Tải bản đầy đủ (.pdf) (6 trang)

Sach toan Tieng Anh hay 5G2010

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (109.65 KB, 6 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

Math 598 Feb 2, 20051
Geometry and Topology II


Spring 2005, PSU


<b>Lecture Notes 5</b>



<b>2.2</b>

<b>Definition of Tangent Space</b>



If<i>M</i> is a smooth <i>n</i>-dimensional manifold, then to each point <i>p</i>of<i>M</i> we may
associate an <i>n</i>-dimensional vector space<i>TpM</i> which is defined as follows. Let


<i>CurvespM</i> :=<i>{α</i>: (<i>−, </i>)<i>→M</i> <i>|α</i>(0) =<i>p}</i>


be the space of <i>smooth</i> curves on <i>M</i> centered at <i>p</i>. We say that a pair of
curve<i>α</i>,<i>β</i> <i>∈CurvespM</i> are <i>tangent</i> at<i>p</i>, and we write<i>α</i> <i>∼β</i>, provided that


there exists a local chart (<i>U, φ</i>) of <i>M</i> centered at <i>p</i>such that
(<i>φ◦α</i>)<i></i>(0) = (<i>φ◦β</i>)<i></i>(0)<i>.</i>


Note that if (<i>V, ψ</i>) is any other local chart of <i>M</i> centered at<i>p</i>, then, by the
chain rule,


(<i>ψ◦α</i>)<i></i>(0) = (<i>ψ◦φ−</i>1<i>◦φ◦α</i>)<i></i>(0)
=




(<i>ψ◦φ−</i>1)<i></i>(<i>φ</i>(<i>α</i>(0))



<i>◦</i>(<i>φ◦α</i>)<i></i>(0)

=




(<i>ψ◦φ−</i>1)<i></i>(<i>φ</i>(<i>β</i>(0))


<i>◦</i>(<i>φ◦β</i>)<i></i>(0)

= (<i>ψ◦β</i>)<i></i>(0)<i>.</i>


Thus<i>∼</i>is well-defined, i.e., it is indpendent of the choice of local coordinates.
Further, one may easily check that <i>∼</i> is an equivalence relation. The set of
<i>tangent vectors</i> of <i>M</i> at<i>p</i> is defined by


<i>TpM</i> :=<i>CurvespM/∼.</i>


Next we describe how<i>TpM</i> may be given the structure of a vector space.


Let (<i>U, φ</i>) denote, as always, a local chart of<i>M</i> centered at<i>p</i>, and recall that


<i>n</i> = dim(<i>M</i>). Then we define a mapping <i>f</i>: <i>TpM</i> <i>→</i><b>R</b><i>n</i> by


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<b>Exercise 1.</b> Show that the above mapping is well-defined and is a bijection.
Since <i>φ<sub>∗</sub></i> is a bijection, we may use it to identify <i>TpM</i> with <b>R</b><i>n</i> and, in


particular, define a vector space structure on <i>TpM</i>. More explicitly, we set



[<i>α</i>] + [<i>β</i>] :=<i>φ−<sub>∗</sub></i>1<i>φ<sub>∗</sub></i>([<i>α</i>]) +<i>φ<sub>∗</sub></i>([<i>β</i>])<i>,</i>


and


<i>λ</i>[<i>α</i>] :=<i>φ−<sub>∗</sub></i>1<i>λφ<sub>∗</sub></i>([<i>α</i>])<i>.</i>

<b>2.3</b>

<b>Derivations</b>



Here we give a more abstract, but useful, characterization for the tangent
space of a manifold, which reveals the intimate connection between tangent
vectors and directional derivatives.


Let<i>C∞</i>(<i>M</i>) denote the space of smooth functions on <i>M</i> and <i>p∈M</i>. We
say that two functions <i>f, g</i> <i>∈</i> <i>C∞</i>(<i>M</i>) have the same <i>germ</i> at <i>p</i>, and write


<i>f</i> <i>∼p</i> <i>g</i>, provided that there exists an open neighborhood <i>U</i> of <i>p</i> such that


<i>f|U</i> =<i>g|U</i>. The reslting equivalence classes then defines the space of germ of


smooth functions of <i>M</i> at<i>p</i>:


<i>Cp</i>(<i>M</i>) :=<i>C∞M/∼p</i> <i>.</i>


Note that we can add and multiply the elements of <i>CpM</i> in an obvious way,


and with respect to these operations one may easily check that <i>Cp</i>(<i>M</i>) is an


<i>algebra</i> over the field of real numbers<b>R</b>.


We say that a mapping<i>D</i>: <i>Cp</i>(<i>M</i>)<i>→</i><b>R</b> is a <i>derivation</i> provided that <i>D</i>



is linear and satisfies the Leibnitz rule, i.e.,


<i>D</i>(<i>f g</i>) = <i>Df·g</i>(<i>p</i>) +<i>f</i>(<i>p</i>)<i>·Dg</i>


for all <i>f</i>, <i>g</i> <i>∈</i> <i>Cp</i>(<i>M</i>). If <i>D</i>1 and <i>D</i>2 are a pair of such derivations, then we


define their sum by (<i>D</i>1+<i>D</i>2)<i>f</i> :=<i>D</i>1<i>f</i>+<i>D</i>2<i>f</i>, and for any<i>λ∈</i><b>R</b>, the scalar


product is given (<i>λD</i>)<i>f</i> :=<i>λ</i>(<i>Df</i>).


<b>Exercise 2.</b> Show that the set of derivations of <i>CpM</i> forms a vector space


with respect to the operations defined above.


Note that each element <i>X</i> <i>∈</i> <i>TpM</i> gives rise to a derivation of <i>Cp</i>(<i>M</i>) if,


for any <i>f</i> <i>∈Cp</i>(<i>M</i>), we set


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

where <i>αX</i>: (<i>−, </i>) <i>→</i> <i>M</i> is a curve which belongs to the equivalence class


denoted by <i>X</i>, i.e., <i>X</i> = [<i>αX</i>].


<b>Exercise 3.</b> Check that<i>Xf</i> is well-defined and is indeed a derivation.
A much less obvious fact, whose demonstrationis the main aim of this
section, is that, conversely, every derivation of <i>Cp</i>(<i>M</i>) corresponds to (the


directional derivative determined by) a tangent vecor. More formally, if<i>DpM</i>


denotes the space of derivations of <i>CpM</i>, then



<b>Theorem 4.</b> <i>TpM</i> <i>is isomorphic to</i> <i>DpM.</i>


The rest of this section is devoted to the proof of the above result. To this
end we need a pair of lemmas. Let <b>0</b><i>∈Cp</i>(<i>M</i>) denote the constant function


zero, i.e. <b>0</b>(<i>p</i>) := 0.


<b>Lemma 5.</b> <i>If</i> <i>f</i> <i>∈CpM</i> <i>is a constant function, then</i> <i>Df</i> =<b>0</b><i>, for any</i> <i>D</i> <i>∈</i>


<i>DpM.</i>


<i>Proof.</i> First note that, since <i>f</i> is constant, say <i>f</i>(<i>p</i>) = <i>λ</i>,


<i>D</i>(<i>f</i>) =<i>D</i>(<i>f</i> <i>·</i><b>1</b>) =<i>D</i>(<i>λ·</i><b>1</b>) =<i>λD</i>(<b>1</b>)<i>,</i>


where <b>1</b> denotes the constant fucntion <b>1</b>(<i>p</i>) = 1. Further,


<i>D</i>(<b>1</b>) = <i>D</i>(<b>1</b><i>·</i><b>1</b>) =<i>D</i>(<b>1</b>)<i>·</i>1 + 1<i>·D</i>(<b>1</b>) = 2<i>D</i>(<b>1</b>)<i>.</i>


Thus <i>D</i>(<b>1</b>) = 0, which in turn yields that <i>D</i>(<i>f</i>) = <b>0</b>.


<b>Lemma 6.</b> <i>Let</i> <i>f</i>: <b>R</b><i>n</i> <i><sub>→</sub></i> <b><sub>R</sub></b> <i><sub>be a smooth function. Then, for any</sub></i> <i><sub>p</sub></i> <i><sub>∈</sub></i> <b><sub>R</sub></b><i>n<sub>,</sub></i>


<i>there exist smooth functions</i> <i>gi</i><sub>:</sub> <b><sub>R</sub></b><i>n<sub>→</sub></i><b><sub>R</sub></b><i><sub>,</sub></i> <i><sub>i</sub></i><sub>= 1</sub><i><sub>, . . . , n</sub><sub>, such that</sub></i>


<i>gi</i>(<i>p</i>) = <i>∂f</i>


<i>∂xi</i>


(<i>p</i>)<i>,</i>



<i>and</i>


<i>f</i>(<i>x</i>) =<i>f</i>(<i>p</i>) +


<i>n</i>




<i>i</i>=1


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<i>Proof.</i> The fundamental theorem of calculus followed by chain rule implies
that


<i>f</i>(<i>x</i>)<i>−f</i>(<i>p</i>) =
1


0


<i>d</i>


<i>dtf</i>(<i>tp</i>+ (1<i>−t</i>)<i>x</i>)<i>dt</i>


=
1
0
<i>n</i>

<i>i</i>=1
<i>∂f</i>


<i>dxi</i>



<i>tp</i>+(1<i><sub>−</sub>t</i>)<i>x</i>(<i>x</i>


<i>i</i> <i><sub>−</sub><sub>p</sub>i</i><sub>)</sub><i><sub>dt</sub></i>


=
<i>n</i>

<i>i</i>=1
1
0
<i>∂f</i>
<i>dxi</i>



<i>tp</i>+(1<i>−t</i>)<i>xdt</i>(<i>x</i>
<i>i<sub>−</sub></i>


<i>pi</i>)<i>.</i>


So we set


<i>gi</i>(<i>x</i>) :=


1
0


<i>∂f</i>
<i>dxi</i>



<i>tp</i>+(1<i>−t</i>)<i>xdt.</i>


Now we are ready to prove the main result of this section


<i>Proof of Theorem 4.</i> Recall that if (<i>U, φ</i>) is a local chart of <i>M</i> centered at<i>p</i>,
then the mapping [<i>α</i>]<i>→</i>(<i>φ◦α</i>)<i></i>(0) is an isomorphism between<i>TpM</i> and <b>R</b><i>n</i>.


Similarly, <i>f</i> <i>→</i> <i>f</i> <i>◦φ−</i>1 <sub>is an isomorphism between</sub> <i><sub>C</sub></i>


<i>pM</i> and <i>Co</i><b>R</b><i>n</i>, which


yields that <i>DpM</i> is isomorphic to <i>Do</i><b>R</b><i>n</i>. So it remains to show that <i>Do</i><b>R</b><i>n</i>


is isomorphic to <b>R</b><i>n</i>.


Let<i>xi</i><sub>:</sub><b><sub>R</sub></b><i>n</i> <i><sub>→</sub></i><b><sub>R</sub></b><sub>, given by</sub><i><sub>x</sub>i</i><sub>(</sub><i><sub>p</sub></i><sub>) :=</sub><i><sub>p</sub>i</i><sub>, be the coordinate functions of</sub> <b><sub>R</sub></b><i>n</i><sub>.</sub>


It is easy to check that the mapping


<i>Do</i><b>R</b><i>nD</i>
<i>F</i>


<i>−→</i>(<i>Dx</i>1<i>, . . . , Dxn</i>)<i>∈</i><b>R</b><i>n</i>


is a homomorphism. Furhter, <i>F</i> is one-to-one because, by the previous


lem-mas,


<i>Df</i> = 0 +


<i>n</i>




<i>i</i>=1


(<i>Dgi·xi</i>(<i>o</i>) +<i>gi</i>(<i>o</i>)<i>·Dxi</i>) =


<i>n</i>




<i>i</i>=1


<i>∂f</i>
<i>∂xi</i>


(<i>o</i>)<i>Dxi.</i>


In particular, knowledge of<i>Dxi</i> <sub>uniquely determines</sub><i><sub>D</sub></i><sub>. Finally it remains to</sub>


show that <i>F</i> is onto. To this end note that to each <i>X</i> = (<i>X</i>1<i><sub>, . . . , X</sub>n</i><sub>)</sub><i><sub>∈</sub></i><b><sub>R</sub></b><i>n</i><sub>,</sub>


we may assign a derivation of <i>Cp</i><b>R</b><i>n</i> given by


<i>DX</i> :=


<i>n</i>




<i>i</i>=1


<i>Xi</i> <i>∂</i>
<i>∂xi</i>





<i>x</i>=<i>o.</i>


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>Exercise 7.</b> Show that any local chart (<i>U, φ</i>) of<i>M</i> centered at<i>p</i>determines
a basis <i>E</i><sub>1</sub><i>φ, . . . Eφ</i>


<i>n</i> for <i>TpM</i> as follows. For every <i>f</i> <i>∈CpM</i>, set:


<i>E<sub>i</sub>φf</i> := <i>∂</i>(<i>f◦φ</i>
<i>−</i>1<sub>)</sub>


<i>∂xi</i>


(<i>o</i>)<i>.</i>

<b>2.4</b>

<b>The differential map</b>



Let <i>f</i>: <i>M</i> <i>→N</i> be a smooth map, and <i>p∈M</i>. Then the <i>differential</i> of <i>f</i> at


<i>p</i> is the mapping <i>dfp</i>: <i>TpM</i> <i>→Tf</i>(<i>p</i>)<i>N</i> given by



<i>dfp</i>([<i>α</i>]) := [<i>f</i> <i>◦α</i>]<i>.</i>


<b>Exercise 8.</b> Show that if <i>f</i>: <b>R</b><i>n</i> <i><sub>→</sub></i> <b><sub>R</sub></b><i>m</i> <sub>and we identify</sub> <i><sub>T</sub></i>


<i>p</i><b>R</b><i>n</i> and <i>Tf</i>(<i>p</i>)<b>R</b><i>m</i>


with<b>R</b><i>n</i>and<b>R</b><i>m</i>respectively in the standard way (i.e., via the mapping [<i>α</i>]<i>→</i>


<i>α</i>(0)) then <i>dfp</i> may be identified with the linear transformation determined


by the jacobian matrix (<i>∂fi<sub>/∂x</sub></i>


<i>j</i>) (in particular,<i>dfp</i> is a generalization of the


standard derivative <i>Df</i>(<i>p</i>) of maps between Euclidean spaces).


Using the characterization of <i>TpM</i> as the space of derivations over the


germ of smooth functions of <i>M</i> at <i>p</i>, one may give an alternative definition
of <i>dfp</i> as follows. Given <i>X</i> <i>∈TpM</i>, we define




<i>dfp</i>(<i>X</i>) <i>g</i> :=<i>X</i>(<i>g◦f</i>)<i>,</i>


for any <i>g</i> <i>∈Cf</i>(<i>p</i>)<i>N</i>. Thus <i>dfp</i>(<i>X</i>)<i>∈Df</i>(<i>p</i>)<i>N</i> <i>Tf</i>(<i>p</i>)<i>N</i>. Note that if <i>X</i> = [<i>α</i>],


then



<i>X</i>(<i>g◦f</i>) = (<i>g◦f◦α</i>)<i></i>(0) = [<i>f◦α</i>]<i>g.</i>


Thus the two definitions of <i>dfp</i> presented above are indeed equivalent. Using


the second definition, one may immediately check that <i>dfp</i> is a


homomor-phism. Another fundamental property is:


<b>Exercise 9 (The chain rule).</b> Show that if<i>f</i>: <i>M</i> <i>→N</i> and<i>g</i>: <i>N</i> <i>→L</i>are
smooth maps, then, for any <i>p∈M</i>,


<i>d</i>(<i>g◦f</i>)<i>p</i> =<i>dgf</i>(<i>p</i>)<i>◦dfp.</i>


We say <i>f</i>: <i>M</i> <i>→</i> <i>N</i> is a <i>diffeomorphism</i> if <i>f</i> is a homeomorphism, and


<i>f</i> and <i>f−</i>1 <sub>are smooth. If there exists a diffeomorphism between a pair of</sub>


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

<b>Exercise 10.</b> Show that if <i>f</i>: <i>M</i> <i>→</i> <i>N</i> is a diffeomorphism, then <i>dfp</i> is an


isomorphism for all <i>p</i> <i>∈</i> <i>M</i>. In particular, conclude that if <i>M</i> and <i>N</i> are
diffeomorphic, then <i>dim</i>(<i>M</i>) = <i>dim</i>(<i>N</i>).


Note that the last statement if the above exercise also follows from the
standard fact in Algebraic topology that<b>R</b><i>n</i> <sub>and</sub> <b><sub>R</sub></b><i>m</i> <sub>are homemorphic only</sub>


</div>

<!--links-->

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×