Tải bản đầy đủ (.doc) (3 trang)

Tài liệu Đề cương ôn tập chương II - HH 7

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (94.29 KB, 3 trang )

` ƠN TẬP HÌNH HỌC 7 – CHƯƠNG 2
A . Trắc ngiệm : Chọn câu đúng nhất.
1 .Cho

ABC vng cân tại A. vậy góc B bằng:
A. 60
0
B. 90
0
C. 45
0
D. 120
0
2. Một tam giác là vng nếu độ dài 3 cạnh của nó là:
A. 2,3,4 B. 3,4,5 C. 4,5,6 D. 6,7,8
3. Một tam giác cân có góc ở đáy là 35
0
thì góc ở đỉnh có số đo là:
A. 100
0
B. 110
0
C. 85
0
D. 120
0
4. Tam giác ABC có BC = 3cm ; AC = 5cm ; AB = 4cm. Tam giác ABC vng tại đâu?
A. Tại B B. Tại C C. Tại A D. Khơng phải là tam giác vng
5. Tam giác ABC có AB = AC = BC thì tam giác ABC là
A. Tam giác nhọn B. Tam giác cân C. Tam giác vng D. Tam giác đều
6. Tam giác nào vng nếu độ lớn ba góc kà:


A. 30
0
, 70
0
, 80
0
B. 20
0
, 70
0
, 90
0
C. 65
0
, 45
0
, 70
0
D. 60
0
, 60
0
, 60
0
7. Tam giác cân là tam giác có:
A. Hai cạnh bằng nhau -B. Ba cạnh bằng nhau - C. Một góc bằng 60
0
- D. Một góc bằng 90
0
8. Trong một tam giác vng:

A. Hai góc nhọn bù nhau - B. Hai góc nhọn phụ nhau
C. Hiệu hai cạnh góc vng bằng cạnh huyền - D. Tổng hai cạnh góc vng bằng cạnh huyền
9. Một tam giác cân có góc ở đáy là 35
0
thì góc ở đỉnh có số đo là:
A. 100
0
B. 110
0
C. 85
0
D. 120
0
10. trong một tam giác góc đối diện với cạnh nhỏ nhất là:
A. góc nhọn B. góc vng C. góc tù D. góc bẹt
11. Góc ở đáy của tam giác cân là ?
A. Góc nhọn B. Góc vng C. Góc tù D. Góc bẹt
12. Cho ∆ABC có AB = AC và B = 45
0
thì tam giác ABC là tam giác :
A. vng B. Cân C. đều D. vng cân
13. Góc ở đỉnh của một tam giác cân bằng 80
0
. Vậy góc ở đáy bằng:
A. 40
0
B. 50
0
C. 60
0

D. 80
0
14. Một t giác vng có cạnh góc vng bằng 5cm và cạnh huyền bằng 13cm, vậy
cạnh còn lại bằng:
A. 5cm B. 8cm C. 12cm D. 18cm
15/ Một tam giác cân có góc ở đáy bằng 40
o
thì góc ở đỉnh có số đo là:
a/ 100
o
b/ 35
o

c/ 70
o
d/ 80
o
16/ Cho hình chử nhật có chiều dài 12cm , đường chéo là 13cm thì chiều rộng hình chử nhật là:
a/ 14cm b/ 5cm c/ 12cm d/ 10cm
17/ Tam giác nào là tam giác vng trong các tam giác có độ dài ba cạnh như sau:
a/ 8cm,9cm,14cm ; b/ 7cm,7cm,10cm ; c/ 5dm,11cm,12cm ; d/ 9cm, 15cm,12cm
18/ Để hai tam giác cân bằng nhau thì phải thêm điều kiện là:
a/Có cạnh đáy bằng nhau c/ Có cạnh đáy bằng nhau và góc ở đỉnh bằng nhau
b/ Có một cạnh bên bằng nhau d/ Có một góc ở đáy bằng nhau và một góc ở đỉnh bằng nhau
19/ Tam giác ABC có AB = AC ;
µ
B
= 45
o
thì tam giác ABC là tam giác :

a/ Vng b/ Đều c/ Vng cân d/ Cân
20/ Tam giác ABC có
µ
µ
B C=
= 60
o
thì tam giác ABC là tam giác:
a/ Vng b/ Đều c/ Vng cân d/ Cân

Võ Đức Huy – Giáo viên trường THCS Hoài Thanh – Haoif Nhơn – Bình Đònh
B . Bài tập :
1)Cho

ABC cân tại A. Trên BC lấy D và E sao cho BD = CE. Kẻ DH

AB, EK

AC.CMR:
a)

ABD =

ACE. b) HD = KE.
c)Gọi O là giao điểm của HD và KE ;

OED là tam giác gì ? d) AO là phân giác của góc BAC ?
2)Cho tam giác MNP cân tại N. Trên tia đối của tia MP lấy điểm I, trên tia đối của tia PM lấy điểm
K sao cho MI = PK.
a)Chứng minh: ∆NMI = ∆NPK

b)Vẽ NH ⊥ MP, chứng minh ∆NHM = ∆NHP và HM = HP
c)Tam giác NIK là tam giác gì? Vì sao?
3)Cho

ABC vng tại A, đường phân giác BE. Kẻ EH

BC ( H

BC ). Gọi
K là giao điểm của AH và BE. Chứng minh rằng:
a/.

ABE =

HBE b/. BE là đường trung trực của AH
4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC
a)Chứng minh: ∆AHB = ∆AHC b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân
c)Chứng minh MN // BC d)Chứng minh AH
2
+ BM
2
= AN
2
+ BH
2
5)Cho tam giác ABC vng tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA.
Kẻ AH vng góc với BC, kẻ DK vng góc với AC.
a)Chứng minh :
ADBDAB
ˆ

ˆ
=
; b)Chứng minh : AD là phân giác của góc HAC
c) Chứng minh : AK = AH.
6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm .
Kẻ AH vng góc với BC (H € BC)
a) Chứng minh : HB = HC và
·
CAH
=
·
BAH
b)Tính độ dài AH ?
c)Kẻ HD vng góc AB ( D € AB), kẻ HE vng góc với AC(E € AC). Chứng minh : DE//BC
7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng
vng góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E. Chứng minh rằng :
a)

AFE cân
b) Vẽ đường thẳng Bx//EF, cắt AC tại K. Chứng minh rằng : KF = BE
c) Chứng minh rằng : AE =
2
AB AC+
8) Cho tam giác DEF vng tại D, phân giác EB . Kẻ BI vng góc với EF tại I . Gọi H là giao điểm
của ED và IB . Chứng minh :
a) ΔEDB = ΔTam giác EIB ; b)HB = BF
c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ; d) DI// HF
9) Cho tam giác ABC vng tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vng góc với
BC. Đường thẳng EH và BA cắt nhau tại I .
a)Chứng minh rẳng : ΔABH = ΔEBH

b)Chứng minh BH là trung trực của AE
c)Chứng minh BH vng góc với IC . Có nhận xét gì về tam giác IBC
10) Cho ΔABC vng tại A, M là trung điểm BC, vẽ MH

AB. Trên tia đối tia MH lấy điểm K sao
cho MK=MH.

Võ Đức Huy – Giáo viên trường THCS Hoài Thanh – Haoif Nhơn – Bình Đònh
a).CMR: ΔMHB=ΔMKC
b).CMR: AC=HK
c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC
11) Cho

ABC cân tại A. Trên BC lấy D và E sao cho BD = CE. Kẻ tia Dx

AB,kẻ tia Ey

AC,
Dx cắt Ey tại H.
a) CMR:

ABE =

ACD. b) CMR: HD = HE.
c)Gọi O là giao điểm của CD và BE ;

OED là tam giác gì ? chứng minh.
d) CMR: AO là tia phân giác của góc BAC ? e) A ,O , H thẳng hàng
12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)
a) Chứng minh BH = HC và BAH = CAH

b) Tính độ dài BH biết AH = 4 cm.
c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).
d) Tam giác ADE là tam giác gì? Vì sao?
13) Cho ∆ABC vuơng tại A, AB = 3cm, AC = 4cm.
a) Tính BC
b) Trên tia đối của tia AB lấy điểm M sao cho AM = AC. Trên tia đối của tia AC lấy điểm N sao cho
AN = AB. CMR : BC = MN và NB // MC
c) Gọi I là trung điểm MC. CMR: ∆BIN cân.
14) Cho tam giác ABC có B = 90
0
, M là trung điểm BC . Trên tia đối của tia MA lấy điểm E sao cho
ME = MA. Chứng minh:
a)

ABM =

ECM ; b) BE //AC
15/ Cho tam giác ABC vng tại A , AB = 3 cm ; AC = 4cm
a) Tính : BC
b) Trên tia đối của AB lấy điểm M sao cho AM = AC. Trên tia đối của tia AC lấy điểm N sao cho
AN = AB. Chứng minh BC = MN
c) CMR NB // MC ; d) Gọi I là turng điểm MC . CMR : Tam giác BIN cân
16/ Cho tam giác ABC có AB = 3cm , AC = 4cm , BC = 5cm.Trên tia đối tia HA lấy điểm E sao cho
HE = HA . Chứng minh rằng :
a/ Tam giác ABC vng tại A? b/ BA = BE
c/ CH là tia phân giác góc ACE ; d/ Tam giác BEC vng
17/ Cho

AMN có AM < AN và AM = 10 cm. Kẻ AH


MN , MH = 6cm, HN= 15 cm. Tính độ dài
AH, AN
18/ Cho

AMN cân tại A. Trên tia MN lấy điểm E, trên tia NM lấy điểm F sao cho ME = NF.
a) CM: AE = AF
b) Kẻ EH

AM, FK

AN (H

AM, K

AN). CM: EH = FK
c) Gọi O là giao điểm của EH và FK. CM:

OEF cân
19) Cho ΔABC nhọn , dựng ở phía ngồi ΔABC hai tam giác vng cân : ΔABE và ΔACD .CMR :
EC = BD ; EC

BD
20)Cho tam giác ABC có góc A = 60
0
. Tia phân giác của góc B cắt AC tại D, tia phân giác của góc C
cắt AB tại E. Các tia phân giác đó cắt nhau tại I. Chứng minh ID = IE.

Võ Đức Huy – Giáo viên trường THCS Hoài Thanh – Haoif Nhơn – Bình Đònh

×