> is the lattice volume of the cubic zirconia crystal at zero


temperature, and the bulk moduli <i>B<sub>T</sub>Ce</i> and <i>B<sub>T</sub>O</i> are given by


<sub>⎟⎟</sub>




⎜⎜









Ψ



=


θ


α <i>V</i>


<i>k</i>


<i>B</i> <i>Zr</i>


<i>Zr</i>
<i>T</i>
<i>B</i>
<i>Zr</i>


<i>T</i>


2


3 , ⎟⎟<sub>⎠</sub>



⎜⎜









Ψ



=


θ


α <i>V</i>


<i>k</i>


<i>B</i> <i>O</i>


<i>O</i>
<i>T</i>
<i>B</i>
<i>O</i>


<i>T</i>


2


3 . (32)
Due to the anharmonicity, the heat capacity at a constant pressure,<i>C<sub>P</sub></i>, is different from the heat


capacity at a constant volume,<i>C<sub>V</sub></i>. The relation between <i>C<sub>P</sub></i> and <i>C<sub>V</sub></i> of the cubic zirconia is




<i>T</i>
<i>P</i>


<i>V</i>
<i>P</i>


<i>V</i>
<i>P</i>
<i>T</i>


<i>V</i>
<i>T</i>
<i>C</i>


<i>C</i> ⎟





















=


2


<i>VT</i>
<i>B</i>
<i>C<sub>V</sub></i> +9α<i><sub>T</sub></i>2 <i><sub>T</sub></i>


= . (33)




<b>3. Results and discussions </b>


<b>3.1 Potential dependence of thermodynamic quantities </b>


Using the moment method in statistical dynamics, we calculated the thermodynamic
properties of zirconia with the cubic fluorite structure. The atomic interactions are described by a
potential function which divides the forces into long-range interactions (described by Coulomb’s
Law and summated by the Ewald method) and short-range interactions treated by a pairwise
function of the Buckingham form



( ) exp( ) <sub>6</sub>


<i>r</i>
<i>C</i>
<i>B</i>


<i>r</i>
<i>A</i>


<i>r</i>
<i>q</i>
<i>q</i>


<i>r</i> <i>ij</i>


<i>ij</i>
<i>ij</i>


<i>j</i>
<i>i</i>


<i>ij</i> = + − −


ϕ (34)


where <i>q<sub>i</sub></i> and <i>q<sub>j</sub></i> are the charges of ions i and j respectively, <i>r</i>is the distance between them and


<i>ij</i>
<i>ij</i> <i>B</i>



<i>A</i> , and <i>C<sub>ij</sub></i> are the parameters particular to each ion-ion interaction. In eq.(34), the


exponential term corresponds to an electron cloud overlap and the <i>Cij/ r</i>6 term any attractive


dispersion or Van der Waal’s force. Potential parameters<i>A<sub>ij</sub></i>,<i>B<sub>ij</sub></i> and <i>C<sub>ij</sub></i> have most commonly
been derived by the procedure of ‘empirical fitting’, i.e., parameters are adjusted, usually by a
least-squares fitting routine, so as to achieve the best possible agreement between calculated and
experimental crystal properties. The potential parameters used in the present study were taken
from Lewis and Catlow [14] and from Ref. [28].


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

calculations of lattice parameters were at zero K, but present results by SMM at temperatures T =
0 K and T = 2600 K, while experimental data at high temperatures (> 1500 K) [7]). The
full-potential linearized augmented-plane-wave (FLAPW) ab inition calculation of Jansen [16], based
on the density functional theory in the local-density approximation (LDA), gives <i>a</i>0(<i>A</i>0)= 5.03,


while Hartree-Fock calculations (the CRYSTAL code) give <i>a</i><sub>0</sub>(<i>A</i>0)= 5.035 (both at zero K).
<i>The linear muffin-tin orbital (LMTO) ab initio calculations</i> of lattice parameter are larger than
both experimental values and are in best agreement with the Hartree-Fock calculation [17]. The
potential-induced breathing model [18] (PIB) augments the effective pair potential (EPP) by
allowing for the spherical relaxation (“breathing”) of the oxide anion charge density, gives


)
( 0
0 <i>A</i>


<i>a</i> = 5.101 at T = 0K (the calculations used Watson sphere method) . The density functional


theory (DFT) within the plane-wave pseudopotential (PWP) [22] and RIP give <sub>0</sub>( )=5.134


<i>o</i>



<i>A</i>


<i>a</i> ,


and <sub>0</sub>( )=5.162


<i>o</i>


<i>A</i>


<i>a</i> . These results and the CRYSTAL calculation [15] are larger than the


experimental values. Our SMM calculations give a lattice parameter <i>a</i>=5.0615(<i>A</i>0)and unit


cell volume V( <i>o</i>3


<i>A</i> ) = 32.417 at zero temperature and in agreement with the experimental


values [7], FLAPW-DFT, LMTO and Hartree-Fock calculations.


Table 3 lists the thermodynamic quantities of cubic fluorite zirconia calculated by the present
SMM using potential 1. The experimental nearest-neighbor anion-anion separations <i>r</i>2<i>O</i>−<i>O</i> lie in


the range 2.581−2.985<i>A</i>0[21], while the current SMM give 2.5931 <i>A</i>0 (without dipole
polarization effects) and 2.6031<i>A</i>0 (with dipole polarization effects) at T = 2600 K, and in
<i>agreement with the ab initio calculations [2]. These calculations [2] used a potential fitted to ab </i>


<i>initio</i> calculations using the oxide anion electron density appropriate to the equilibrium lattice
parameter (2.581<i>A</i>0) as the fluorite analogue for all nearest-neighbor pairs. The nearest-neighbor


cation-anion separations <i>r</i><sub>1</sub><i>Zr</i>−<i>O</i> calculated by SMM lie in the range 2.2543-2.2669<i>A</i>0 (with


dipole polarization effects) and 2.2457-2.2557<i>A</i>0(without dipole polarization effects)


corresponding to the temperature range <i>T</i> =2600−3000<i>K</i> and in agreement with the


first-principles calculations give 2.236 0


<i>A</i> in cubic zirconia [23]. We also calculated the bulk modulus


<i>T</i>


<i>B</i> of cubic zirconia as a function of the temperature T. We have found that the bulk modulus<i>B<sub>T</sub></i>


depends strongly on the temperature and is a decreasing function of T. The decrease of <i>BT</i> with


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

anion-cation interactions with and without full dipolar and quadrupolar polarization effects, gives


the bulk modulus <i>B<sub>T</sub></i> =<i>204 GPa</i>( )[2], while the experimental data gives the bulk modulus


)
(
<i>194 GPa</i>


<i>B<sub>T</sub></i> = [20]. The two bulk modulus calculated by CIM (no polarization and full


polarization) for the fluorite structure are equal and greater than the experimental values while
the SMM results of bulk modulus at high temperature (T = 2600 K ) are smaller than the
experimental ones. At lower temperatures the SMM calculations of bulk modulus give a much
better agreement with experiment, because bulk modulus are the decreasing functions of the


temperature. Above about 2570 K (up to the melting point at 2980 K), zirconia assumes the
<i>cubic fluorite structure. In this phase the thermodynamic quantities (as the lattice parameter a , </i>
specific heats at constant volume and pressure<i>CV</i>,<i>CP</i>, and the bulk modulus<i>BT</i>,...) are


calculated by the present SMM using potentials 1 and 2. Table 4 lists the thermodynamic


quantities of cubic fluorite zirconia calculated by the present SMM using potential 2. Tables 3, 4
<i>show the thermodynamic quantities, a , C<sub>V</sub></i>,<i>C<sub>P</sub></i> and <i>B<sub>T</sub></i>, for the cubic phase of bulk zirconia as
the functions of the temperature T. Tables 3, 4 present the variations in temperature of the
specific heats at constant volume and pressure <i>CV</i>,<i>CP</i>, in which specific heat <i>CV</i> depends


slightly on the temperature, but the specific heat <i>CP</i> depends strongly on T and the linear


thermal expansion coefficientα and bulk modulus <i>BT</i> depend strongly on the temperature. The


linear thermal expansion coefficient α determined experimentally by Terreblanche [24],


i.e.α =10.5.10−6<i>K</i>−1. That experimental value is also close to the value calculated in the present
study using potential 1 for the cubic phase of bulk zirconia at the temperature T = 2600 K. For
the specific heat capacity <i>CP</i> of the cubic zirconia, the reference data reported by Chase [26]


gives <i>C<sub>P</sub></i> ~ 640 J/ (kg.K) at T ~ 1400 K, while the current SMM using potential 1 gives <i>C<sub>P</sub></i> =
9.4316 cal/(mol.K) (with dipole polarization effects) and <i>C<sub>P</sub></i> = 8.8674 cal/(mol.K) (without
dipole polarization effects) at T = 2600 K. The lattice specific heats <i>C<sub>V</sub></i> and <i>C<sub>P</sub></i> at constant
volume and at constant pressure are calculated using Eqs. (26) and (33), respectively. However,
the evaluations by eqs. (26) and (33) are the lattice contributions, and we do not include the
contributions of lattice vacancies and electronic parts of the specific heats <i>CV</i>. The calculated


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

<i> The obtained results for lattice parameter a of cubic zirconia is calculated by the present </i>
SMM using potentials 1 and 2 as the functions of the temperature T. The difference between the


SMM calculated results using potentials 1 and 2 for the lattice parameter is very small. This
difference is related to the effect of the oxygen-oxygen interactions, since the Coulombic
contribution and the zirconium-oxygen potential are the same for the SMM calculations using
potentials 1 and 2. The values of the lattice parameters, calculated by two potentials, are only
slightly different, i.e. the choice of potential has very little effect upon the lattice parameter, but
it does play an important role in determining the bulk modulus and thermal expansion
coefficient. Tables 3, 4 show the bulk modulus <i>B<sub>T</sub></i> and linear thermal expansion coefficient α
of the cubic zirconia depend strongly on both the temperature and the potential sets. The
potential 1 gives the highest values for the bulk modulus<i>B<sub>T</sub></i> and the lowest values for the linear
thermal expansion coefficientα while the potential 2 gives the lowest values for <i>BT</i> and the


highest values forα. The potential 2 gives lower bulk modulus and higher thermal expansion
coefficient than the potential 1, since the potential 2 is based on a different oxygen-oxygen
potential. It would be reasonable to conclude that the low bulk modulus and high thermal
expansion coefficient predicted by the potential 2 are due to the effect of the oxygen-oxygen
interactions. Tables 3, 4 also show that the difference between the SMM calculated results using
potentials 1 and 2 for the specific heat <i>C<sub>V</sub></i> is very small, but the specific heat <i>C<sub>P</sub></i> depends
strongly on the choice of the potential. The potential 2 gives a higher thermal expansion
coefficient and lattice parameter than the potential 1, therefore the specific heat <i>CP</i> has the


higher values. We see that the large difference in <i>O</i>2− −<i>O</i>2− interatomic potential of potentials 1
and 2 (the exponential term corresponds to the electron cloud overlap term,<i>A</i>exp(−<i>r</i>/<i>B</i>), and
attractive term (<i>C<sub>ij</sub>/ r</i>6)) determined the role of the various contributions to the thermodynamic
properties of the cubic zirconia.


<b>3.2 Dipole polarization effects </b>


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

contribution ~ 13-15% (for potential 1) and ~ 15 – 17% (for potential 2) for the bulk
modulus<i>B<sub>T</sub></i>. For the thermal expansion coefficientα and specific heat at constant pressure<i>C<sub>P</sub></i>



the contribution of the dipole polarization effects is larger, approximately ~ 20% (using potential
1) and ~37-50% (using potential 2) for α and approximately ~ 10 % ( using potential 1) and


~30-60 % ( using potential 2) for <i>CP</i>, respectively. The effect of the dipole polarization


increases with the temperature, and also stronger for the potential 2. The small dipoles that do
arise do so as a result of a small displacement of the anions from the ideal lattice sites. The
effects of the dipole polarization on to the lattice constants and the specific heat <i>CV</i> are small,


but that effects on to the bulk modulus <i>B<sub>T</sub></i> thermal expansion coefficient α and specific heat at
constant pressure<i>CP</i> are large.


The dipolar part of the potential model is much better defined because it has been obtained
<i>from ab initio calculations [2]. When both dipole and quadrupole effects are added, the </i>
calculations of the some thermodynamic properties for the cubic zirconia (for example, the cubic
equilibrium volume, …) give a much better agreement with experiment [2]. However, in cubic
fluorite zirconia <i>ZrO</i>2 the polarization energies are small and in the crystalline environment the


high symmetry of the anion site may more effectively cancel the induced quadrupole effects.


<b>4. Conclusions </b>


We have presented an analytical formulation for obtaining the thermodynamic quantities of
the cubic zirconia <i>ZrO</i>2 based on the statistical moment method in statistical physics. The


present formalism takes into account the higher-order anharmonic terms in the atomic
displacements and it enables us to derive the various thermodynamic quantities of the cubic
zirconia for a wide temperature range (the cubic phase of zirconia is stable between 2570 K and
the melting temperature at 2980 K [27]. The analytic formulas can be used not only for the cubic
zirconia but also for other oxide materials with the cubic fluorite structure. The calculated


thermodynamic quantities of the cubic zirconia are in good agreement with the experimental
<i>results as well as those by ab initio calculations (in some cases, better results by the present </i>
method).


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

has been studied. The SMM calculation with dipolar term is necessary in order to explain all the
data we have from experiment and simulation calculations.


<b>Acknowledgments. </b>This work was done within the framework of the Associateship Scheme of
the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.


<b>References </b>


[1] Science and Technology of Zirconia, Advances in Ceramics, Vol.3, edited by A.H. Heuer
<i>and L. W. Hobbs (The American Ceramic Society, Columbus, OH, 1981), Phase </i>


<i>Transformations in</i> <i>ZrO</i>2-Containing Ceramics, Advances in Ceramic Vol.12, edited by A.


H. Heuer, N. Claussen, and M. Ruhle (The Americal Ceramic Society, Columbus, OH,
1981).


<b>[2] Mark Wilson, Uwe Schonberger, and Michael W. Finnis, Phys. Rev. B. 54 (1996) 9147. </b>
<b>[3] F. Shimojo , T. Okabe, F. Tachibana, M.Kobayashi, J. Phys. Japan 61 (1992) 2848. </b>
<b>[4] X. Li, B. Hafskjold, J. Phys. Condens. Matter 7(1997)1255. </b>


<b>[5] H.W. Brinkman, W. J. Briels, H. Verweij, Chem. Phys. Lett. 247 (1995) 386. </b>


<b>[6] Craig A. J. Fisher, Hideaki Matsubara, Computational Materials Science 14 (1999) 177. </b>
<b>[7] P. Aldebert and J-P. Traverse, J. Am. Ceram. Soc. 68 (1985)34. </b>


<b>[8] N. Tang and V. V. Hung, Phys. Status Solidi, (b) 149, 511 (1988). </b>


<b>[9] V. V. Hung and K. Masuda-Jindo, J. Phys. Soc. Jpn. 69, 2067 (2000). </b>


<b>[10] K. Masuda-Jindo, V. V. Hung, and P. D. Tam, Phys. Rev. B 67, 094301 (2003). </b>


<b>[11] C.–H. Chien, E. Blaisten-Barojas, and M. R. Pederson, J. Chem. Phys. 112(5), 2301 </b>
(2000).


<b>[12] M. M. Sigalas and D. A. Pagaconstantopoulos, Phys. Rev. B 49, 1574 (1994). </b>


<b>[13] Y. Li, E. B. Barojas, and D. A. Pagaconstantopoulos, Phys. Rev. B 57, 15519 (1998). </b>
<b>[14] G. V. Lewis and C. R. A. Catlow, J. Phys. C : Solid State Phys.,18 (1985) 1149. </b>
<b>[15] E. V. Stefanovich, A. L. Shluger, and C. R. A. Catlow, Phys. Rev. B 49,11560 (1994). </b>
<b>[16] H. J. F. Jansen, Phys. Rev. B 43, 7267 (1991). </b>


<b>[17] R. Orlando, C. Pisani, C. Roetti, and E. Stefanovic, Phys. Rev. B 45, 592 (1992). </b>
<b>[18] R. E. Cohen, M. J. Mehl, and L. L. Boyer, Physica B 150, 1 (1988). </b>


<b>[19] M. Ruhle and A. H. Heuer, Adv. Ceram. 12, 14 (1984). </b>


<b>[20] H. M. Kandil, J. D. Greiner, and J. F. Smith, J. Am. Ceram. Soc. 67, 341 (1984). </b>
<b>[21] D. K. Smith and H. W. Newkirk, Acta. Crystallogr. 18, 983 (1965). </b>


<i><b>[22] E. J. Walter et al., Surface Science 495, 44 (2001). </b></i>


<b>[23] A. Eichler and G. Kresse, Phys. Rev. B 69, 045402 (2004). </b>
<b>[24] S. P. Terreblanche , J. Appl. Cryst. 22 ,283 (1989). </b>


<i>[25] H. Schubert, Anisotropic thermal expansion coefficients of Y</i><sub>2</sub><i>O</i><sub>3</sub><i>-stabilized tetragonal</i>
<i>zirconia</i><b>, J. Am. Ceram. Oc. 69(3), 270 (1986). </b>



[26] M. W. Jr. Chase, NIST-JANAF Thermochemical Tables, Fourth Edition, J. Chem. Ref.
<b>Data. Monograph, 9, 1-1951 (1998) Available on http:// webbook.nist.gov/. </b>


<b>[27] X. Zhao and D. Vanderbilt, Phys. Rev. B 65, 075105 (2002). </b>


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

<i><b>Table 1. Short range potential parameters </b></i>
Interaction A/eV


B/<i>Ao</i> C/eV<i>Ao</i>6



−<sub>−</sub> 2
2


<i>O</i>


<i>O</i> 9547.92 0.2192 32.00



+ <sub>−</sub> 2
4


<i>O</i>


<i>Zr</i> 1453.8 0.35 25.183


+
+ <sub>−</sub> 4
4



<i>Zr</i>


<i>Zr</i> 9.274


potential 1



−<sub>−</sub> 2
2


<i>O</i>


<i>O</i> 1500 0.149 27.88



+ <sub>−</sub> 2
4


<i>O</i>


<i>Zr</i> 1453.8 0.35 25.183


+
+ <sub>−</sub> 4
4


<i>Zr</i>


<i>Zr</i> 9.274 potential 2



<b>Table 2. Ab initio 0K fluorite lattice parameters of zirconia compared with present results and </b>
<b>experimental values </b>


Method <sub>(</sub> 0<sub>)</sub>


0 <i>A</i>


<i>a</i> <sub>V(</sub> <i>o</i>3


<i>A</i> ) Ref.


CLUSTER 4.90 30.14 15


CRYSTAL 5.154 34.23 15


FLAPW-DFT 5.03 32.27 16


Hartree-Fock 5.035 31.91 17


Potential-induced breathing 5.101 33.19 18


LMTO 5.04 32.90 2


RIP 5.162 34.39 2


PWP-DFT 5.134 33.83 22


SMM (0K) 5.0615 32.417 Current work


SMM (2600K) 5.2223 35.606 Current work



Expt. 5.090 32.97 7


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

<b>Table 3. Calculated thermodynamic quantities of cubic zirconia using potential 1 </b>


T(K) 2600 2700 2800 2900 3000


with dipole 2.2543 2.2572 2.2603 2.2636 2.2669


)
( 0


1 <i>A</i>


<i>rZr</i>−<i>O</i>


without dipole 2.2457 2.2481 2.2506 2.2531 2.2557


with dipole 2.6031 2.6065 2.6101 2.6138 2.6177


)
( 0
2 <i>A</i>
<i>rO</i>−<i>O</i>


without dipole 2.5931 2.5959 2.5987 2.6016 2.6047


with dipole 5.2061 5.2130 5.2201 5.2276 5.2353


)


(<i>A</i>0
<i>a</i>


without dipole 5.1863 5.1918 5.1975 5.2033 5.2093


with dipole 15.135 15.559 16.017 16.535 17.121


)
10
( −6<i>K</i>−1


α


without dipole 12.948 13.230 13.527 13.854 14.215


with dipole 5.4374 5.4390 5.4405 5.4421 5.4436


)
.
/
(<i>calmolK</i>
<i>CV</i>


without dipole 5.5353 5.5407 5.5461 5.5515 5.5568


with dipole 9.4316 9.7435 10.0836 10.4669 10.8915


)
.
/


(<i>cal</i> <i>molK</i>
<i>CP</i>


without dipole 8.8673 9.0985 9.3440 9.6016 9.9026


with dipole 146.136 142.938 139.723 136.402 132.975


)
<i>(GPa</i>


<i>BT</i>


without dipole 168.498 165.410 162.335 159.179 155.932


with dipole 35.2759 35.4163 35.5612 35.7147 35.8728


)
(<i>Ao</i>3
<i>V</i>


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

<b>Table 4. Calculated thermodynamic quantities of cubic zirconia using potential 2 </b>


T(K) 2600 2700 2800 2900 3000


with dipole 2.2794 2.2859 2.2859 2.3143 2.3350


)
( 0


1 <i>A</i>



<i>rZr</i>−<i>O</i>


without dipole 2.2613 2.2655 2.2655 2.2749 2.2803


with dipole 2.6321 2.6395 2.6395 2.6571 2.6675


)
( 0
2 <i>A</i>
<i>rO</i>−<i>O</i>


without dipole 2.6112 2.6160 2.6160 2.6269 2.6331


with dipole 5.2642 5.2791 5.2791 5.3143 5.3350


)
(<i>A</i>0
<i>a</i>


without dipole 5.2223 5.2319 5.2319 5.2537 5.2662


with dipole 27.767 30.171 30.171 36.070 39.659


)
10
( −6<i>K</i>−1


α



without dipole 20.253 21.458 21.458 24.426 26.262


with dipole 5.4147 5.4153 5.4153 5.4166 5.4172


)
.
/
(<i>calmolK</i>
<i>CV</i>


without dipole 5.5658 5.5723 5.5723 5.5853 5.5918


with dipole 15.6333 17.6243 17.6243 23.2843 27.2901


)
.
/
(<i>cal</i> <i>molK</i>
<i>CP</i>


without dipole 11.9906 12.8899 12.8899 15.2774 16.9262


with dipole 107.447 103.821 103.821 97.019 93.871


)
<i>(GPa</i>


<i>BT</i>


without dipole 130.059 126.382 126.382 119.004 115.331



with dipole 36.4691 36.7806 36.7806 37.5205 37.9606


)
(<i>Ao</i>3
<i>V</i>


</div>

<!--links-->

×