PHÒNG GD&ĐT TP SA ĐÉC
TRƯỜNG THCS TRẦN THỊ NHƯỢNG
ĐỀ THAM KHẢO
(Đề gồm 2 trang)
ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
NĂM HỌC 2014 – 2015
MƠN: TỐN 9
Ngày thi: 5/ 4/ 2015
Thời gian làm bài: 150 phút (không kể giao đề)
ĐỀ BÀI:
Bài 1. (3 điểm)
a) Cho A = 13 - 2 42 . Tính
A.
b) Rút gọn biểu thức B = 6 2 2. 3 4 2 3
Bài 2. (2 điểm)
a) Chứng minh rằng tổng của hai số tự nhiên ab ba chia hết cho 11.
b) Phân tích đa thức sau thành nhân từ: x4 + 2x2 – 3
Bài 3. (2 điểm)
6
6
6
6
80
...
15.18 18.21 21.24
87.90 90
b) Tìm số ab sao cho bbb ab.a.b
a) Tính tổng sau: M =
Bài 4. (2 điểm)
Có hai đội cờ thi đấu với nhau. Mỗi đối thủ của đội này phải thi đấu một ván
cờ với mỗi đấu thủ của đội kia. Cho biết tổng số ván cờ bằng 4 lần tổng số đấu thủ
của cả hai đội và một trong hai đội có số đấu thủ lẻ. Vậy mỗi đội có bao nhiêu đối
thủ ?
Bài 5. (3 điểm)
Giải các phương trình và hệ phương trình sau:
a) 4(1 x) 2 8 0
b) (x + 3)3 – (x + 1)3 = 56
�xy 4 8 y 2
2
� xy 2 x
c) �
(1)
(2)
Bài 6. (5 điểm)
1) Cho tam giác ABC có AB= 6cm, BC= 10 cm, CA= 8cm.
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC; I là tâm của đường
trong nội tiếp tam giác ABC. Tính độ dài IO ?
2) Cho tam giác ABC cân tại A, M là trung điểm của cạnh BC. Lấy điểm D
� E = B
� . Chứng minh:
thuộc cạnh AB, điểm E thuộc cạnh AC sao cho DM
a) Tam giác DBM đồng dạng với tam giác MCE.
b) Tia DM là tia phân giác của góc BDE.
-1-
Bài 7. (3 điểm)
Cho đường trịn (O; R) đường kính AB, lấy điểm I thuộc đoạn AO sao cho AO
= 3.IO. Qua I vẽ dây cung CD vng góc với AB, trên đoạn CD lấy điểm K tuỳ ý. Tia
AK cắt đường tròn (O) tại điểm thứ hai là M.
1. Chứng minh: Bốn điểm I, K, M, B cùng thuộc một đường tròn.
2. Chứng minh rằng tâm F của đường tròn ngoại tiếp tam giác MKC nằm trên
một đường thẳng cố định.
3. Khi K di động trên đoạn CD, tính độ dài nhỏ nhất của đoạn DF.
HẾT
Họ và tên giám thị 1: .......................................... Chữ ký: ..................
Họ và tên giám thị 2: .......................................... Chữ ký: ..................
Họ và tên thí sinh: ..................................... Số báo danh: ………
Giám thị coi thi không cần giải thích gì thêm.
-2-
PHÒNG GD&ĐT TP SA ĐÉC
TRƯỜNG THCS TRẦN THỊ NHƯỢNG
ĐÁP ÁN
ĐỀ THI THAM KHẢO HSG CẤP TỈNH
NĂM HỌC: 2014- 2015
Câu
Nội dung
a)
2
A 13 2 42 = ( 7 6)
7 6 7 6
Điểm
1đ
b) B = 6 2 2. 3 4 2 3
1
6 2 2. 3 ( 3 1) 6 2 2. 2 3
2đ
6 2 4 2 3 6 2( 3 1)
4 2 3 3 1
2
3a
b
a) ab ba =10a+ b+ 10b+ a= 11(a+b) nên chia hết cho 11.
b) x4 + 2x2 – 3 = [(x2)2 + 1]2 – 22 = (x - 1)(x + 1)(x2 + 3)
1đ
1đ
6
6
6
6
80
M
...
15.18 18.21 21.24
87.90 90
1
1 �8
�1 1
2. � ... �
15 18
87 90 � 9
�
�1 1 � 8 1 8
2. � � 1
15 90 � 9 9 9
�
2đ
Ta có bbb ab.a.b
� 3.37.b a.b.ab
� 3.37 a.ab
4
5
Vậy a= 3, b=7. Số ab = 37
Gọi x, y là số đối thủ của mỗi đội (ĐK: x,y là số nguyên dương).
Vì mỗi đấu thủ của đội này phải thi đấu một ván cờ với mỗi đối
thủ của đội kia, nên tổng số ván cờ đã thi đấu là: x.y.
Theo giả thiết, ta có:
xy= 4(x+y) � ... � (x-4)(y-4)= 16
= 1.16= 2.8=4.4
x hoặc y là số lẻ, nên ta có thể đồng nhất x- 4= 1 và y- 4=16
Suy ra x= 5; y= 10
Vậy: Một đội có 5 đấu thủ, đội kia có 20 đối thủ.
a) 4(1 x) 2 8 0 � 2. 1 x = 8 (1)
* Nếu x �1, (1) � 2(1- x) = 8 � x = - 3 (thỏa mãn đk)
* Nếu x > 1, (1) � 2 (x - 1) = 8 � x = 5 (thỏa mãn đk)
Vậy, S = {- 3; 5}
-3-
2đ
1đ
b)(x + 3)3 – (x + 1)3 = 56
� x3 + 9x2 +27x + 27 – x3 – 3x2 – 3x – 1 = 56
� 6x2 + 24x + 26 = 56
� 6(x2 + 4x - 5) = 0
� x(x- 1) + 5(x - 1) = 0
� (x - 1)(x + 5) = 0
� x = 1 hoặc x = - 5.Vậy S = {1; - 5}
1đ
(1)
�xy 4 8 y 2
c) �
2
(2)
� xy 2 x
Từ pt (1) suy ra 8 y 2 �0 hay y � 8
Từ pt (2) suy ra x 2 2 x . y �2 2 x
� x 2 2 2 x 22 �0
� ( x 2)2 �0
�x 2
Nếu x 2 � y 2 2
Nếu x 2 � y 2 2 .
Vậy hệ phương trình đã cho có hai nghiệm:
�x�2
�
�x 2 và �
�x 2
�
�
�y 2 2
�y 2 2
-4-
1đ
6
1) Trong tam giác ABC có BC 2 100; AB 2 AC 2 100 . Vậy tam
giác ABC vng tại A (theo ĐL Pytago đảo)
Ta có S p.r � ... � 6.8 6 8 10 .r � r 2cm
I là giao điểm của ba phân giác của tam giác ABC, kẻ
IH BC tại H, IK CA tại K, ; IL AB tại L. Suy ra tứ giác
ALIK là hình vng cạnh r. Ta có BL= BH= AB- r= 6- 2= 4cm.
O là trung điểm của BC. Nên BO= 5cm,
HO= BO- BH= 1cm
Trong tam giác OIH vuông tại H có: OI 1 4 5cm
0,5đ
0,5đ
0,5đ
0,5đ
2) Vẽ hình đúng
a)
� M
� M
� 1800
M
1
2
3
�
�
�
M B D 1800
1
1
� B
�, � D
� M
�
Mà M
2
1
3
Mặt khác: B� C� (do ABC cân)
Nên DBM đồng dạng MCE (g.g)
-5-
2đ
DB DM
DB DM
, Do BM = MC nên
MC ME
BM ME
� , nên DBM đồng dạng DME (c.g.c)
Mà B� M
2
� D
� . Vậy DM là tia phân giác của � .
Suy ra D
BDE
1
2
c) Từ a) suy ra:
Câu
7.1
Câu
7.2
Câu
7.3
1. Chứng minh : Bốn điểm I, K, M, B cùng thuộc một đường trịn
� 900 ( vì chắn nửa đường trịn (O)
Ta có KMB
� 900 (gt) nên các tam giác KMB, KIB đều nội tiếp một đường
Lại có KIB
trịn đường kính là cạnh huyền BK. Hay bốn điểm I, K, M, B cùng thuộc
một đường tròn.
2. Chứng minh : Tâm F của (CKM) thuộc một đường cố định
Vẽ đường kính CE của (CKM) , ta có KE // AB
� MAB
�
( vì cùng CD) � MKE
(đ/vị)
� MCE
�
� của (F) )
Lại có MKE
(cùng chắn cung ME
� MCB
�
� của (O) )
(cùng chắn cung MB
MAB
� MCB
� � C, E, B thẳng hàng � C, F, B thẳng hàng
Suy ra MCE
Suy ra F thuộc đường thẳng CB cố định
3. Tính độ dài ngắn nhất của DF
Kẻ DH CB tại H � DH khơng đổi
Ta có DF �DH nên DF ngắn nhất bằng DH
R2 2R 2
4R 2
� CD
9
3
3
2
4R
8R
2R 6
CB 2 BI .BA
.2 R
� CB
3
3
3
BI .CD
Lại có DH.CB=BI.CD ( bằng nửa S CBD) � DH
CB
4R 4R 2
.
3 8 R 3 . Vậy DF ngắn nhất bằng 8R 3
DH 3
9
2R 6
9
3
Ta có CI CO 2 IO 2 R 2
Ghi chú: Học sinh làm bài theo cách khác hợp lí đạt điểm tối đa.
-6-
1đ
1đ
1đ
1đ