Tải bản đầy đủ (.pdf) (36 trang)

Lý thuyết Lò phản ứng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.9 MB, 36 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

2. Neutron interaction and


transport



</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

Neutron

 

interaction



(n,3n)
elastic scattering


capture (n,)


fission (n,f)


(n,n’)


235

<sub>U</sub>



</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

1 1 *
0


<i>A</i> <i>A</i>


<i>Z</i> <i>Z</i>


<i>n</i>

<i>X</i>

<i>X</i>



capture


fission


absorption
Reaction : Compound nucleus



 



reaction channel


Elastic Scattering kinetics<sub>energy conservation</sub>
momentum conservation


recoil


scattered neutron


(<i>n,n</i>) – elastic scattering


scattering


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

Cross section (microscopic) :
probability of a reaction channel


unit : barn (area) = 10-24<sub>cm</sub>2<sub>=100fm</sub>


 

number of ptl. scattered into solid angle

per unit time


incident intensity



<i>d</i>


<i>d</i>



  



2 sin




<i>d</i>

 

 

<i>d</i>



<i>s</i>

 


<i>ds</i>



<i>d</i>





number of interaction per unit time per unit area
incident intensity (number per unit time per unit area)


<i>a</i>


<i>N</i>




for very thin film with areal atom density N<sub>a</sub>


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<i>a</i>


<i>dI</i>

<i>N I</i>

<i>N Idx</i>



 



 

0



<i>N x</i>


<i>I x</i>

<i>I e</i>

 


nuclide density


Macroscopic cross section


<i>N</i>



 



unit : cm-1


 

0


<i>x</i>


<i>I x</i>

<i>I e</i>




Mean free path
0


1


<i>x</i>


<i>xe</i> <i>dx</i>

<sub></sub>   <sub></sub>







Number density


<i>A</i>


<i>N</i> <i>N</i>


<i>A</i>




(gr/cm )3

1



barn 0.6022 cm


(u)
<i>A</i>



<sub></sub> <sub></sub> <sub> </sub> 


Macroscopic

 

cross

 

section



</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

fission


moderation


absorption


moderation <sub>leak</sub>


Speed of neutron : 1 2


v
2
<i>E</i> <i>m</i>


neutron speed time to travel 1m
1MeV:13,800 km/s 72.3 ns


1eV:13.8 km/s 72.3 ms


25.3meV : 2200m/s 0.454 ms


v 2 /<i>E m</i>


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

Monte Carlo simulation method



- Tracking individual neutron flight and collision history
- statistical average behaviour


scattering
born


fission


capture



<i>tot</i>




/ <i><sub>tot</sub></i>
<i>p</i><sub></sub>  <sub></sub>


/


<i>n</i> <i>n</i> <i>tot</i>


<i>p</i>  
/


<i>f</i> <i>f</i> <i>tot</i>


<i>p</i>  


1


<i>free</i>


<i>tot</i>
<i>l</i>


<i>N</i>





Monte Carlo simulation


Neutron

 

transport



Monte Carlo method computer codes for neutron transport
(and eigenvalue problem)


MCNP : developed by LANL, USA
McCARD: developed by SNU, Korea
SERPENT-2 : VTT, Finland


KENO (SCALE package) : developed by ORNL , USA
• can describe physics accurately


• easy to handle complex geometry


• good to know a value at a detector volume
- weight biasing to improve statistics
• not good for sensitivity study


• requires long computer time for good statistical error
- parallel computing using MPI


- vector computing using GPU
- precomputed MC


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

Reaction rate : <i>R</i>

<b>r</b>, ,<i>E</i>   <i>t</i>

<b>r</b>, , ,<i>E</i> <i>t</i>

 

 <b>r</b>, , ,<i>E</i>  <i>t</i>

(m-3·rad-1·s-1)


Number of neutrons in a control volume:



Neutron balance in volume V, energy interval dE, angle interval d


Neutron

 

transport

 

equation

 ‐

derivation



3


, , ,


<i>Vn</i> <i>E</i>  <i>t dr dEd</i>


<b>r</b>


1. neutron source


3


, , ,


<i>VS</i> <i>E</i>  <i>t d rdEd</i>


<b>r</b>


2. scattering of neutrons from other energies and directions


 

3


0 4 <i>s</i> , ' , ' , ', ', ' '


<i>V</i>  <i>E</i> <i>E</i>  <i>E</i> <i>t dE d</i> <i>dr dEd</i>





       


  

<b>r</b> <b>r</b>


3. net outflow of neutrons


3


ˆ


ˆ , , , , , ,


<i>Sn</i> <i>E</i>  <i>t dEd dS</i>   <i>V</i>  <i>E</i>  <i>t dr dEd</i>


<b>r</b>

<b>r</b>


Gauss’s
theorem
4. neutrons interaction


 

3


, , , ,


<i>t</i>


<i>V</i> <i>E</i>  <i>E</i>  <i>t dr dEd</i>



<b>r</b> <b>r</b>


3


, , ,


<i>n</i> <b>r</b> <i>E</i>  <i>t d dEd</i><b>r</b> 


Number of neutrons at time t in volume dV, energy between E and E+dE,
moving toward solid angle between  and +d


(m-2<sub>·rad</sub>-1<sub>·s</sub>-1<sub>)</sub>


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

- linear integro-differential equation


- Boltzmann transport equation ignoring (n-n) collision term


Initial condition and Boundary condition on convex volume


, , , 0<i>E</i>



 <b>r</b>  

<b>r</b><i><sub>s</sub></i>, , , 0<i>E</i> 

0 for  <b>n</b>ˆ<0


no incoming neutron flux


non-convex volume can be treated
by larger convex volume, always


Neutron

 

balance

 

equation




 



 



3 3 3


0 4


3 3


, , , , , , , ' , ' , , ', ', ' '


, , , , , , ,


<i>s</i>


<i>V</i> <i>V</i> <i>V</i>


<i>t</i>


<i>V</i> <i>V</i>


<i>n</i> <i>E</i> <i>t dr dEd</i> <i>S</i> <i>E</i> <i>t dr dEd</i> <i>E</i> <i>E</i> <i>t</i> <i>E</i> <i>t dE d</i> <i>dr dEd</i>


<i>t</i>


<i>E</i> <i>t dr dEd</i> <i>E</i> <i>E</i> <i>t dr dEd</i>


 
 



 <sub></sub> <sub> </sub> <sub></sub> <sub> </sub> <sub></sub> <sub></sub> <sub>  </sub> <sub></sub> <sub></sub> <sub></sub>

        

  




<b>r</b> <b>r</b> <b>r</b> <b>r</b>


<b>r</b> <b>r</b> <b>r</b>


Recall definition of flux  v<i>n</i>


Time dependent neutron transport equation


Chain reaction problem 1 <i>f</i> <i>ext</i>
<i>eff</i>


<i>S</i> <i>S</i>


<i>k</i>  


  


Eigenvalue problem


 

<sub>0</sub> <sub>4</sub>

 

1



, , , <i><sub>t</sub></i> , , , , <i><sub>s</sub></i> , ' , ' , , ', ', ' ' <i><sub>f</sub></i> , , ,



<i>eff</i>


<i>E</i> <i>t</i> <i>E</i> <i>E</i> <i>t</i> <i>E</i> <i>E</i> <i>t</i> <i>E</i> <i>t dE d</i> <i>E</i> <i>t</i>


<i>k</i>




     


  <b>r</b>    <b>r</b> <b>r</b>  

 

 <b>r</b>     <b>r</b>     <b>r</b> 


<sub></sub>

<sub></sub>

<sub></sub>

<sub> </sub>

<sub></sub>


 


0 4
, , ,
1
, , , , , , ,
v
, ' , ' , , ', ', ' ' , , ,
<i>t</i>
<i>s</i>
<i>E</i> <i>t</i>


<i>E</i> <i>t</i> <i>E</i> <i>E</i> <i>t</i>


<i>t</i>


<i>E</i> <i>E</i> <i>t</i> <i>E</i> <i>t d</i> <i>dE</i> <i>S</i> <i>E</i> <i>t</i>





 


 
     

<sub> </sub>

        
<b>r</b>


<b>r</b> <b>r</b> <b>r</b>


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

Solving

 

transport

 

equation



Difficulties


- Energy dependent cross section is widely varying


- resonance cross section is dependent on temperature


 Multigroup condensation
- Angle dependency


- Peripheral is strong, Center is weak


 SN, PN, Diffusion, etc.
- Complex geometry


- lattice structure



 Homogenization


- Numerical difficulty in convergence and negative flux


 Diffusion approximation


sufficient to predict power distribution in LWR


, , ,<i>E</i> <i>t</i>



 <b>r</b> 


Find the multiplication factor (eigenvalue) and the flux (eigenvector)


reaction rate : 
power : <i>f</i> 


<i>eff</i>


<i>k</i>


neutron streaming/
vessel fluence


homogenization


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

Slowing

 

down



Neutron slowing down – mostly by elastic scattering





2
2


2
'2


2 1


' 1


<i>c</i>


<i>A</i> <i>A</i>


<i>E</i> <i>v</i>


<i>E</i> <i>v</i> <i>A</i>




 


 




Energy after elastic scattering Maximum energy transfer



Average logarithmic energy decrement


Average number of collisions


2


1 1


1 ln


2 1


<i>A</i> <i>A</i>


<i>A</i> <i>A</i>


    




2
2 / 3


<i>A</i>
 




'

ln

<i>E E</i>'/



<i>N E</i> <i>E</i>




 


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

Moderation



 

<sub>ln</sub><i>E</i>0


<i>u E</i>


<i>E</i>




practical highest energy : E<sub>0</sub>= 20 MeV
Good moderator material


• large <sub>s</sub>


• large 


• small <sub>a</sub>


Moderation data for some element
Lethargy


slowing down power

<i><sub>s</sub></i> average logarithmic energy loss per unit path



/


<i>s</i> <i>a</i>


 


moderation quality


enriched uranium is needed
natural uranium can be used
thick reflector is needed. ~ 1meter.


(reactor is bulky)


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

Assumptions :


• above thermal energy (> 1 eV), nuclides is considered as not moving before collision.
• ignore absorption. (reasonable at moderator region due to 1/v behavior)


for single isotope


 

<i>s</i>

   


<i>F E</i>   <i>E</i>  <i>E</i>


let <i>F E</i>

 

<i>C</i>


<i>E</i>





   

/

<sub></sub>

 

'

<sub>  </sub>



' ' 0


' 1


<i>E</i>
<i>s</i>
<i>s</i>


<i>E</i>


<i>E</i>


<i>E</i> <i>E</i> <i>E dE</i>


<i>E</i>




 






  







Slowing

 

down

 

density



   

<sub>0</sub>

'

  

' ' 0


<i>s</i> <i>E</i>  <i>E</i> <i>s</i> <i>E</i> <i>E</i>  <i>E dE</i>




  

  


Infinite homogeneous medium


Slowing down density : number of neutrons that passes the Energy E per volume per time




/


' '' ' ' '' '' '


<i>E</i> <i>E</i>
<i>s</i>
<i>E</i> <i>E</i> <i>E</i> <i>E</i>


<i>q</i>  <i>E</i> <i>E</i> <i>dE dE</i> <i>C</i>


 



 


 

  


slowing down density is
independent of energy


(if no absorption)


 

<sub> </sub>



/


<i>s</i>
<i>q</i>
<i>E</i>


<i>E</i> <i>E</i>






</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

Epithermal

 

spectrum



<i>el</i>


is nearly constant (except near resonance)


0



<i>u</i>


<i>E</i><i>E e</i>


 

 

0


0


<i>u</i>
<i>u</i>


<i>s</i> <i>s</i>


<i>qE e du</i> <i>q</i>


<i>u du</i> <i>E dE</i> <i>du</i>


<i>E e</i>


 


 





    


 



flux is constant in lethary scale


 


<i>s</i>


<i>q</i>
<i>E</i>


<i>E</i>







</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

 



3/ 2 1/ 2 /


2 <i>E k T<sub>B</sub></i>


<i>B</i>


<i>N E dE</i>


<i>E e</i> <i>dE</i>


<i>N</i>

<i><sub>k T</sub></i>






 

2 


3/ 2


/ 2
2


v v


4 v v


2


<i>B</i>


<i>mv</i> <i>k T</i>
<i>B</i>


<i>N</i> <i>d</i> <i>m</i>


<i>e</i> <i>d</i>


<i>N</i> <i>k T</i> 




 
  
 
2
1
v
2
<i>E</i> <i>m</i>


speed distribution


Thermal

 

energy



Thermal equilibrium of atoms follows Maxwell Boltzman distribution


Neutron scattering with medium in thermal motion



2
/ 2
'
', , , ,
' 4
<i>b</i>
<i>d</i> <i>E</i>


<i>E</i> <i>E</i> <i>T</i> <i>e</i> <i>S</i> <i>T</i>


<i>d dE</i> <i>kT</i> <i>E</i>





 <sub></sub> <sub> </sub>
 
 

<i>b</i>


 bound atom scattering cross secion



2 2
4
1
, ,
4


<i>S</i> <i>T</i> <i>e</i>


 

 





Free gas model


'



<i>E</i> <i>E</i>


<i>kT</i>


  


0


' 2 '


<i>E</i> <i>E</i> <i>EE</i>


<i>A kT</i>


   


energy transfer
momentum transfer


A<sub>0</sub> : Mass number of atom


<i>E</i>


'


<i>E</i>


0



<i>E</i> <i>kT</i>


A<sub>0</sub>


cos 


• neutron can gain energy from
moving target


 Scattering matrix, S(,), is depending on
molecular structure, and crystal structure
(related to photon dispersion relation)


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

Scattering

 

in

 

graphite



Ref) INDC-NDS-0475 (IAEA 2005)



free gas model



Bragg’s cutoff


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

 



1/2 /
0 3/ 2


2


<i>B</i>



<i>E k T</i>


<i>B</i>


<i>N E dE</i> <i>N</i> <i>E e</i> <i>dE</i>


<i>k T</i>








neutron flux

 



03/ 2 /


2 2 <i>E k T<sub>B</sub></i>
<i>n</i>


<i>B</i>
<i>N</i>


<i>E dE</i> <i>Ee</i> <i>dE</i>


<i>m</i>
<i>k T</i>












most probable energy
=k<sub>B</sub>T


At T= 293K
k<sub>B</sub>T = 0.025 eV


= 2200 m/s
At T= 590K
k<sub>B</sub>T = 0.051 eV


= 3100 m/s


 neutron temperature is higher than
medium temperature.


low energy cross section is higher


<sub>abs</sub> ~ 1/v


Thermal

 

neutron

 

flux

 

distribution




</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

  



0
,
0
,
,


<i>a</i> <i>M</i> <i>n</i>


<i>a th</i>


<i>M</i> <i>n</i>


<i>E</i> <i>E T dE</i>
<i>E T dE</i>


 





 


/
0
3/ 2


2 2 <i>E k T<sub>B</sub></i>


<i>n</i>


<i>B</i>
<i>N</i>


<i>E dE</i> <i>Ee</i> <i>dE</i>


<i>m</i>
<i>k T</i>






 

 

2

2
/


0 2


<i>B</i>


<i>E k T</i>


<i>B</i> <i>B</i>


<i>Ee</i> <i>dE</i> <i>k T</i> <i>k T</i>


 <sub></sub>
  



0
293 <i><sub>B</sub></i>
<i>a</i> <i>a</i>
<i>k</i>
<i>E</i>
 


1/ 2
, 0
0
293
2
293
2


<i>a th</i> <i>a</i> <i>B</i> <i>B</i>


<i>a</i>


<i>k</i> <i>k T</i>


<i>T</i>

 
 






/ /
0 0
3/ 2
1


3 / 2


2


<i>B</i> <i>B</i>


<i>E k T</i> <i>E k T</i>


<i>B</i>


<i>Ee</i> <i>dE</i> <i>Ee</i> <i>dE</i>


<i>E</i>
<i>k T</i>

 <sub></sub>  <sub></sub>
  



Effective

 

absorption

 

cross

 

section



consider 1/v behavior of absorption cross section



0


<i>a</i>


 cross section at 2200 m/s


Maxwell average cross section at temperature T


,


<i>a th</i>




Recall gamma function


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

Heavy nuclides


• resonance energy region : 1 ~ 100keV
• interval is small : ~ 10 eB


• energy width is narrow
• amplitude is strong
Light nuclides


• resonance appears at very high energy : ~MeV
• energy width is wide


• amplitude is not strong



</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

interference
upper


bound


Breit-Wigner single level resonance formular


 



2


2 2


4 <sub>/ 2</sub>


<i>n</i> <i>a</i>
<i>na</i>


<i>r</i>


<i>E</i> <i>E</i>







 



  


reaction channel (,f, etc.)


2 <i><sub>n</sub></i> <i><sub>n</sub></i>


<i>h</i> <i>h</i>


<i>p</i> <i>m E</i>


  


de Broglie wave length of neutron


For low energy E~0


1 1


v


<i>na</i>


<i>E</i>


<i>E</i> <i>E</i>


   


2



4 potential scattering term


<i>s</i> <i>a</i>


   


<i>n</i> <i>E</i>


 


2


2 1


<i>lJ</i>


<i>n</i> <i>J</i> <i>nn</i>


<i>l</i> <i>J</i>


<i>g</i> <i>U</i>


<i>k</i>


 





2


/ 2



<i>i</i> <i>nr</i>


<i>nn</i>


<i>U</i> <i>e</i> <i>i</i>


<i>E</i> <i>E</i> <i>i</i>




  


 


 


  



elastic scattering


penetrability factor


collision matrix


<i>ka</i>
 


For low energy



1/v law of
neutron cross section


~ constant.


<i>a</i>




Resonance

 

cross

 

section



</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

238<sub>U</sub>


 

2 0


0 4 0 2 0


<i>n</i>


<i>E</i> <i>g</i>  




      


 



at resonance peak



 

 


2
6
2
0
0


2.608 10 1


4 b
eV
<i>A</i>
<i>E</i> <i>A</i>
   <sub></sub>  <sub></sub>
 

 



2
2 2
0
1
4
<i>n</i>
<i>E</i> <i>g</i>
<i>E</i> <i>E</i>


   

  


near resonance peak

 

<sub> </sub>

 



2
0
2
0 0
0
2
1
4
1
<i>l</i>
<i>l</i>
<i>P E</i>
<i>E</i>
<i>P E</i>
<i>E</i> <i>E</i>


  <sub></sub> <sub></sub> 
  
  <sub></sub> <sub></sub> <sub></sub> <sub></sub>

 



 

 



2 1 / 2
0
2
0
0
2
1
4
1
<i>l</i>
<i>E</i>
<i>E</i>
<i>E</i>
<i>E</i> <i>E</i>


 

  
 <sub></sub> <sub></sub>
 <sub></sub> <sub></sub>  <sub></sub> <sub></sub> 
 <sub></sub> 
 


(exact for s-wave)


 

0 1/ 2

<sub></sub>

<sub></sub>




0 2
1
1
<i>E</i>
<i>E</i>
<i>E</i> <i>y</i>


   <sub></sub> <sub></sub>
   


for s-wave resonance


0



2


<i>y</i> <i>E</i><i>E</i>




Resonance tail (E ~ 0, s-wave)


1/ 2
0


0 2 2


0



1 1


1 4 /


<i>E</i>


<i>E</i> <i>E</i> <i>E</i>





   <sub></sub> <sub></sub> 


    


</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

Average absorption in resonance energy range


• (broad) flux is 1/E outside narrow region of resonance
(constant in lethargy unit)


   


 


<i>a</i>
<i>resonance</i>
<i>res</i>
<i>resonance</i>


<i>E</i> <i>E dE</i>
<i>E dE</i>


 




,
,
<i>a res</i>
<i>a res</i>
<i>res</i>
<i>RI</i>
<i>u</i>
 


Resonance Integral <i>a res</i>, <i>a</i>

 

<i>a</i>

 


<i>resonance</i> <i>resonance</i>


<i>dE</i>


<i>RI</i> <i>E</i> <i>u du</i>


<i>E</i>


 




Resonance

 

Integral




 

0 1/ 2

<sub></sub>

<sub></sub>



0 <sub>2</sub>
1
1
<i>E</i>
<i>E</i>
<i>E</i> <i>y</i>


   <sub></sub> <sub></sub>
   

 


<i>res</i>
<i>E</i>
<i>RI</i> <i>dE</i>
<i>E</i>


<sub></sub>



integrate only y, high value near resonance and full integration is ∞




/ 2


2 2
2 <sub>/ 2</sub>



1 1 1


1 tan cos


1 <i>y</i> <i>dy</i> <i>d</i>




    


 


 <sub></sub>    




0



2


<i>y</i> <i>E</i><i>E</i>




2
<i>dE</i><i>dy</i>


0 2


0



1 1


2<i><sub>res</sub></i>1


<i>RI</i> <i>dy</i>
<i>E</i> <i>y</i>



 <sub></sub>


0
0
2
<i>RI</i>
<i>E</i>

 




</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>

Target nucleus are moving due to temperature


relative velocity of neutron with moving nuclide <b>v</b><i><sub>r</sub></i>  <b>v</b> <b>V</b> <b><sub>v</sub></b>


<b>V</b>

 




<i>p V dV</i> : probability of a nucleus having velocitity between (V, V+dV)


effective cross section of neutron for target temperature T


 

   



,


1
v
v


<i>T</i> <i>E</i> <i>r</i> <i>Er</i> <i>P</i> <i>d</i>


 


 

 <b>V</b> <b>V</b>


probability of reaction per sec <b>v</b><i>r</i>

   

<i>Er</i> <i>P</i> <b>V</b> <i>d</i><b>V</b>


relative energy ?

2

2 2 2


v v


2 2


<i>r</i> <i>z</i> <i>x</i> <i>y</i>


<i>m</i> <i>m</i>



<i>E</i>  <i>V</i>  <sub></sub> <i>V</i> <i>V</i> <i>V</i> <sub></sub> (assume neutron is moving z direction)


2



2
2


<i>r</i> <i>z</i>


<i>m</i>


<i>E</i>  <i>v</i>  <i>vV</i> <sub>(neutron is much faster than target velocity)</sub>


Doppler

 

broadening



 

2 


3/ 2
/ 2
2
4
2
<i>B</i>


<i>MV</i> <i>k T</i>
<i>B</i>


<i>M</i>



<i>P</i> <i>d</i> <i>V e</i> <i>d</i>


<i>k T</i> 






 


  


 


<b>V</b> <b>V</b> <b>V</b>


assume Maxwell distribution of target nucleus


 

0

 



,<i>T</i> 0 ,


<i>E</i>
<i>E</i> <i>x</i>
<i>E</i>


    


 Doppler line shape function



 

<sub></sub>

<sub></sub>


1/ 2
0
0 2
1
1
<i>r</i>
<i>r</i>
<i>E</i>
<i>E</i>
<i>E</i> <i>y</i>


   <sub></sub> <sub></sub>
 <sub></sub> <sub></sub> 
s-wave SLBW
We have


 

,<i>x</i>


</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24>

When T is low, is large


 

2


1
,
1
<i>x</i>
<i>x</i>


  


When T is high, is small


 

1 2 2


, exp


2 4


<i>x</i>  <i>x</i>


    <sub></sub>  <sub></sub>


 


Line shape function for scattering cross section


 



2
2


2


exp / 4


,



1
2


<i>y</i> <i>x</i> <i>y</i>


<i>x</i> <i>dy</i>
<i>y</i>


 



 




Doppler

 

line

 

shape

 

function



U-238 0K
300,000K

 


2
2
2
1
exp
4
,

1
2
<i>x</i> <i>y</i>
<i>x</i> <i>dy</i>
<i>y</i>


 



<sub></sub> <sub></sub> 
 
 




Line shape function for absorption cross section


0



2


<i>r</i>


<i>y</i> <i>E</i> <i>E</i>





0



2


<i>x</i> <i>E</i><i>E</i>




4<i>k TE<sub>B</sub></i> 4<i>k TE<sub>B</sub></i> <i><sub>r</sub></i>


<i>A</i> <i>A</i>


  


  


</div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25>

Absorption in narrow energy range


homogeneous mixture with fuel, ignoring absorption in moderator


• scattering cross section is nearly constant


• (broad) flux is 1/E outside resonance (constant in lethargy unit)


Homogeneous

 

mixture



   

/

  



' ' ' 0



<i>E</i>


<i>t</i> <i>E</i> <i>E</i> <i><sub>E</sub></i> <i>s</i> <i>E</i> <i>E</i> <i>E dE</i>




   


 

<sub></sub>

 


 

/

<sub></sub>

 

'

<sub></sub>

/

<sub></sub>

 

'

<sub></sub>



' '


' 1 ' 1


<i>F</i> <i>M</i>


<i>F</i> <i>M</i>


<i>E</i> <i>E</i>


<i>s</i> <i>s</i>


<i>F</i> <i>F</i> <i>M</i>


<i>a</i> <i>s</i> <i>s</i>


<i>E</i> <i>E</i>



<i>F</i> <i>M</i>


<i>E</i> <i>E</i>


<i>E</i> <i>dE</i> <i>dE</i>


<i>E</i> <i>E</i>


     


   


 


   


 




 

<sub> </sub>



0


1


1 /


<i>u</i>
<i>a</i>



<i>E</i>


<i>E</i> <i>E</i>





 





What is flux shape at resonance ?


<i>pot</i>




<i>a</i>




<i>E</i>


resonance


(U-238)


</div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>

Scattering resonance at fuel(resonance) nuclide is small


 

 

 

/

<sub></sub>

 

<sub></sub>

 


' '
1 '
<i>R</i>
<i>E</i> <i><sub>s</sub></i>


<i>R</i> <i>R</i> <i>R</i> <i>b</i>


<i>a</i> <i>s</i> <i>pot</i> <i>b</i> <i><sub>E</sub></i>


<i>E</i>


<i>E</i> <i>E</i> <i>E</i> <i>E dE</i>


<i>E</i> <i>E</i>
  
     

      
 

<sub></sub>


• NR (Narrow Resonance) approximation


 assume resonance width is small

 



 



/ / 1



' ' '


1 ' 1 ' '


<i>R</i> <i>R</i>


<i>R</i>


<i>E</i> <i><sub>pot</sub></i> <i>E</i> <i><sub>pot</sub></i>


<i>s</i> <i>u</i>


<i>u</i>


<i>E</i> <i>E</i>


<i>E</i>


<i>E dE</i> <i>dE</i>


<i>E</i> <i>E E</i> <i>E</i>


     


 


   


 





 

<sub> </sub>

<i>Rpot</i> <i>b</i> 1


<i>R</i>
<i>t</i> <i>b</i>
<i>E</i>
<i>E</i> <i>E</i>
 

 




   

<sub> </sub>

<i>aR</i>

 



<i>R</i> <i>R</i>


<i>NR</i> <i>a</i> <i>pot</i> <i>b</i> <i>R</i>


<i>t</i> <i>b</i>


<i>res</i> <i>res</i>


<i>E</i>


<i>RI</i> <i>E</i> <i>E dE</i> <i>dE</i>


<i>E</i>



   
 
  


total


<sub>b</sub>: background cross section (include all others)


Large background = infinite dilution

 


lim

lim


<i>b</i> <i>b</i>
<i>R</i>
<i>a</i>
<i>NR</i> <i>WR</i>
<i>res</i>
<i>E</i>


<i>RI</i> <i>RI</i> <i>dE</i>


<i>E</i>


 




 



 



Resonance

 

approximation



• NRIM (Narrow Resonance Infinite Mass absorber) or Wide Resonance approximation


 integral term is zero


Infinite dilution


 

<sub> </sub>

<i><sub>b</sub></i> 1


<i>R</i>
<i>t</i> <i>b</i>
<i>E</i>
<i>E</i> <i>E</i>


 


 


 


<i>R</i>
<i>a</i>
<i>WR</i> <i>b</i> <i>R</i>


<i>t</i> <i>b</i>
<i>res</i>
<i>E</i>


<i>RI</i> <i>dE</i>
<i>E</i>


 




</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27>

Discrete

 

Ordinate

 

method

 

(S

<sub>N</sub>

method)



Neutron transport equation (steady state)


Angular quadrature




0


2 1


' '


4


<i>s</i> <i>s</i> <i>P</i>


 








   

   





Scattering cross section (in Lab system)


, ,<i>E</i>

<i><sub>t</sub></i>

,<i>E</i>

 

, ,<i>E</i>

<sub>0</sub> <sub>4</sub> <i><sub>s</sub></i>

,<i>E</i>' <i>E</i>, '

 

,<i>E</i>', '

<i>dE d</i>' ' <i>S</i>

, ,<i>E</i>





     


  <b>r</b>   <b>r</b> <b>r</b>  

 

<b>r</b>     <b>r</b>    <b>r</b> 


 



4


1


<i>N</i>


<i>n</i> <i>n</i>
<i>n</i>



<i>fd</i> <i>w f</i>






 



n : ordinate


w<sub>n</sub> =<sub>n</sub> : angular weight
scattering integral term becomes summation


transport collision scattering source


<sub>n</sub>




1


<i>N</i>


<i>n</i> <i>n</i> <i>t</i> <i>n</i> <i>j</i> <i>s</i> <i>n</i> <i>j</i> <i>j</i> <i>n</i>
<i>j</i>


<i>w</i> <i>S</i>


    





   

  


Solve NxN system of equation for angular direction
Spatial discretization : FDM, etc.


ANISN, DORT, TORT (ORNL), DANTSYS (LANL), etc.


</div>
<span class='text_page_counter'>(28)</span><div class='page_container' data-page=28>

Spherical

 

harmonics

 

(P

<sub>N</sub>

)

 

method



Angular flux is approximated by a finite spherical harmonics expansion


   


0
,
<i>N</i> <i>n</i>
<i>m</i> <i>m</i>
<i>n</i> <i>n</i>
<i>n</i> <i>m</i> <i>n</i>


<i>r</i> <i>r Y</i>


 


 


 

 

 Total (N+1)2<sub>terms</sub>


Simplified P<sub>N</sub> method



1D case using orthogonality of Legendre polynomial


1 1


0 0


1


2 1 2 1


<i>n</i> <i>n</i>


<i>n n</i> <i>n</i>


<i>d</i> <i>d</i>


<i>n</i> <i>n</i>


<i>q</i>


<i>n</i> <i>dx</i> <i>n</i> <i>dx</i>


 <sub></sub>  <sub></sub> <sub> </sub> <sub></sub>


 <sub></sub> <sub></sub> <sub></sub>


  isotropic source term


1



1 1


1


2 1 2 1


<i>n</i> <i>n</i> <i>n</i> <i>n</i>


<i>d</i> <i>n</i> <i>n</i>


<i>dx</i> <i>n</i> <i>n</i>


   
 

 
  <sub></sub>  <sub></sub>
 
 


Elliminate odd order terms


1 1


1 2 1 2 0 0


1 1 1 2


2 1 <i>n</i> 2 1 <i>n</i> 2 1 <i>n</i> 2 1 <i>n</i> 2 3 <i>n</i> 2 3 <i>n</i> <i>n n</i> <i>n</i>



<i>d</i> <i>n</i> <i>d</i> <i>n</i> <i>n</i> <i>n</i> <i>d</i> <i>n</i> <i>n</i>


<i>q</i>


<i>dx</i> <i>n</i>  <i>dx</i> <i>n</i>  <i>n</i>  <i>n</i>  <i>dx</i> <i>n</i>  <i>n</i>    


 
   
        
 <sub></sub> <sub></sub>  <sub></sub> <sub></sub>  <sub></sub><sub></sub> 
         
 


0, 2, 4,


<i>n</i> 


for


Total (N+1)/2 equations
3D case


1 1


1 2 1 2 0 0


1 1 1 2


2 1 <i>n</i> 2 1 <i>n</i> 2 1 <i>n</i> 2 1 <i>n</i> 2 3 <i>n</i> 2 3 <i>n</i> <i>n n</i> <i>n</i>



<i>n</i> <i>n</i> <i>n</i> <i>n</i> <i>n</i> <i>n</i>


<i>q</i>


<i>n</i>  <i>n</i>  <i>n</i>  <i>n</i>  <i>n</i>  <i>n</i>    


 
   
        
 <sub></sub> <sub></sub>  <sub></sub> <sub></sub>  <sub></sub><sub></sub> 
 <sub></sub>   <sub></sub>  <sub></sub>   <sub></sub>
 


SP7 have 4 equations


   



1
1


<i>sn</i> <i>Pn</i> <i>s</i> <i>d</i>


    



<sub></sub>



0 <i>t</i> <i>s</i>0 <i>a</i>



   


for 0


<i>n</i> <i>sn</i> <i>n</i>


</div>
<span class='text_page_counter'>(29)</span><div class='page_container' data-page=29>

Collision

 

Probability

 

Method

 

(CPM)



Assume isotropic angular flux and source


, ,<i>E</i>

<i><sub>t</sub></i>

,<i>E</i>

 

, ,<i>E</i>

<sub>0</sub> <sub>4</sub> <i><sub>s</sub></i>

,<i>E</i>' <i>E</i>, '

 

,<i>E</i>', '

<i>dE d</i>' ' <i>S</i>

, ,<i>E</i>





     


  <b>r</b>   <b>r</b> <b>r</b>  

 

<b>r</b>     <b>r</b>    <b>r</b> 


 

   

 



4


1


ˆ


4

 <b>r</b> <i>d</i> <i>t</i> <b>r</b>  <b>r</b> <i>q</i> <b>r</b>

 

 



'



3
2


1


ˆ ' '


4 <sub>'</sub>


<i>t</i>


<i>e</i>


<i>q</i> <i>d</i>








 






<b>r r</b>


<b>r</b> <b>r</b> <b>r</b>



<b>r r</b>


CPM


 

,

 

   



1


,


<i>k</i>


<i>n</i>


<i>t</i> <i>i</i> <i>i</i> <i><sub>V</sub></i> <i>s k</i> <i>k</i> <i>j</i> <i>k</i> <i>j</i> <i>ij</i> <i>i</i> <i>j</i> <i>j</i>
<i>k</i>


<i>r</i> <i>V</i> <i>r</i> <i>S</i> <i>r</i> <i>P r r dV</i>


   




 





discrete volume


Pij : probability for a neutron starting at zone i colliding at zone j



i
j


Pij can be derived analytically (for simple geometry)
Widely used for multigroup condensation


'
3
2


1


'


4 '


<i>t</i>


<i>ij</i>


<i>e</i>


<i>P</i> <i>d</i>






 







<b>r r</b> <b>r</b>


<b>r r</b>


</div>
<span class='text_page_counter'>(30)</span><div class='page_container' data-page=30>

Method

 

of

 

characteristics



, ,<i>E</i>

<i><sub>t</sub></i>

,<i>E</i>

 

, ,<i>E</i>

<sub>0</sub> <sub>4</sub> <i><sub>s</sub></i>

,<i>E</i>' <i>E</i>, '

 

,<i>E</i>', '

<i>dE d</i>' ' <i>S</i>

, ,<i>E</i>





     


  <b>r</b>   <b>r</b> <b>r</b>  

 

<b>r</b>     <b>r</b>    <b>r</b> 


,

<i><sub>t</sub></i>

  

,

<i>Q</i>

,



  


 <b>r</b>   <b>r</b> <b>r</b>   <b>r</b> 


<i>d</i>
<i>ds</i>






 


along a characteristic direction


 

'


0 <sub>0</sub> '


<i>ts</i> <i>ts</i> <i>s</i> <i>ts</i>


<i>s</i> <i>e</i>  <i>e</i>  <i>Qe</i> <i>ds</i>


 <sub></sub>  <sub></sub> 




analytic solution exists


DeCART : developed by SNU, Korea
OpenMOC


Ray-tracing method


</div>
<span class='text_page_counter'>(31)</span><div class='page_container' data-page=31>

Diffusion

 

equation



SP1 form


1


1 0 0 0 0



1


3    <i>q</i>




    


Fick’s law


<i>J</i>   <i>D</i> 


<i>J</i>  <i>q</i>


   


Diffusion equation


1


1
3


<i>D</i>







<sub>0</sub> : absorption cross section


<sub>1</sub> : transport cross section


 



1
1


<i>tr</i> <i>s</i> <i>d</i>


   




<sub></sub>



1 0


<i>tr</i> <i>s</i>


  


<sub>0</sub> : average cosine angle of scattering


<sub>tr</sub>: transport mean free path


Finite difference method : need small intervals (1~2cm)
CITATION, VENTURE, PDQ, …


Nodal methods : large intervals (10~20cm)



ANM (MIT) : Analytic Nodal Method – 1D analytic solution with quadratic poly.
interpolation in transverse direction leakage


QUABOX, CUBOX (KWU) : polynomial expansions
MASTER (KAERI) : Nodal expansion method


</div>
<span class='text_page_counter'>(32)</span><div class='page_container' data-page=32>

Solution

 

Methods

 

for

 

Neutron

 

Diffusion

 

Equation



Finite Difference Method



– Divides system into fine meshes equivalent to thermal neutron mean free


path (1~2 cm)



– Approximates flat flux in each homogeneous mesh


Nodal Method



– Nodes are relatively large (10 ~ 20 cm) homogeneous volumes so that


FDM is not applicable.



– In the nodal equation, each node is only coupled with its direct neighbors.


– The average flux per node and the net leakage should be uniquely



</div>
<span class='text_page_counter'>(33)</span><div class='page_container' data-page=33>

Nodal

 

Method

 

for

 

Neutron

 

Diffusion

 

Equation



Diffusion Equation Formulation



– Multi-group diffusion equation for steady state condition for flux and


current




Σ



Σ

Σ

<sub>→</sub>


</div>
<span class='text_page_counter'>(34)</span><div class='page_container' data-page=34>

Nodal

 

methods





Assume intra flux distribution in homogeneous volume using various values


Partial current : net current = in coming – out going


<i>xr</i> <i>xr</i> <i>xr</i>


<i>J</i> <i>J</i> <i>J</i>


<i>xr</i>
<i>J</i>
<i>xr</i>
<i>J</i>
<i>xl</i>
<i>J</i>
<i>xl</i>
<i>J</i>
Surface flux
<i>xl</i>

<i>xr</i>

<i>x</i>


<i>h</i>

 

 


1 1


<i>xr</i> <i>xr</i> <i>xl</i> <i>xl</i> <i>yr</i> <i>yr</i> <i>yl</i> <i>yl</i>


<i>x</i> <i>y</i>


<i>J</i> <i>J</i> <i>J</i> <i>J</i> <i>J</i> <i>J</i> <i>J</i> <i>J</i> <i>q</i>


<i>h</i> <i>h</i> 


       
          
   
<i>x</i>
<i>L</i>

 


<i>x</i>
<i>xs</i> <i>xs</i>
<i>x s</i>
<i>d</i> <i>x</i>


<i>J</i> <i>J</i> <i>D</i>


<i>dx</i>


 





   <i>s</i><i>l r</i>,


 

<sub> </sub>

<sub> </sub>


2
2
<i>x</i>
<i>x</i> <i>x</i>
<i>d</i> <i>x</i>


<i>D</i> <i>x</i> <i>q</i> <i>L</i> <i>x</i>


<i>dx</i>


   


2


<i>xs</i> <i>Jxs</i> <i>Jxs</i>


 <sub></sub>  <sub></sub> 


Partial current 1


2
<i>x</i>
<i>x</i> <i>x</i>
<i>d</i>


<i>J</i> <i>D</i>
<i>dx</i>


  
 <sub></sub>  <sub></sub>
Transverse Leakage


 

22

 

,
<i>x</i>


<i>y</i>


<i>D</i>


<i>L</i> <i>x</i> <i>x y dy</i>


<i>h</i> <i>y</i>



 




</div>
<span class='text_page_counter'>(35)</span><div class='page_container' data-page=35>

Nodal

 

Method

 

for

 

Neutron

 

Diffusion

 

Equation



 

 



<i>x</i> <i>xn</i> <i>n</i>



<i>n</i>


<i>x</i> <i>a p</i> <i>x</i>


 

<i>x</i>

 

<i>xn</i> <i>n</i>

 



<i>n</i>


<i>L</i> <i>x</i> 

<i>b p</i> <i>x</i>


 



0


1 for 0


1


0 for 0


<i>x</i>


<i>h</i>
<i>n</i>
<i>x</i>


<i>n</i>
<i>p</i> <i>x dx</i>


<i>n</i>


<i>h</i>





  <sub></sub>




Nodal Expansion Method (NEM)


- polynomial expansion of transverse surface flux and leakage


coefficients a and b can determined from nodal balance equations
Analytic Nodal Method (ANM)


- solve transversed integrated equation analytically


- assuming quadratic shape for the transverse leakage


</div>
<span class='text_page_counter'>(36)</span><div class='page_container' data-page=36>

Summary

 

of

 

transport

 

analysis



• ENDF : Evaluated Nuclear Data Library
• resonance parameters


• pointwise cross sections
• Energy condensation


• resonance integral


• scattering matrix


• CPM – multigroup condensation to multigroup (69~100)
library


• MOC – assembly wise calculation to obtain few group (2~10)
constant for core wide calculation


• Diffusion method – isotropic scattering/ angle independent
flux


• Core wide analysis


 Monte Carlo method – usually for reference cases


 SN method – when non-isotropy is important, such as
shielding analysis


ENDF


69 group
library


few group
constant


power distribution,
reactivity coefficient,


etc.


Diffusion;
Nodal method


Transport
calculation;


MOC


Energy, Temperature
effect:


CPM


Monte Carlo


reference


point library


</div>

<!--links-->

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×