Tải bản đầy đủ (.ppt) (66 trang)

group va group va nitrogen n 7 he2s22p3 phosphorus p 15 ne3s23p3 arsenic as 33 ar3d104s24p3 antimony sb 51 kr4d105s25p3 bismuth bi 83 rn4f145d106s26p3 department of inorganic chemistry hut d

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.09 MB, 66 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>GROUP VA</b>



<b>GROUP VA</b>



<b>Nitrogen Nitrogen </b> <b>NN</b> <b>77</b> <b>[He][He]2s2s222p2p33</b>
<b>Phosphorus Phosphorus </b> <b>PP</b> <b>1515</b> <b>[Ne][Ne]3s3s223p3p33</b>
<b>Arsenic <sub>Arsenic </sub>As <sub>As </sub></b> <b>33<sub>33</sub></b> <b>[Ar]3d<sub>[Ar]3d</sub>10104s4s224p4p33</b>


<b>Antimony Antimony </b> <b>SbSb</b> <b>5151</b> <b>[Kr]4d[Kr]4d10105s5s225p5p33</b>
<i><b>Bismuth </b><b><sub>Bismuth </sub></b></i> <i><b>Bi</b><b><sub>Bi</sub></b></i> <i><b>83</b><b><sub>83</sub></b></i> <i><b>[Rn]4f</b><b><sub>[Rn]4f</sub></b><b>14</b><b>14</b><b>5d</b><b>5d</b><b>10</b><b>10</b><b>6s</b><b>6s</b><b>2</b><b>2</b><b>6p</b><b>6p</b><b>3</b><b>3</b></i>


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2></div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3></div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<i><b>Department of Inorganic Chemistry - HUT</b></i>
 <b>ĐẶC ĐIỂM CHUNG<sub>ĐẶC ĐIỂM CHUNG</sub></b>


 <b><sub>NITO</sub><sub>NITO</sub></b>


 <b><sub>Đơn chất</sub><sub>Đơn chất</sub></b>
 <b><sub>Amoniac</sub><sub>Amoniac</sub></b>
 <b><sub>Oxit của nito</sub><sub>Oxit của nito</sub></b>
 <b>Nitrit<sub>Nitrit</sub></b>


 <b><sub>Axit nitric</sub><sub>Axit nitric</sub></b>


 <b>PHOTPHO<sub>PHOTPHO</sub></b>


 <b>Đơn chất<sub>Đơn chất</sub></b>


 <b><sub>Oxit và oxiaxit của photpho</sub><sub>Oxit và oxiaxit của photpho</sub></b>


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5></div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6></div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

<b>PHI KIM GIẢM, KIM LOẠI TĂNG</b>




<b>PHI KIM GIẢM, KIM LOẠI TĂNG</b>



<b><sub>Nitrogen </sub>Nitrogen </b> <b>N<sub>N</sub></b> <b>7<sub>7</sub></b> <b>[He]<sub>[He]</sub>2s<sub>2s</sub>222p2p33</b>


<b><sub>Phosphorus </sub>Phosphorus </b> <b>P<sub>P</sub></b> <b>15<sub>15</sub></b> <b>[Ne]<sub>[Ne]</sub>3s<sub>3s</sub>223p3p33</b>


<b>Arsenic <sub>Arsenic </sub>As <sub>As </sub></b> <b>33<sub>33</sub></b> <b>[Ar]3d<sub>[Ar]3d</sub>10104s4s224p4p33</b>


<b>Antimony Antimony </b> <b>SbSb</b> <b>5151</b> <b>[Kr]4d[Kr]4d10105s5s225p5p33</b>


<i><b>Bismuth </b><b>Bismuth </b></i> <i><b>Bi</b><b>Bi</b></i> <i><b>83</b><b>83</b></i> <i><b>[Rn]4f</b><b>[Rn]4f</b><b>14</b><b>14</b><b>5d</b><b>5d</b><b>10</b><b>10</b><b>6s</b><b>6s</b><b>2</b><b>2</b><b>6p</b><b>6p</b><b>3</b><b>3</b></i>


<i><b>Department of Inorganic Chemistry - HUT</b></i>


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

<b>Khả năng tạo liên kết</b>



<b>Khả năng tạo liên kết</b>



• <b>Nito tạo liên kết đơn, kép hoặc ba cộng hóa trị.Nito tạo liên kết đơn, kép hoặc ba cộng hóa trị.</b>


•<b> Nito nhận 3e tạo hợp chất nitrua với kim loại điển Nito nhận 3e tạo hợp chất nitrua với kim loại điển </b>
<b>hình.</b>


<b>hình.</b>


• <b>Các ngun tố cịn lại có AO nd trống nên tạo số OXH <sub>Các ngun tố cịn lại có AO nd trống nên tạo số OXH </sub></b>


<b>cao nhất.</b>


<b>cao nhất.</b>



• <b>Nito có khả năng tạo liên kết cho-nhận. Khả năng tạo Nito có khả năng tạo liên kết cho-nhận. Khả năng tạo </b>
<b>liên kết cho nhận giảm nhanh từ N </b>


<b>liên kết cho nhận giảm nhanh từ N </b><b> Bi. Bi.</b>


<b>ns</b>



<b>ns</b>

<b>2</b>

<b>2</b>

<b>np</b>

<b><sub>np</sub></b>

<b>3</b>

<b>3</b>



<b>Số oxi hóa</b>



<b>Số oxi hóa</b>



• <b>Nito có số OXH từ -III đến +V.Nito có số OXH từ -III đến +V.</b>


• <b>Hợp chất quan trọng có số OXH là Hợp chất quan trọng có số OXH là </b>
<b>+III và +V, riêng N có số OXH –III.</b>


<b>+III và +V, riêng N có số OXH –III.</b>


<b>Qui luật biến đổi</b>



<b>Qui luật biến đổi</b>



• <b>Từ N Từ N </b><b> P độ bền số OXH +III và +V tăng dần vì có AO nd tham gia P độ bền số OXH +III và +V tăng dần vì có AO nd tham gia </b>


<b>liên kết.</b>


<b>liên kết.</b>



• <b>Từ P <sub>Từ P </sub></b><b> Bi độ bền số OXH +III tăng còn +V giảm dần do tính trơ của Bi độ bền số OXH +III tăng cịn +V giảm dần do tính trơ của </b>


<b>cặp ns tăng dần từ trên xuống.</b>


<b>cặp ns tăng dần từ trên xuống.</b>


• <b>Tính KH của X(III) giảm dần, tính OXH của X(V) tăng dần từ P Tính KH của X(III) giảm dần, tính OXH của X(V) tăng dần từ P </b><b> Bi. Bi.</b>


 

  



  





</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


<b>ĐẶC ĐIỂM CHUNG</b>



<b>ĐẶC ĐIỂM CHUNG</b>



3

( )

2

( )

5

( )



3

5



( )

5 ( )



<i>H</i>



<i>X Cl</i>

<i>Cl Cl</i>

<i>X Cl</i>




<i>XCl k</i>

<i>Cl k</i>

<i>XCl k</i>



<i>E</i>

<i>E</i>

<i>E</i>



<i>X k</i>

<i>Cl k</i>





 






3

5



3

<i><sub>X Cl</sub></i>

(

) 5

<i><sub>X Cl</sub></i>

(

)

<i><sub>Cl Cl</sub></i>



<i>H</i>

<i>E</i>

<sub></sub>

<i>XCl</i>

<i>E</i>

<sub></sub>

<i>XCl</i>

<i>E</i>

<sub></sub>



</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

<i><b>Department of Inorganic Chemistry - HUT</b></i>
 <b>ĐẶC ĐIỂM CHUNG<sub>ĐẶC ĐIỂM CHUNG</sub></b>


 <b><sub>NITO</sub><sub>NITO</sub></b>


 <b><sub>Đơn chất</sub><sub>Đơn chất</sub></b>
 <b><sub>Amoniac</sub><sub>Amoniac</sub></b>
 <b><sub>Oxit của nito</sub><sub>Oxit của nito</sub></b>
 <b>Nitrit<sub>Nitrit</sub></b>



 <b><sub>Axit nitric</sub><sub>Axit nitric</sub></b>


 <b>PHOTPHO<sub>PHOTPHO</sub></b>


 <b>Đơn chất<sub>Đơn chất</sub></b>


 <b><sub>Oxit và oxiaxit của photpho</sub><sub>Oxit và oxiaxit của photpho</sub></b>


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


2

*2

2

2

2



(

<i>KK</i>

)

  

<i><sub>s</sub></i>

<i><sub>s</sub></i>

<i><sub>x</sub></i>

 

<i><sub>y</sub></i>

<i><sub>z</sub></i>



*


1



(2 2 2 2 2 ) 3


2



<i>N</i>

   



<b>1.095 Å</b>



<b>941 kJ/mol</b>



<b>Mp = - 210 </b>

<b>o</b>

<b>C</b>



</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

<i><b>Department of Inorganic Chemistry - HUT</b></i>



2

<i>p</i>

    



2

<i>s</i>

   



*
<i>s</i>


   


*

*


<i>x</i>

<i>y</i>



<i>x</i>

<i>y</i>


     


<i>s</i>


   


<i>z</i>


   


<b>N</b>



<b>N</b>

<b>N</b>

<b><sub>N</sub></b>

<b><sub>2</sub></b>

<b><sub>2</sub></b>

<b>N</b>

<b><sub>N</sub></b>



2

<i>s</i>



   



2

<i>p</i>



</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

<i><b>Department of Inorganic Chemistry - HUT</b></i>



<i><b>Nitrogen</b></i>



<i><b>Nitrogen</b></i>

(

Latin

<i>nitrum</i>

, Greek

<i>Nitron</i>

meaning "native soda", "genes",


"forming") is formally considered to have been discovered by

Daniel Rutherford



in

1772

, who called it

<i>noxious air</i>

or

<i>fixed air</i>

. That there was a fraction of air


that did not support

combustion

was well known to the late 18th century


chemist. Nitrogen was also studied at about the same time by



Carl Wilhelm Scheele

, Henry Cavendish, and

Joseph Priestley

, who referred to


it as

<i>burnt air</i>

or

<i>phlogisticated air</i>

. Nitrogen gas was

inert

enough that


Antoine Lavoisier referred to it as

<i>azote</i>

, from the

Greek

word αζωτος meaning


"lifeless". Animals died in it, and it was the principal component of air in which


animals had suffocated and flames had burned to extinction. This term has


become the

French

word for "nitrogen" and later spread out to many other


languages.



Compounds of nitrogen were known in the

Middle Ages

. The alchemists knew


nitric acid as

<i>aqua fortis</i>

(strong water). The mixture of nitric and



hydrochloric acids

was known as

<i>aqua regia</i>

(royal water), celebrated for its


ability to dissolve gold (the

<i>king</i>

of metals). The earliest industrial and



agricultural

applications of nitrogen compounds used it in the form of

saltpeter

(


sodium- or

potassium nitrate

), notably in

gunpowder

, and much later, as



</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

<i><b>Simple compounds </b></i>



<i><b>Simple compounds </b></i>

The main neutral hydride of nitrogen is ammonia



(N

H

<sub>3</sub>

), although hydrazine (N

<sub>2</sub>

H

<sub>4</sub>

) is also commonly used. Ammonia is more

basic

than


water by 6 orders of magnitude. In

solution

ammonia forms the

ammonium

ion (NH

4+

<sub>). </sub>



Liquid ammonia (b.p. 240 K) is

amphiprotic

(displaying either

Brønsted-Lowry

acidic or


basic character) and forms ammonium and less commonly) amide ions (NH

2-

<sub>); both </sub>



amides and

nitride

(N

3-

<sub>) salts are known, but </sub>

<sub>decompose</sub>

<sub> in water. Singly, doubly, triply </sub>



and quadruply substituted alkyl compounds of ammonia are called

amines

(four


substitutions, to form commercially and biologically important quarternary amines, results


in a positively charged nitrogen, and thus a water-soluble, or at least

amphiphilic

,


compound). Larger chains, rings and structures of nitrogen hydrides are also known, but


are generally unstable.



Other classes of nitrogen anions are azides (N

3-

), which are linear and isoelectronic to



carbon dioxide. Another molecule of the same structure is dinitrogen monoxide (N

<sub>2</sub><sub>O</sub>

), also


known as laughing gas. This is one of a variety of oxides, the most prominent of which


are nitrogen monoxide (NO) (known more commonly as nitric oxide in biology) and


nitrogen dioxide (NO

<sub>2</sub>

), which both contain an unpaired

electron

. The latter shows some


tendency to dimerize and is an important component of

smog

.



The more standard oxides,

dinitrogen trioxide

(N

<sub>2</sub>

O

<sub>3</sub>

) and

dinitrogen pentoxide

(N

<sub>2</sub>

O

<sub>5</sub>

), are


actually fairly unstable and explosive. The corresponding acids are nitrous (HNO

<sub>2</sub>

) and



nitric acid

(HNO

<sub>3</sub>

), with the corresponding salts called

nitrites

and

nitrates

. Nitric acid is


one of the few acids stronger than

hydronium

, and is a fairly strong

oxidizing agent

.



Nitrogen can also be found in

organic compounds

. Common nitrogen

functional groups




include: amines, amides,

nitro

groups,

imines

, and

enamines

. The amount of nitrogen in a



</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

<i><b>Nitrogen compounds of notable economic </b></i>



<i><b>Nitrogen compounds of notable economic </b></i>



<i><b>importance </b></i>



<i><b>importance </b></i>

Molecular nitrogen (N<sub>2</sub>) in the atmosphere is relatively non-reactive due to its
strong bond, and N<sub>2</sub> plays an inert role in the human body, being neither produced or destroyed. In nature,
nitrogen is slowly converted into biologically (and industrially) useful compounds by some living organisms,
notably certain bacteria (i.e. nitrogen fixing bacteria - see <i>Biological role</i> above). Molecular nitrogen is also
released into the atmosphere in the process of decay, in dead plant and animal tissues. The ability to
combine or <b>fix</b> molecular nitrogen is a key feature of modern industrial chemistry, where nitrogen and
natural gas are converted into ammonia via the Haber process. Ammonia, in turn, can be used directly
(primarily as a fertilizer, and in the synthesis of nitrated fertilizers), or as a precursor of many other
important materials including explosives, largely via the production of nitric acid by the Ostwald process.
The salts of nitric acid include important compounds such as potassium nitrate (or saltpeter, important
historically for its use in gunpowder) and ammonium nitrate, an important fertilizer and explosive (see
ANFO). Various other nitrated organic compounds, such as nitroglycerin and trinitrotoluene, and
nitrocellulose, are used as explosives and propellants for modern firearms. Nitric acid is used as an
oxidizing agent in liquid fueled rockets. Hydrazine and hydrazine derivatives find use as rocket fuels. In all
of these compounds, the basic instability and tendency to burn or explode is derived from the fact that
nitrogen is present as an oxide, and not as the far more stable nitrogen molecule (N<sub>2</sub>) which is a product of
the compound's decomposition. When nitrates burn or explode, the formation of the powerful triple bond in
the N2 which results, produces most of the energy of the reaction.


Nitrogen is a constituent of molecules in every major drug class in pharmacology and medicine.


Nitrous oxide (N<sub>2</sub>0) was discovered early in the 19th century to be a partial anesthetic, though it was not


used as a surgical anesthetic until later. Called "laughing gas", it was found capable of inducing a state of
social disinhibition resembling drunkenness. Other notable nitrogen-containing drugs are drugs derived
from plant alkaloids, such as morphine (there exist many alkaloids known to have pharmacological effects;
in some cases they appear natural chemical defences of plants against predation). Nitrogen containing
drugs include all of the major classes of antibiotics, and organic nitrate drugs like nitroglycerin and


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


<i><b>Multi-Industry Uses:</b></i>



<i><b>Multi-Industry Uses:</b></i>



The inert properties of nitrogen make it a good

<b>blanketing gas</b>

in many applications.


Nitrogen blanketing is used to protect flammable or explosive solids and liquids from


contact with air. Certain chemicals, surfaces of solids, and stored food products have


properties that must be protected from degradation by the effects of atmospheric oxygen


and moisture. Protection is achieved by keeping these items in (under) a nitrogen


atmosphere. "Inerting" or "padding" are other terms used to describe displacement of air


and nitrogen blanketing.



"Sparging" with nitrogen is the bubbling of nitrogen through a liquid to remove unwanted


volatile components, including volatile organic compounds (VOC) which may be


necessary to meet pollution reduction regulations.



Certain substances are difficult to pulverize or shred because they are tough or the


materials will be degraded by the heat generated by mechanical processes such as


grinding.

<b>Liquid nitrogen</b>

can be used to freeze soft or tough substances prior to their


entering a size reduction process. Cold vaporized nitrogen can be used to keep


materials cool (and in an inert atmosphere) during grinding.

<b>Cryogenic grinding</b>

is


used in diverse applications, including production of finely ground pharmaceuticals,



plastics and pigments; and for shredding tires in recycling plants.



</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

<i><b>Metals:</b></i>



Nitrogen is used to treat the melt in the manufacture of steel and other metals


and as a shield gas in the heat treatment of iron, steel and other metals. It is


also used as a process gas, together with other gases for reduction of


carbonization and nitriding.



“Flash” or “fins” on cast metal can be removed by cooling with liquid nitrogen,


making them brittle, allowing then to be broken off by mechanical action.



<i><b>Manufacturing and Construction:</b></i>



Shrink fitting is an interesting alternative to traditional expansion fitting. Instead


of heating the outer metal part, the inner part is cooled by liquid nitrogen so that


the metal shrinks and can be inserted. When the metal returns to its normal


temperature, it expands to its original size, giving a very tight fit.



</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

<i><b>Chemicals, Pharmaceuticals and Petroleum:</b></i>



Refineries, petrochemical plants and marine tankers use nitrogen to purge equipment, tanks and
pipelines of dangerous vapors and gases (for example, after completing a pipeline transfer
operation or ending a production run) and to maintain an inert and protective atmosphere in tanks
storing flammable liquids.


Cold nitrogen gas is used to cool reactors filled with catalyst during maintenance work. The cooling
time can be reduced substantially.


Cooling reactors (and the materials inside) to low temperature allows better control of side-reactions


in complex reactions in the pharmaceutical industry. Liquid nitrogen is often used to provide the
necessary refrigeration as it can produce rapid temperature reduction and easily maintain the
required cold reaction temperatures. Reactor cooling and temperature control systems usually
employ a circulating low-temperature heat transfer fluid to transfer refrigeration produced by
vaporizing liquid nitrogen to the shell of the reactor vessel. The liquid nitrogen is vaporized in
specially-designed heat exchangers that transfer refrigeration to the circulating heat transfer fluid.
Liquid nitrogen is used during well completion to "frac" natural gas bearing rock formations, in
particular, tight gas formations, including shale gas and natural gas from coal (coal bed methane)
where water based methods should be avoided. Nitrogen is also used to maintain pressure in oil
and natural gas producing formations. Unlike carbon dioxide, which is also used for pressurization,
nitrogen has little affinity for liquid hydrocarbons, thus it builds up in and remains in the gas cap.
Nitrogen is used an inert gas to push liquids though lines, to clear lines and to propel "pigs" through
pipelines to sweep out one material before using the line to transport another material.


<i><b>Rubber and Plastics:</b></i>



</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

<i><b>Food and Beverages:</b></i>



The intense cold in liquid nitrogen allows very rapid freezing of food items, resulting in


minimal cell damage from ice crystals and improved appearance, taste and texture.


Well-designed cryogenic tunnel and spiral freezers efficiently capture refrigeration from


liquid vaporization and from the cold nitrogen gas as it flows through the freezer.



When substances such as vegetable oil and wines are stored, the inert properties of


nitrogen can be used to protect against loss of quality by oxidation by expelling any air


entrained in the liquid (“sparging”) and protecting liquids in storage tanks by filling the


vapor space (“blanketing”).



Nitrogen (and nitrogen mixed with CO2 and oxygen) is used in transport trucks and in


Modified Atmosphere Packaging (MAP) to extend the shelf life of packaged foods by



preventing oxidation, mold, insect infestation and moisture migration.



<i><b>Health Care:</b></i>



Nitrogen is used as a shield gas in the packing of some medicines to prevent


degradation by oxidation or moisture adsorption.



Nitrogen is used to freeze blood, as well as viruses for vaccination. It is also used to


freeze livestock semen, which can then be stored for years. The quick freezing resulting


from the intense cold minimizes cell wall damage. Liquid nitrogen is also used in some


MRI (Magnetic Resonance Imaging) devices to pre-cool the low temperature magnets


prior to using much more expensive liquid helium for final cooling.



Liquid nitrogen is used in cryo-surgery to destroy diseased tissue.



<i><b>Miscellaneous:</b></i>



</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


4

2

2

2

2



<i>o</i>



<i>t C</i>



<i>NH NO</i>

 

<i>N</i>

<i>H O</i>



3

2



</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

<b>Distillation </b>




</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


2

<i>p</i>

    



2

<i>s</i>

   



*
<i>s</i>



*

*


<i>x</i>

<i>y</i>



<i>x</i>

<i>y</i>


     


<i>s</i>


   


<i>z</i>


   



1

<i>s</i>

<i><sub>a</sub></i>


  



1

<i>s</i>

<i><sub>b</sub></i>


  




1

<i>s</i>

<i><sub>c</sub></i>


  



<b>N</b>



</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>

<b>Mp =</b>

<b>- 78 </b>

<b>o</b>

<b>C</b>



<b>Bp</b>

<b>=</b>

<b>- 33 </b>

<b>o</b>

<b>C</b>



<b>Tồn tại liên kết hidro</b>



</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24></div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


<b>Bazo</b>


<b>Khử</b>



</div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


5

1.8 10



3

( )

3

.

4



<i>b</i>


<i>K</i>



<i>NH k</i>

<i>aq</i>

<i>NH aq</i>

<i>NH</i>

<i>OH</i>






 

<sub> </sub>

<sub>     </sub>

     



2



2



3

3 4



4

<i>NH</i>

<i>Cu</i>

<i>Cu NH</i>

(

)





180 ,140
2

2

3


<i>o</i>


<i>atm</i> <i>C</i>


<i>CO</i>

<i>NH</i>

<sub>    </sub>

<sub></sub>

<i>O C</i>



2
4

<i>NH</i>


<i>O C</i>


<i>ONH</i>


 


2
2

2

<i>NH</i>


<i>H O</i>


<i>NH</i>




</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27></div>
<span class='text_page_counter'>(28)</span><div class='page_container' data-page=28>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


3

2

2

2



4

<i>NH</i>

3

<i>O</i>

 

<i>chay</i>

2

<i>N</i>

6

<i>H O</i>



,800



3

2

2



4

<i>NH</i>

5

<i>O</i>

   

<i>Pt</i>

<i>o</i>

<i>C</i>

4

<i>NO</i>

6

<i>H O</i>



3

2

2

4



</div>
<span class='text_page_counter'>(29)</span><div class='page_container' data-page=29>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


400



3

2

2



2

<i>NH</i>

2

<i>Na</i>

<i>o</i>

<i>C</i>

2

<i>NaNH</i>

<i>H</i>



  




800 900



3

2



2

<i>NH</i>

2

<i>Al</i>

<i>o</i>

<i>C</i>

2

<i>AlN</i>

3

<i>H</i>



   



amidua



</div>
<span class='text_page_counter'>(30)</span><div class='page_container' data-page=30>

Because of its many uses, ammonia is one of the most highly-produced inorganic chemicals. There are dozens of chemical plants
worldwide that produce ammonia. The worldwide ammonia production in 2004 was 109 million metric tonnes.[6] the


People's Republic of China produced 28.4% of the worldwide production followed by India with 8.6%, Russia with 8.4%, and the


United States with 8.2%.[6] About 80% or more of the ammonia produced is used for fertilizing agricultural crops.[6]


Before the start of World War I most ammonia was obtained by the dry distillation[7] of nitrogenous vegetable and animal waste
products, including cameldung where it was distilled[5] by the reduction of nitrous acid and nitrites with hydrogen; additionally, it was
produced by the distillation of coal;[5] and also by the decomposition of ammonium salts by alkaline hydroxides[8] or by quicklime,
the salt most generally used being the chloride (sal-ammoniac) thus:


2 NH4Cl + 2 CaO → CaCl2 + Ca(OH)2 + 2 NH3


Today, the typical modern ammonia-producing plant first converts natural gas (i.e. methane) or liquified petroleum gas (such gases
are propane and butane) or petroleum naphtha into gaseous hydrogen. Starting with a natural gas feedstock, the processes used in
producing the hydrogen are:


The first step in the process is to remove sulfur compounds from the feedstock because sulfur deactivates the catalysts used in
subsequent steps. Sulfur removal requires catalytic hydrogenation to convert sulfur compounds in the feedstocks to gaseous



hydrogen sulfide:


H2 + RSH → RH + H2S(<i>g</i>)


The gaseous hydrogen sulfide is then absorbed and removed by passing it through beds of zinc oxide where it is converted to solid


zinc sulfide:


H2S + ZnO → ZnS + H2O


Catalytic steam reforming of the sulfur-free feedstock is then used to form hydrogen plus carbon monoxide:
CH4 + H2O → CO + 3 H2


The next step then uses catalytic shift conversion to convert the carbon monoxide to carbon dioxide and more hydrogen:
CO + H2O → CO2 + H2


The carbon dioxide is then removed either by absorption in aqueous ethanolamine solutions or by adsorption in


pressure swing adsorbers (PSA) using proprietary solid adsorption media.


The final step in producing the hydrogen is to use catalytic methanation to remove any small residual amounts of carbon monoxide
or carbon dioxide from the hydrogen:


CO + 3 H2 → CH4 + H2O
CO2 + 4 H2 → CH4 + 2 H2O


To produce the desired end-product ammonia, the hydrogen is then catalytically reacted with nitrogen (derived from process air) to
form anhydrous liquid ammonia. This step is known as the ammonia synthesis loop (also referred to as the Haber-Bosch process):



3 H2 + N2 → 2 NH3


</div>
<span class='text_page_counter'>(31)</span><div class='page_container' data-page=31>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


2 2 3 2


380 450

,220



2

2

<sub>1%</sub>

<sub>,</sub>

<sub>3%</sub>

<sub>,</sub>

<sub>,</sub>

3



1

3



( )

( )

( )



2

2



<i>o</i>

<i><sub>C</sub></i>

<i><sub>atm</sub></i>



<i>Fe</i>

<i>K O CaO</i>

<i>Al O SiO MgO</i>



<i>N k</i>

<i>H k</i>

<i>NH k</i>




              

<sub>              </sub>


298


298


46.19


16.63


<i>o</i>


<i>o</i>



<i>H</i>

<i>kJ</i>


<i>G</i>

<i>kJ</i>








2

2



2 1 2 3

( , ,

/

)



<i>C</i>

    

<i>f T P k</i>

<i>N H</i>



<b>Hiệu suất chuyển hóa ~ 17 %</b>



</div>
<span class='text_page_counter'>(32)</span><div class='page_container' data-page=32>

<b>Haber Process </b>



</div>
<span class='text_page_counter'>(33)</span><div class='page_container' data-page=33></div>
<span class='text_page_counter'>(34)</span><div class='page_container' data-page=34>

The most important single use of ammonia is in the production of nitric acid. A mixture of one part
ammonia to nine parts air is passed over a platinum gauze catalyst at 850 °C, whereupon the
ammonia is oxidized to nitric oxide.


4 NH3 + 5 O2 → 4 NO + 6 H2O


The catalyst is essential, as the normal oxidation (or combustion) of ammonia gives dinitrogen and
water: the production of nitric oxide is an example of kinetic control. As the gas mixture cools to
200–250 °C, the nitric oxide is in turn oxidized by the excess of oxygen present in the mixture, to
give nitrogen dioxide. This is reacted with water to give nitric acid for use in the production of


fertilizers and explosives.


In addition to serving as a fertilizer ingredient, ammonia can also be used directly as a fertilizer by
forming a solution with irrigation water, without additional chemical processing. This later use allows
the continuous growing of nitrogen dependent crops such as maize (corn) without crop rotation but


this type of use leads to poor soil health.


Ammonia has thermodynamic properties that make it very well suited as a refrigerant, since it
liquefies readily under pressure, and was used in virtually all refrigeration units prior to the advent of
haloalkanes such as Freon. However, ammonia is a toxic irritant and its corrosiveness to any


copper alloys increases the risk that an undesirable leak may develop and cause a noxious hazard.
Its use in small refrigeration units has been largely replaced by haloalkanes, which are not toxic
irritants and are practically not flammable. Ammonia continues to be used as a refrigerant in large
industrial processes such as bulk icemaking and industrial food processing. Ammonia is also useful
as a component in absorption-type refrigerators, which do not use compression and expansion
cycles but can exploit heat differences. Since the implication of haloalkane being major contributors
to ozone depletion, ammonia is again seeing increasing use as a refrigerant.


It is also sometimes added to drinking water along with chlorine to form chloramine, a disinfectant.
Unlike chlorine on its own, chloramine does not combine with organic (carbon containing) materials
to form carcinogenic halomethanes such as chloroform.


</div>
<span class='text_page_counter'>(35)</span><div class='page_container' data-page=35>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


2

3

2



</div>
<span class='text_page_counter'>(36)</span><div class='page_container' data-page=36></div>
<span class='text_page_counter'>(37)</span><div class='page_container' data-page=37></div>
<span class='text_page_counter'>(38)</span><div class='page_container' data-page=38>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


0.94



3

2

3

2

2



<i>o</i>

<i><sub>V</sub></i>




<i>NO</i>

<i>e</i>

<i>H</i>

<i>HNO</i>

<i>H O</i>



    

<sub>    </sub>



1.00



2

2



<i>o</i>

<i><sub>V</sub></i>



<i>HNO</i>

<i>e H</i>

<i>NO H O</i>



 

    

<sub>    </sub>



2



2

4

3

2



5

<i>NO</i>

2

<i>MnO</i>

6

<i>H</i>

5

<i>NO</i>

2

<i>Mn</i>

3

<i>H O</i>



 



2

2

2



2

<i>NO</i>

2

<i>I</i>

4

<i>H</i>

2

<i>NO I</i>

2

<i>H O</i>



 



<b>Tính chất khử</b>




<b>Tính chất khử</b>



<b>Tính chất oxi hóa</b>



</div>
<span class='text_page_counter'>(39)</span><div class='page_container' data-page=39></div>
<span class='text_page_counter'>(40)</span><div class='page_container' data-page=40>

In

inorganic chemistry

, nitrites are salts of

nitrous acid

HNO2. They contain the


nitrite

ion

NO2−. Nitrites of the

alkali

and

alkaline earth metals

can be



synthesized by reacting a mixture of

nitrogen monoxide

NO and



nitrogen dioxide NO2 with the corresponding metal hydroxide solution, as well


as through the thermal decomposition of the corresponding

nitrate

. Other



nitrites are available through the

reduction

of the corresponding

nitrates

.



Sodium nitrite

is used for the

curing of meat

because it prevents bacterial


growth and, in a reaction with the meat's myoglobin, gives the product a


desirable dark red color. Because of the toxicity of nitrite (lethal dose of nitrite



for humans is about 22 mg per kg body weight), the maximum allowed nitrite


concentration in meat products is 200

ppm

. Under certain conditions, especially



during cooking, nitrites in meat can react with degradation products of



amino acids

, forming

nitrosamines

, which are known

carcinogens

.



In

organic chemistry

, nitrites mean the esters of nitrous acid. They possess the


general formula R-O-N=O, R being an

aryl

or

alkyl

group.

Amyl nitrite

is used in



medicine for the treatment of heart diseases.




Nitrites should not be confused with

nitrates

, the salts of

nitric acid

, or with



nitro compounds

, though they share the formula NO2. The nitrite ion NO2−


should not be confused with the

nitronium ion

NO2+.



Nitrite is detected and analyzed by the

<b>Griess Reaction</b>

, involving the


formation of a deeply red-color

azo dye

upon treatment of a NO2−-containing



</div>
<span class='text_page_counter'>(41)</span><div class='page_container' data-page=41>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


298

298



2

4

<i><sub>H</sub></i>

<i>o</i>

<sub>57.2</sub>

<i><sub>kJ G</sub></i>

<sub>;</sub>

<i>o</i>

<sub>4.77</sub>

<i><sub>kJ</sub></i>

2

2



<i>N O</i>

<i>NO</i>









            

<sub>           </sub>



</div>
<span class='text_page_counter'>(42)</span><div class='page_container' data-page=42></div>
<span class='text_page_counter'>(43)</span><div class='page_container' data-page=43></div>
<span class='text_page_counter'>(44)</span><div class='page_container' data-page=44></div>
<span class='text_page_counter'>(45)</span><div class='page_container' data-page=45></div>
<span class='text_page_counter'>(46)</span><div class='page_container' data-page=46>

Commonly used as a laboratory

reagent

, nitric acid is used in the manufacture


of explosives such as

nitroglycerin

,

trinitrotoluene

(TNT) and



Cyclotrimethylenetrinitramine

(RDX), as well as

fertilizers

such as



ammonium nitrate

.



Also, in

ICP-MS

and

ICP-AES

techniques, nitric acid (with a concetration from


0.5% to 1.5%) is used as a matrix compound for determining metal traces in


solutions. An ultrapure acid is needed for such determination, because any



small amount of metal ions could affect the result of the analysis.



It has additional uses in

metallurgy

and refining as it reacts with most

metals

,


and in organic syntheses. When combined with

hydrochloric acid

, it forms



aqua regia

, one of the few reagents capable of dissolving

gold

and

platinum

.


Nitric acid is also a component of

acid rain

.



Nitric acid is a very powerful

oxidizing agent

, and the reactions of nitric acid


with compounds such as cyanides, carbides, and metallic powders can be



explosive

. Reactions of nitric acid with many organic compounds, such as



turpentine

, are violent and

hypergolic

(i.e., self-igniting).



Concentrated nitric acid dyes human

skin

yellow on contact, due to interactions


with the

skin

protein

keratin

. Yet these yellow stains turn orange when



alkalised.



One use for IWFNA is as an

oxidizer

in

liquid fuel rockets

.



</div>
<span class='text_page_counter'>(47)</span><div class='page_container' data-page=47>

<i><b>Department of Inorganic Chemistry - HUT</b></i>
 <b>ĐẶC ĐIỂM CHUNG<sub>ĐẶC ĐIỂM CHUNG</sub></b>


 <b><sub>NITO</sub><sub>NITO</sub></b>


 <b><sub>Đơn chất</sub><sub>Đơn chất</sub></b>
 <b><sub>Amoniac</sub><sub>Amoniac</sub></b>
 <b><sub>Oxit của nito</sub><sub>Oxit của nito</sub></b>


 <b>Nitrit<sub>Nitrit</sub></b>


 <b><sub>Axit nitric</sub><sub>Axit nitric</sub></b>


 <b>PHOTPHO<sub>PHOTPHO</sub></b>


 <b>Đơn chất<sub>Đơn chất</sub></b>


 <b><sub>Oxit và oxiaxit của photpho</sub><sub>Oxit và oxiaxit của photpho</sub></b>


</div>
<span class='text_page_counter'>(48)</span><div class='page_container' data-page=48>

<b>P</b>



<b>P</b>

<b><sub>∞</sub></b>

<b><sub>∞</sub></b>



<b>Mp ~ 600 </b>



<b>Mp ~ 600 </b>

<b>o</b>

<b>o</b>

<b>C</b>

<b><sub>C</sub></b>



<b>P</b>



<b>P</b>

<b><sub>4</sub></b>

<b><sub>4</sub></b>



<b>Mp ~ 44.2 </b>



<b>Mp ~ 44.2 </b>

<b>o</b>

<b>o</b>

<b>C</b>

<b><sub>C</sub></b>



800 3000


, , <sub>270</sub> <sub>48</sub> 4 4, 2



<i>o</i> <i>o</i>
<i>o</i>


<i>C</i> <i>C</i>


<i>black</i> <i>red</i> <i><sub>C</sub></i> <i><sub>h</sub></i> <i>liquid</i>


<i>P</i>

<sub></sub>

<i>P</i>

<sub></sub>

<i>P</i>

<i>P</i>

<i>P</i>

<i>P</i>





 

<sub> </sub>

<sub>     </sub>

     

<sub>  </sub>

  

<sub>    </sub>

   

<sub>    </sub>

    



</div>
<span class='text_page_counter'>(49)</span><div class='page_container' data-page=49>

<b>Ít bền</b>



<b>Ít bền</b>



<b>Oxi hóa chậm phát </b>



<b>Oxi hóa chậm phát </b>



<b>lân quang</b>



<b>lân quang</b>



<b>Bốc cháy ở 35 </b>



<b>Bốc cháy ở 35 </b>

<b>oo</b>

<b>C </b>

<b><sub>C </sub></b>





<b> bảo quản trong </b>

<b> bảo quản trong </b>



<b>khí trơ hoặc nước</b>



</div>
<span class='text_page_counter'>(50)</span><div class='page_container' data-page=50></div>
<span class='text_page_counter'>(51)</span><div class='page_container' data-page=51>

2

4 10



2

4

6



2

5


2

3



<i>oxy</i>


<i>oxy</i>



<i>P</i>

<i>O</i>

<i>P O</i>


<i>P</i>

<i>O</i>

<i>P O</i>






  



  



<b>Tính oxi hóa</b>



<b>Tính oxi hóa</b>



3 2




2

<i>P</i>

3

<i>Ca</i>

 

<i>Ca P</i>



3

4 4

2

3

4



2

<i>Ca PO</i>

(

)

6

<i>SiO</i>

10

<i>C</i>

 

6

<i>CaSiO</i>

10

<i>CO P</i>



</div>
<span class='text_page_counter'>(52)</span><div class='page_container' data-page=52>

Concentrated phosphoric acids, which can consist of 70% to 75% P2O5 are very important to
agriculture and farm production in the form of fertilizers. Global demand for fertilizers led to large
increases in phosphate (PO43-) production in the second half of the 20th century. Other uses;


Phosphates are utilized in the making of special glasses that are used for sodium lamps.
Bone-ash, calcium phosphate, is used in the production of fine china.


Sodium tripolyphosphate made from phosphoric acid is used in laundry detergents in several
countries, and banned for this use in others.


Phosphoric acid made from elementary phosphorus is used in food applications such as soda
beverages. The acid is also a starting point to make food grade phosphates[4]. These include
mono-calcium phosphate which is employed in baking powder and sodium tripolyphosphate and
other sodium phosphates[4]. Among other uses, these are used to improve the characteristics of
processed meat and cheese. Others are used in toothpaste[4]. Trisodium phosphate is used in
cleaning agents to soften water and for preventing pipe/boiler tube corrosion.


Phosphorus is widely used to make organophosphorus compounds, through the intermediates
phosphorus chlorides and the two phosphorus sulfides: phosphorus pentasulfide, and


phosphorus sesquisulfide.[4] Organophosphorus compounds have many applications, including in


plasticizers, flame retardants, pesticides, extraction agents, and water treatment.
Phosphorus sesquisulfide is used in heads of strike-anywhere matches[4].



This element is also an important component in steel production, in the making of phosphor bronze,
and in many other related products.


White phosphorus is used in military applications as incendiary bombs, for smoke-screening as
smoke pots and smoke bombs, and in tracer ammunition.


Red phosphorus is essential for manufacturing matchbook strikers, flares,[4] and, most notoriously,
methamphetamine.


In trace amounts, phosphorus is used as a dopant for N-type semiconductors.


</div>
<span class='text_page_counter'>(53)</span><div class='page_container' data-page=53>

<i><b>Department of Inorganic Chemistry - HUT</b></i>

<b>P</b>



<b>P</b>



<b>P</b>



<b>P</b>

<b><sub>4</sub></b>

<b><sub>4</sub></b>

<b>O</b>

<b><sub>O</sub></b>

<b><sub>10</sub></b>

<b><sub>10</sub></b>

<sub></sub>

<b> H</b>

<b> H</b>

<b><sub>3</sub></b>

<b><sub>3</sub></b>

<b>PO</b>

<b>PO</b>

<b><sub>4</sub></b>

<b><sub>4</sub></b>



<b>P</b>



<b>P</b>

<b><sub>4</sub></b>

<b><sub>4</sub></b>

<b>S</b>

<b><sub>S</sub></b>

<b><sub>3</sub></b>

<b><sub>3</sub></b>

<b>, P</b>

<b><sub>, P</sub></b>

<b><sub>4</sub></b>

<b><sub>4</sub></b>

<b>S</b>

<b><sub>S</sub></b>

<b><sub>10</sub></b>

<b><sub>10</sub></b>



<b>PCl</b>



<b>PCl</b>

<b><sub>3</sub></b>

<b><sub>3</sub></b>

<b>, PCl</b>

<b><sub>, PCl</sub></b>

<b><sub>5</sub></b>

<b><sub>5</sub></b>

<b>, POCl</b>

<b><sub>, POCl</sub></b>

<b><sub>3</sub></b>

<b><sub>3</sub></b>



<b>Thuốc trừ sâu</b>




</div>
<span class='text_page_counter'>(54)</span><div class='page_container' data-page=54>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


4 10

2

3



4



2

(

)

<i><sub>n</sub></i>



<i>P O</i>

<i>H O</i>

<i>HPO</i>



<i>n</i>



 



4 10

4

2

2

4 2

7



<i>P O</i>

<i>H O</i>

 

<i>H P O</i>



4 10

6

2

4

3

4



<i>P O</i>

<i>H O</i>

 

<i>H P O</i>



<b>Axit metaphotphoric</b>



<b>Axit metaphotphoric</b>



<b>Axit diphotphoric</b>



<b>Axit diphotphoric</b>




<b>Axit orthophotphoric</b>



</div>
<span class='text_page_counter'>(55)</span><div class='page_container' data-page=55></div>
<span class='text_page_counter'>(56)</span><div class='page_container' data-page=56>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


2 2


2 2


,260

,300



3

4

4 2

7

3



2

<i>nH O</i>

<i>o</i>

<i>C</i>

<i>nH O</i>

<i>o</i>

<i>C</i>

2(

)

<i><sub>n</sub></i>



<i>nH O</i>

<i>nH O</i>



<i>nH PO</i>

<i>nH P O</i>

<i>HPO</i>





      

<sub>     </sub>

<sub>      </sub>

      



</div>
<span class='text_page_counter'>(57)</span><div class='page_container' data-page=57>

There are two distinct kinds of phosphoric acid:



<b>Thermal phosphoric acid:</b>

This very pure phosphoric acid is obtained by


burning elemental phosphorus to produce phosphorus pentoxide and


dissolving the product in dilute phosphoric acid. This is the cleanest way of


producing phosphoric acid, since most impurities present in the rock have been


removed when extracting Phosphorus from the rock in a furnace. The end



result is food grade, thermal phosphoric acid; however, for critical applications


additional processing to remove arsenic compunds may be needed.



<b>Wet phosphoric acid:</b>

Green phosphoric acid is prepared by adding sulfuric


acid to calcium phosphate rock. While phosphoric acid has the potential to


release three hydrogen ions, in aqueous solution the third requires a high pH


because PO43− is almost as strong a base as hydroxide ion.



Through modern filtering techniques the wet process acid can be cleaned up


significantly but still isn't as pure as thermal phosphoric acid; as it may contain


other acidic species such as hydrofluoric acid.



4 10

6

2

4

3

4



<i>P O</i>

<i>H O</i>

 

<i>H P O</i>


80


5

(

4 3

)

5

2 4

10

2

5

4

.2

2

3

3 4


<i>o<sub>C</sub></i>


</div>
<span class='text_page_counter'>(58)</span><div class='page_container' data-page=58>

<i><b>Department of Inorganic Chemistry - HUT</b></i>
 <b>ĐẶC ĐIỂM CHUNG<sub>ĐẶC ĐIỂM CHUNG</sub></b>


 <b><sub>NITO</sub><sub>NITO</sub></b>


 <b><sub>Đơn chất</sub><sub>Đơn chất</sub></b>
 <b><sub>Amoniac</sub><sub>Amoniac</sub></b>
 <b><sub>Oxit của nito</sub><sub>Oxit của nito</sub></b>
 <b>Nitrit<sub>Nitrit</sub></b>



 <b><sub>Axit nitric</sub><sub>Axit nitric</sub></b>


 <b>PHOTPHO<sub>PHOTPHO</sub></b>


 <b>Đơn chất<sub>Đơn chất</sub></b>


 <b><sub>Oxit và oxiaxit của photpho</sub><sub>Oxit và oxiaxit của photpho</sub></b>


</div>
<span class='text_page_counter'>(59)</span><div class='page_container' data-page=59>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


4

6

4

6

2

3



<i>As O</i>

<i>Sb O</i>

<i>Bi O</i>



2 3


2 3



<i>FeAsS</i>

<i>pirit asen</i>


<i>Sb S</i>

<i>antimonit</i>



<i>Bi S</i>

<i>bimutin</i>





,

,



<i>C</i>



<i>Oxide</i>

 

<i>As Sb Bi</i>



<b>1.</b>



<b>1.</b>

<b>Sb trong khơng khí ở nhiệt độ thường khơng biến đổi.</b>

<b>Sb trong khơng khí ở nhiệt độ thường khơng biến đổi.</b>


<b>2.</b>



<b>2.</b>

<b>As, Bi bị oxi hóa trên bề mặt.</b>

<b>As, Bi bị oxi hóa trên bề mặt.</b>


<b>3.</b>



<b>3.</b>

<b>Khi đun nóng, đều tạo oxit với số OXH +III.</b>

<b>Khi đun nóng, đều tạo oxit với số OXH +III.</b>


<b>4.</b>



<b>4.</b>

<b>Ở dạng bột mịn đều cháy trong khí quyển Clo ở nhiệt </b>

<b>Ở dạng bột mịn đều cháy trong khí quyển Clo ở nhiệt </b>


<b>độ thường tạo triclorua XCl</b>



<b>độ thường tạo triclorua XCl</b>

<b><sub>3</sub><sub>3</sub></b>

<b>.</b>

<b>.</b>


<b>5.</b>



<b>5.</b>

<b>Khi đun nóng phản ứng với cả Br, I, S và một số kim </b>

<b>Khi đun nóng phản ứng với cả Br, I, S và một số kim </b>


<b>loại.</b>



<b>loại.</b>





</div>
<span class='text_page_counter'>(60)</span><div class='page_container' data-page=60>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


3

2

3

4



3

<i>As</i>

5

<i>HNO</i>

2

<i>H O</i>

 

3

<i>H AsO</i>

5

<i>NO</i>




3

2

2

5

2



3

<i>Sb</i>

10

<i>HNO</i>

(

<i>x</i>

5)

<i>H O</i>

 

3

<i>Sb O xH O</i>

.

 

10

<i>NO</i>



3

3 3

2



4

(

)

2



<i>Bi</i>

<i>HNO</i>

 

<i>Bi NO</i>

<i>NO</i>

<i>H O</i>



<b>1.</b>



<b>1.</b>

<b>Không tác dụng với nước.</b>

<b><sub>Không tác dụng với nước.</sub></b>



<b>2.</b>



<b>2.</b>

<b>Không đẩy hidro ra khỏi axit.</b>

<b>Không đẩy hidro ra khỏi axit.</b>



<b>1.</b>



<b>1.</b>

<b>Tính bền số OXH +V giảm dần </b>

<b>Tính bền số OXH +V giảm dần </b>

<b> tính OXH tăng dần</b>

<b> tính OXH tăng dần</b>



<b>2.</b>



</div>
<span class='text_page_counter'>(61)</span><div class='page_container' data-page=61>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


3

2

3

2



(

)

3

2

3




<i>Bi OH</i>

<i>Cl</i>

<i>NaOH</i>

 

<i>NaBiO</i>

<i>NaCl</i>

<i>H O</i>



2 3


3 4 2


5

<i>KBiO r</i>

( ) 2

<i>Mn</i>

14

<i>H</i>

<i>Bi</i>

2

<i>MnO</i>

5

<i>K</i>

7

<i>H O</i>



 



3

4

2

2

3

3

2

2



<i>H AsO</i>

<i>I</i>

<i>H</i>

<i>H AsO</i>

<i>I</i>

<i>H O</i>



 

<sub> </sub>



Bi

3+

có tính khử yếu

<sub></sub>

chỉ tạo Bi

5+

với chất OXH mạnh



trong môi trường kiềm mạnh và đặc.



Bi

5+

có tính oxi hóa mạnh



Tính OXH trung bình trong mơi trường axit



</div>
<span class='text_page_counter'>(62)</span><div class='page_container' data-page=62></div>
<span class='text_page_counter'>(63)</span><div class='page_container' data-page=63>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


2

5

3

2

2

3

4



<i>As O</i>

<i>H O</i>

 

<i>H AsO</i>




4

6

6

2

4

3

3

4

2

4

2



<i>As O</i>

<i>H O</i>

 

<i>H AsO</i>

 

<sub> </sub>

<i>H O</i>

<i>HAsO</i>



3



3



3

(

)

(

)



<i>X</i>

<i>OH</i>

<i>X OH</i>

<i>XO OH</i>



 

  



Axit asenic



</div>
<span class='text_page_counter'>(64)</span><div class='page_container' data-page=64></div>
<span class='text_page_counter'>(65)</span><div class='page_container' data-page=65>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


3

2

2



<i>SbCl</i>

<i>H O</i>

 

<sub> </sub>

<i>SbOCl</i>

 

<i>HCl</i>



3 3

2

3

3



(

)

2



<i>Bi NO</i>

<i>H O</i>

 

<sub> </sub>

<i>BiONO</i>

 

<i>HNO</i>



<b>Antimonyl clorua</b>




<b>Antimonyl clorua</b>



<b>Bitmutyl nitrate</b>



</div>
<span class='text_page_counter'>(66)</span><div class='page_container' data-page=66>

<i><b>Department of Inorganic Chemistry - HUT</b></i>


<b>BÀI TẬP</b>



<b>BÀI TẬP</b>



<b>Thứ 5: 1-3-2007</b>



<b>Thứ 5: 1-3-2007</b>



<b>Bài: 1 đến 6</b>



<b>Bài: 1 đến 6</b>



<b>Chương 2: Hidro & </b>



<b>Chương 2: Hidro & </b>



<b>Halogen</b>



</div>

<!--links-->
<a href=' /><a href=' /><a href=' />

<a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' />

<a href=' />
<a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' />

<a href=' /><a href=' />
<a href=' /><a href=' /><a href=' /><a href=' /><a href=' /><a href=' />

×