TRƯỜNG THPT XN ĐỈNH
NĂM HỌC 2020 – 2021
MƠN: TỐN - KHỐI: 12
A. KIẾN THỨC ƠN TẬP
I. GIẢI TÍCH: Ứng dụng tích phân, số phức.
II. HÌNH HỌC: Phương trình mặt cầu, mặt phẳng, đường thẳng.
B. CÂU HỎI TRẮC NGHIỆM
I. GIẢI TÍCH
1. Ứng dụng tích phân
Câu 1. Diện tích S của hình phẳng tơ đậm trong hình dưới đây được tính theo công thức nào sau đây?
2
4
A. S f ( x) dx f ( x) dx
0
2
2
2
4
B. S f ( x)dx f ( x) dx
0
4
C. S f ( x) dx f (x) dx
0
2
2
4
D. S f ( x) dx
0
Câu 2. Diện tích S của hình phẳng giới hạn giới hạn bởi đồ thị hàm số y x3 3x 2 2 , hai trục
tọa độ và đường thẳng x 2 là
3
7
5
A. S
B. S
C. S 4
D. S
2
2
2
Câu 3. Thể tích khối tròn xoay được tạo thành khi quay quanh trục Ox hình phẳng giới hạn bởi các
đường y x , y 2 x và y 0 là
2
3
5
A.
B.
C.
D.
7
2
6
Câu 4. Tính diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y x 2 , y 2 x .
3
20
4
3
A. S
.
B. S
.
C. S .
D. S .
20
3
3
4
Câu 5. Thể tích V của phần vật thể giới hạn bởi mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể
bởi mặt phẳng tùy ý vng góc với trục Ox tại điểm có hồnh độ x 1 x 3 thì được thiết diện là
một hình chữ nhật có độ dài hai cạnh là 3x và
124
A. V 32 2 15 .
B. V
.
3
3x 2 2 .
C. V
124
.
3
D. V 32 2 15 .
1
TRƯỜNG THPT XN ĐỈNH
Câu 6. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y f1 ( x) C1 , y f 2 ( x) C2 liên tục trên
đoạn [a;b] và hai đường thẳng x a , x b được xác định:
y
b
A. S f1 x f 2 x dx
(C1 )
a
b
(C2 )
B. S f1 x f 2 x dx
a
c1
c2
b
C. S f1 x f 2 x dx f 2 x f1 x dx f1 x f 2 x dx
a
c1
c1
O
c2 b
a c1
x
c2
b
D. S f1 x f 2 x dx f1 x f 2 x dx
a
c1
Câu 7. Diện tích hình phẳng giới hạn bởi các đường y x và x 2 y 0 bằng với diện tích hình
nào sau đây ?
A. Diện tích hình vng có cạnh bằng 2 .
B. Diện tích hình chữ nhật có chiều dài, chiều rộng lần lượt 5 và 3 .
C. Diện tích hình trịn có bán kính bằng 3 .
D. Diện tích tồn phần khối tứ diện đều có cạnh bằng
24 3
.
3
2
Câu 8. Thể tích vật thể trịn xoay sinh ra khi hình phẳng giới hạn bởi các parabol y 4 x và
y 2 x 2 quay quanh trục Ox là kết quả nào sau đây?
A. V 10 .
B. V 12 .
C. V 14 .
D. V 16 .
Câu 9. Diện tích hình phẳng giới hạn bởi các đồ thị y f ( x ) và y g ( x ) liên tục trên đoạn [a; b ] và
hai đường thẳng x a; x b là
b
A.
b
f ( x) g ( x)dx .
a
B.
b
f ( x) g ( x) dx.
a
C.
b
f ( x) g ( x) dx.
a
D.
f ( x) g ( x) dx.
a
2
Câu 10. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y x 1 , trục hoành và 2 đường thẳng
x 1; x 3 là
3
A.
3
x 2 1 dx.
1
B. 2 ( x 2 1)dx.
1
3
C. ( x 2 1)dx.
1
3
D. ( x 2 1) 2 dx.
1
Câu 11. Cho hàm số y f ( x ) liên tục và không âm trên [a; b ] Hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng x a; x b quay quanh trục hồnh tạo nên một khối trịn xoay. Thể
tích khối trịn xoay là
b
A. f ( x) dx.
a
a
B. f ( x) dx.
b
b
C. f 2 ( x)dx.
a
a
D. f 2 ( x) dx.
b
Câu 12. Cho đồ thị hàm số y=f(x)
Diện tích hình phẳng (gạch trong hình) là
2
TRƯỜNG THPT XUÂN ĐỈNH
0
0
A. f x dx f x dx
3
1
B.
4
4
3
f x dx f x dx
3
C.
1
4
4
f x dx f x dx
0
D.
0
f x dx
3
Câu 13. Nếu gọi S là diện tích của hình phẳng được giới hạn bởi các đường
x 0; x ; y 0; y cosx.e x thì khẳng định nào đây là đúng ?
2
1 2
S
C.
D. S e
e 1
A. S e 2
B. S e 2 1
2
Câu 14. Diện tích miền hình phẳng giới hạn bởi các đường y 2 x , y x 3 , y 1 bằng
1
1 1
1
1
3.
.
1.
2.
A.
B.
C.
D.
ln 2
ln 2 2
ln 2
ln 2
Câu 15. Thể tích vật thể trịn xoay khi quay hình phẳng giới hạn bởi đồ thị hàm số y = x 2 ; x y 2
quanh trục ox là
4
3
2
B.
C.
D.
A.
3
10
10
10
Câu 16. Ký hiệu (H) là hình phẳng giới hạn bởi các đường y sin x cos x a , y 0, x 0, x
2
với a là tham số thực lớn hơn 2. Tìm a sao cho thể tích V của khối trịn xoay thu được khi quay hình
3 2
(H) xung quanh trục hồnh bằng
.
2
A. a 3
B. a 4
C. a 6
D. a 9
Câu 17. Hình vng OABC có cạnh bằng 4 được chia thành hai phần bởi đường cong C có
1 2
x . Gọi S1 , S2 là diện tích của phần khơng bị gạch và phần bị gạch (như hình
4
S
vẽ sau). Tính tỉ số 1
S2
phương trình y
A.
S1 3
.
S2 2
B.
S1
2.
S2
C.
S1
1.
S2
D.
S1 1
.
S2 2
Câu 18. Diện tích hình phẳng giới hạn bởi hai đường: y x 2 4 x 3 , x 1. bằng
A. 107 .
6
B. 109 .
6
C. 109 .
7
D. 109 .
8
2
Câu 19. Cho hình phẳng H giới hạn bởi y 2x x , y 0 . Tính thể tích của khối tròn xoay thu
a
a
1 với a, b và là phân số tối
b
b
được khi quay H xung quanh trục Ox ta được V
3
TRƯỜNG THPT XUÂN ĐỈNH
giản. Tính a , b.
A. a 1, b 15 .
B. a –7, b 15 .
C. a 241, b 15 .
D. a 16, b 15
Câu 20. Cho hàm số f x liên tục trên đoạn a; b .
Khi quay hình phẳng như hình vẽ trên quanh trục Ox ta được khối trịn xoay có thể tích là
b
b
2
A. f x dx .
2
B. f x dx .
a
a
b
b
2
C. f x dx .
a
D. f x dx .
a
2. Số phức – các phép tốn – căn bậc hai – phương trình bậc hai
Câu 21. Có bao nhiêu số phức z thỏa mãn z 10 đồng thời phần ảo gấp ba lần phần thực
A. 1
B. 2
C. 3
D. 4
Câu 22. Gọi A và B lần lượt là hai điểm biểu diễn của hai số phức z 5 3i và z ' 3 5i . Kết luận
nào sau đây là đúng?
A. A và B đối xứng nhau qua trục hoành
B. A và B đối xứng nhau qua trục tung
C. A và B đối xứng nhau qua gốc tọa độ
D. A và B đối xứng nhau qua đường thẳng
yx
Câu 23. Cho số phức z thỏa mãn
5( z i )
2 i . Môđun của số phức 1 z z 2 là
z 1
D. 13
Câu 24. Biết điểm A(3;-2) là điểm biểu diễn của số phức z. Hỏi số phức liên hợp z của z là
A. z 3 2i
B. z 3 2i
C. z 3 2i
D. z 3 2i
1
1
1
Câu 25. Tìm số phức z thỏa mãn
z 1 2i 1 2i 2
A. 4
B. 9
C. 13
8 14
8 14
10 35
i
B. z i
C. z i
25 25
25 25
13 26
Câu 26. Tìm số phức z thỏa mãn 1 i z 1 2i 3 2i 0
A. z
3 5
5 3
i
C. z i
2 2
2 2
Câu 27. Tìm số phức z thỏa mãn zi 2 z 4 4i
A. z 4 4i
B. z 3 4i
C. z 3 4i
2
Câu 28. Tìm phần ảo của số phức z thỏa mãn 2i 1 iz 3i 1
A. 8
B. 9
C. 9
A. z 4 3i
B. z
D. z
10 14
i
13 25
D. z 4 3i
D. z 4 4i
D. 8
Câu 29. Phương trình z 2 2 z 5 0 có nghiệm là z a bi ( a, b ). Khi đó
a
bằng
b
1
1
1
1
B.
C.
D.
2
3
4
5
Câu 30. Kí hiệu z1 , z2 , z3 và z4 là các nghiệm phức của phương trình z 4 z 2 12 0 . Tổng
A.
4
TRƯỜNG THPT XUÂN ĐỈNH
T z1 z2 z3 z4 bằng
A. T 4.
B. T 2 3.
C. T 4 2 3.
D. T 2 2 3.
Câu 31. Cho số phức z thỏa mãn | z 1| 2 . Biết rằng tập hợp điểm biểu diễn các số phức
w 1 i 3 z 2 là một đường trịn. Tính bán kính r của đường trịn đó
A. r 16
B. r 4
C. r 25
D. r 9
Câu 32. Tập hợp các điểm trong mặt phẳng biểu diễn cho số phức z thoả mãn 2 z i z z 2i là
A. Một đường thẳng
B. Một đường tròn
C. Một parabol
D. Một elip.
1 i
Câu 33. Cho số phức z thỏa mãn điều kiện 2 i z
5 i . Môđun của số phức w 1 2 z z 2
1 i
là
A. 10.
B. 10 .
C. 100.
D. 100 .
z
i 1 i (1 i )3979 ?
2
Câu 34. Tìm phần thực, phần ảo của số phức z thỏa
A. Phần thực là 21990 và phần ảo là 2 .
B. Phần thực là 21990 và phần ảo là 2 .
C. Phần thực là 21989 và phần ảo là 1 .
D. Phần thực là 21989 và phần ảo là 1.
2
Câu 35. Phương trình 2 i z az b 0 a, b có hai nghiệm là 3 i và 1 2i . Khi đó a ?
A. 9 2i
B. 15 5i
C. 9 2i
D. 15 5i
Câu 36. Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện phần thực
của z bằng -2 là
A. x 2 .
B. y 2 .
C. y 2 x
D. y x 2
Câu 37. Trong mặt phẳng phức Oxy , số phức z thỏa điều kiện nào thì có điểm biểu diễn số phức
thuộc phần tơ màu như hình vẽ
A. 1 z 2 và phần ảo dương.
B. 1 z 2 và phần ảo âm.
C. 1 z 2 và phàn ảo dương.
D. 1 z 2 và phần ảo âm.
Câu 38. Cho hai số thực x, y thỏa mãn
2 x 1 1 2 y i 2 2 i yi x . Giá trị của x 2 3 xy y bằng
A. 1 .
B. 1 .
C. 2 .
Câu 39. Số phức z thỏa mãn: z 2 3i z 1 9i là
D. 3 .
A. 2 i .
B. 2 i .
C. 3 i .
D. 2 i
Câu 40. Tìm số thực x, y để số phức z1 9 y 2 4 10 xi 5 và z2 8 y 2 20i11 là liên hợp của nhau?
A. x 2; y 2 .
B. x 2; y 2 .
C. x 2; y 2 .
D. x 2; y 2 .
Câu 41. Cho số phức z1 1 2i và z2 1 2i . Khẳng định nào sau đây là khẳng định đúng?
z
A. z1 z2 0 .
B. 1 1 .
C. z1 .z2 3 4i .
D. z1 z2 .
z2
Câu 42. Cho số phức z 1 2i . Khẳng định nào sau đây là khẳng định đúng?
z
1 2
A. z 1 2 .
B. z 1 1 2i
C. z.z 1 0 .
D. z 1
i.
z
5 5
5
TRƯỜNG THPT XUÂN ĐỈNH
Câu 43. Trong R , phương trình z z 2 4i có nghiệm là
A. z 3 4i
B. z 2 4i
C. z 4 4i
D. z 5 4i
Câu 44. Xác định tập hợp các điểm M trong mặt phẳng phức biểu diễn các số phức z thỏa mãn điều
kiện: | z 1 i | 1 .
A. Đường trịn tâm I(-1;-1), bán kính R = 1.
B. Hình trịn tâm I(1;-1), bán kính R = 1.
C. Hình trịn tâm I(-1;-1), bán kính R = 1 (kể cả những điểm nằm trên đường tròn).
D. Đường tròn tâm I(1;-1), bán kính R = 1.
Câu 45. Điểm biểu diễn số thuần ảo nằm ở đâu trên mặt phẳng tọa độ?
A. Trục Ox
B. Trục Oy
C. Gốc tọa độ
D. Phân giác của góc phần tư thứ I, III.
Câu 46. Cho các số phức z, z1 , z2 . Mệnh đề nào sau đây là mệnh đề sai
A. z1 =z 2 z1 = z 2
B. z = 0 z = 0
C. Tập hợp điểm biểu diễn các số phức z thỏa mãn z 1 là đường trịn tâm O, bán kính R = 1
D. Hai số phức bằng nhau khi và chỉ khi phần thực và phần ảo tương ứng bằng nhau
Câu 47. Cho hai số phức z1 3 i, z2 2 i . Giá trị của biểu thức z1 z1 z2 là
A. 0
B. 10
C. 10
Câu 48. Cho số phức z thỏa z i 1 z 2i . Giá trị nhỏ nhất của z là
1
A.
B. 1
C. 2
2
Câu 49. Có bao nhiêu số phức z thỏa mãn z + z = 2017
A. 0
B. 1
C. 2
1
Câu 50. Cho số phức z 3 4i . Khi đó mơđun của z là
1
1
1
A.
B.
C.
5
4
5
D. 100
D.
1
4
D. Vơ số
D.
1
3
(2 3i)(4 i)
có tọa độ là
3 2i
A. (1;-4)
B. (-1;-4)
C. (1;4)
D. (-1;4)
1
Câu 52. Cho số phức z = a + bi. Khi đó số
z z là
2i
A. Một số thực
B. 0
C. Một số thuần ảo
D. i
2
Câu 53. Cho số phức z thỏa mãn: (3 2i)z (2 i) 4 i. Hiệu phần thực và phần ảo của số phức z
là
A. 1
B. 0
C. 4
D. 6
z
Câu 54. Cho hai số phức z = a + bi và z’ = a’ + b’i. Số phức
có phần ảo là
z'
aa ' bb'
aa ' bb '
2bb'
aa ' bb '
A. 2
B. 2
C. 2
D. 2
2
2
2
a b
a' b'
a b
a ' b'2
3 2i 1 i
Câu 55. Thu gọn số phức z =
ta được
1 i 3 2i
Câu 51. Điểm biểu diễn số phức z
6
TRƯỜNG THPT XUÂN ĐỈNH
21 61
23 63
15 55
i
i
i
B.
C.
26 26
26 26
26 26
Câu 56. Nghiệm của phương trình 4 7i z 5 2i 6iz là
A.
D.
2
6
i
13 13
18 13
18 13
18 13
18 13
i
i
i
i
B.
C.
D.
7 7
17 17
7 17
17 17
Câu 57. Gọi z1 và z2 lần lượt là nghiệm của phương trình: z2 2 z 5 0 . Tính z1 z2
A.
A. 2 5
B. 10
Câu 58. Gọi D là tập hợp các số phức z thỏa mãn
A. Trục hoành.
C. Đường phân giác y = x.
C. 3
D. 6
z i
1 . Khi đó D là
zi
B. Trục tung.
D. Đường phân giác y = -x.
Câu 59. Gọi D là tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z sao cho
1
là số
z i
thuần ảo. Lựa chọn phương án đúng ?
A. D là trục tung.
B. D là trục hoành.
C. D là đường phân giác thứ nhất y = x
D. D là trục tung bỏ đi điểm I(0; 1).
Câu 60. Xét các số phức z thỏa mãn z z 1 2i . GTNN của biểu thức P 1 2i z 11 2i bằng
A. 10
B.
2
5
2
C.
5
2
D.
2
5
II. HÌNH HỌC
Câu 61. Cho mặt cầu S : x 2 y 2 z 2 2 x 4 y 2 z 0 . Tâm và bán kính mặt cầu S là
A. I 1;2;1 , R 6
B. I 1; 2; 1 , R 6
C. I 1; 2; 1 , R 6
D. I 1;2;1 , R 6
Câu 62. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;-1) và đi qua điểm
A(2;1;2). Mặt phẳng nào sau tiếp xúc với (S) tại A ?
A. x + y - 3z - 8 = 0.
B. x - y - 3z + 3 = 0.
C. x + y + 3z - 9 = 0.
D. x + y - 3z + 3 =
0.
Câu 63. Trong khơng gian Oxyz, mặt cầu có tâm thuộc Ox và tiếp xúc với hai mặt phẳng
P : x y 2 z 5 0, Q : x 2 y z 3 0 có phương trình là
1
2
1
.
B. x 4 y 2 z 2 .
6
5
1
2
1
2
C. x 4 y 2 z 2 .
D. x 4 y 2 z 2 .
8
7
Câu 64. Trong không gian Oxyz, mặt cầu ( S ) đi qua A 0; 2;0 , B 2;3;1 , C 0;3;1 và có tâm nằm
2
A. x 4 y 2 z 2
trên Oxz . Phương trình mặt cầu ( S ) là
2
2
B. x 2 y 3 z 2 16
2
2
D. x 1 y 2 z 3 14
A. x 2 y 6 z 4 9
C. x 2 y 7 z 5 26
2
2
2
Câu 65. Trong không gian với hệ tọa độ Oxyz, cho hai điểm P 2;0; 1 , Q 1; 1;3 và mặt phẳng
R : 3x 2 y z 5 0 . Viết phương trình mặt phẳng
A. 7 x 11y z 3 0
C. 7 x 11y z 15 0
đi qua P, Q và vng góc với mp R
B. 7 x 11y z 1 0
D. 2 x y z 0
7
TRƯỜNG THPT XUÂN ĐỈNH
Câu 66. Trong không gian tọa độ Oxyz, cho đường thẳng d :
x
y 1 z 3
và điểm A 1;2;3.
3
4
1
Phương trình mặt phẳng đi qua A và chứa d là
A. 23 x 17 y z 14 0.
B. 23 x 17 y z 14 0.
C. 23 x 17 y z 60 0.
D. 23 x 17 y z 14 0.
Câu 67. Trong không gian tọa độ Oxyz, cho 2 đường thẳng cắt nhau
x 1 t
x 1
y
z2
d:
, d ' : y 2t
. Viết phương trình mặt phẳng chứa d và d’.
1
2
3
z 2 3t
A. 3 y 2 z 4 0.
B. 3 y 2 z 4 0.
C. 3 y 2 z 4 0.
D. 3 y 2 z 4 0.
x 1 t
x 1 y 2 z
, d ':
y 2t
Câu 68. Trong không gian Oxyz, cho 2 đường thẳng song song d :
1
1
2
z 1 2t
. Viết phương trình mặt phẳng chứa d và d’.
A. 9 x y 4 z 7 0.
C. 9 x y 4 z 7 0.
B. 9 x y 4 z 7 0.
D. 9 x y 4 z 7 0.
Câu 69. Trong không gian với hệ tọa độ Oxyz cho M 1; 2;1 . Viết phương trình mặt phẳng (P) qua
M cắt trục Ox, Oy, Oz lần lượt tại A, B, C sao cho
A. P : x 2 y 3 z 8 0
1
1
1
đạt giá trị nhỏ nhất.
2
2
OA OB
OC 2
B. P : x y z 4 0
x y z
D. P : 1
1 2 1
x 1 t
x 1 y 2 z
. Khi đó d1 và d2
Câu 70. Trong k/gian Oxyz cho đường thẳng d1 : y 2t ; d2 :
1
1
3
z 1 3t
A. Cắt và vng góc
B. Cắt nhưng khơng vng góc
C. Song song
D. Chéo nhau
x 1 y 3 z 2
Câu 71. Trong không gian Oxyz cho A(3;2;0), đường thẳng d :
. Khoảng cách từ
1
2
2
điểm A đến đường thẳng d là
A. 2
B. 3
C. 4
D. 5
Câu 72. Trong không gian Oxyz gọi d là phương trình đường thẳng qua A 1; 2;0 và có một véctơ
chỉ phương là u 1;2; 3 . Khẳng định nào dưới đây là sai?
C. P : x 2 y z 6 0
x 1 t
A. d : y 2 2t
z 3t
x t
B. d : y 4 2t
z 3 3t
x 1 t
C. d : y 2 2t
z 3t
x t
D. d : y 4 2t
z 1 3t
Câu 73. Trong không gian Oxyz gọi d là phương trình đường thẳng qua A 1; 2;0 và B 2;0;1 .
Khẳng định nào sau đây là đúng?
8
TRƯỜNG THPT XUÂN ĐỈNH
x 1 t
A. d : y 2 2t
z 1 t
x 2 t
B. d : y 2t
z 1 t
x 3 y 2 z 1
1
2
1
x
1
t
x 1 y 2 z
Câu 74. Trong không gian Oxyz cho hai đường thẳng d : y 2t ; :
và gọi là
2
3
1
z 2t
C. d :
x 2 y z 1
1
2
1
D. d :
góc giữa d và . Khi đó cos có giá trị bằng
A. 5 13
21
B.
5 14
21
C.
5 15
21
D. 5 17
21
x 1 t
Câu 75. Trong không gian Oxyz cho đường thẳng d : y 2t mặt phẳng P : 2 x 3y z 1 0 .
z 2t
Hình chiếu của đường thẳng (d) trên mặt phẳng (P) cóa phương trình là
x 3t
A. y 1 t
2
5
z 2 9t
x 3t
B. y 1 t
z 5 9t
x 3t
C. y 1 t
2
5
z 2 9t
x 3t
D. y 1 t
z 5 9t
Câu 76. Phương trình đường thẳngtrong khơng gian Oxyz đi qua điểm A 1; 2;1 và song song với
x y z 1
có phương trình là
2 1
1
x 1 y 2 z 1
x 1 y 2 z 1
A.
B.
2
1
1
2
1
1
x 3 y 1 z
C.
D. Đáp án khác
2
1
1
Câu 77. Trong không gian với hệ tọa độ Oxyz, hình chiếu vng góc của điểm P 2; 1; 3 trên
đường thẳng d :
x 3t
đường thẳng y 7 5t là điểm có tọa độ nào sau đây?
z 2 2t
A.(-3; 2; 4)
B. (-3; -2 ;-4)
C. (3;-2;4)
D. (3;-2;-4 )
x 3 y 1 z 1
Câu 78. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d :
và
2
1
2
điểm M(1;2;-3). Mặt cầu tâm M, tiếp xúc với đường thẳng d có bán kính R bằng bao nhiêu?
A. R 2
B. R 2 5
C. R 2 2
Câu 79. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng
D. R = 4.
x 1
y
z2
và
1
1
1
x 2 y 3 z 1
. Góc giữa hai đường thẳng trên là
2
2
4
A. 30
B. 45
C. 60
D. 90
9
TRƯỜNG THPT XUÂN ĐỈNH
Câu 80. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng qua A 1; 0; 1 và có véc tơ chỉ
phương u 2; 4; 6 . Phương trình tham số của đường thẳng là
x 1 2 t
A. d : y 4t
z 1 6t
x 2 t
B. d : y 4
z 6 t
x 1 t
C. d : y 2t
z 1 3t
x 1 t
D. d : y 2t
z 1 3t
x 2 4t1
Câu 81. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : y 1 3t1 và
z 1 5t
1
x 1 7t2
d 2 : y 3 5t2 . Vị trí tương đối của d1 và d2 là
z 3 t
2
B. d1 d2
C. d1 và d2 trùng nhau D. d2 và d1 chéo nhau
Câu 82. Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) song song với 2 đường thẳng
x 2 t
x 2 y 1 z
. Mặt phẳng (P) có 1 véc tơ pháp tuyến là
y 3 2t và
2
3
4
z 1 t
A. (-5; 6;-7)
B. (5; -6 ;7)
C. (-5 ; -6 ; 7)
D. (-5 ;6 ;7)
Câu 83. Mặt cầu S tâm I 1; 2; 3 và tiếp xúc với P : x 2 y 2 z 1 0 có phương trình là
A. d1 cắt d2
4
4
2
2
2
2
2
2
A. x 1 y 2 z 3 .
B. x 1 y 2 z 3 .
9
9
4
2
2
2
16
2
2
2
C. x 1 y 2 z 3 .
D. x 1 y 2 z 3 .
3
3
Câu 84. Trong không gian với hệ trục tọa độ Oxyz , mặt phẳng đi qua M 0; 2;3 , song song
x 2 y 1
z và vng góc với mặt phẳng : x y z 0 có pt là
2
3
A. 2 x 3 y 5 z 9 0 .
B. 2 x 3 y 5 z 9 0 .
C. 2 x 3 y 5 z 9 0 .
D. 2 x 3 y 5 z 9 0 .
với đường thẳng d :
x 1 t
y t có vị trí
z 2 3t
x 1 y 2 z 4
Câu 85. Trong không gian Oxyz , hai đường thẳng d :
và d ' :
2
1
3
tương đối là
A. trùng nhau.
B. song song.
C. chéo nhau.
D. cắt nhau.
Câu 86. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng : x 2 y 2 z m 0 và điểm
A 1;1;1 . Khi đó m nhận giá trị nào sau đây để khoảng cách từ điểm A đến mặt phẳng bằng 1?
A. 2.
B. 8.
C. 2 hoặc 8 .
D. 3.
Câu 87. Trong không gian với hệ tọa độ Oxyz , phương trình nào sau đây là phương trình chính tắc
của đường thẳng đi qua hai điểm A 1; 2;5 và B 3;1;1 ?
x 1 y 2 z 5
.
2
3
4
x 1 y 2 z 5
C.
.
2
3
4
A.
x 3 y 1 z 1
.
1
2
5
x 1 y 2 z 5
D.
.
3
1
1
B.
10
TRƯỜNG THPT XUÂN ĐỈNH
Câu 88. Trong không gian với hệ tọa độ Oxyz , phương trình đường thẳng đi qua điểm
M 2;1; 5 , đồng thời vng góc với hai vectơ a 1;0;1 và b 4;1; 1 là
x 2 y 1 z 5
.
1
5
1
x 2 y 1 z 5
C.
.
1
5
1
x2
1
x 1
D.
2
z 5
.
1
z 1
.
5
x 2 y 1 z 1
Câu 89. Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d1 :
và
1
3
2
x 1 3t
d 2 : y 2 t . Phương trình đường thẳng nằm trong : x 2 y 3z 2 0 và cắt hai đường thẳng
z 1 t
d1, d2 là
A.
B.
y 1
5
y 5
1
x 3 y 2 z 1
.
5
1
1
x 8 y 3 z
D.
.
1
3
4
x 1 t
Câu 90. Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng d 1 : y 2t và
z 2 t
x 3 y 2 z 1
.
5
1
1
x 3 y 2 z 1
C.
.
5
1
1
A.
B.
x 2 t
d 2 : y 1 2t .
z 2 m t
Để hai đường thẳng hợp với nhau một góc bằng 600 thì giá trị của m bằng
A. m 1
B. m 1
C. m
1
2
D. m
1
2
Câu 91. Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình chính tắc
x 1 2t
của đường thẳng d: y 3t
?
z 2 t
x 1 y z 2
x 1 y z 2
x 1 y z 2
x 1 y z 2
.
B.
.
C.
.
D.
.
2
3
1
2
3
2
1
3
2
2
3
1
Câu 92. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x – 2y –z +1 = 0 và đường thẳng
x 1 y 2 z 1
. Tính khoảng cách d giữa đường thẳng và (P) ?
:
2
1
2
1
5
2
A. d .
B. d .
C. d .
D. d 2 .
3
3
3
x 3 y 6 z 1
Câu 93. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
và
2
2
1
A.
x t
d 2 : y t t . Đường thẳng đi qua điểm A(0;1;1) , vng góc với d1 và cắt d 2 có PT là
z 2
A.
x y 1 z 1
1 3
4
B.
x y 1 z 1
1
3
4
C.
x y 1 z 1
1
3
4
D.
x 1 y z 1
1 3
4
11
TRƯỜNG THPT XUÂN ĐỈNH
x 1 t
x 0
Câu 94. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : y 0
và d2 : y 4 2 t .
z 5 t
z 5 3t
Phương trình đường vng góc chung của d1 và d2 là
x 4 t
x 4
y
z 2
x 4 y z 2
x 4 y z 2
.
.
.
.
A.
B. y 3t
C.
D.
2
3
2
2
3
2
2
3
2
z
2
t
x 5 t
Câu 95. Trong không gian Oxyz, cho hai đường thẳng d1 , d 2 có phương trình lần lượt là
y 3 t
z 2 2t
x 1 3t '
và
y 1 t ' . Tìm tham số thực m để hai đường thẳng d1 và d2 cắt nhau.
z 5 mt '
A. m 1
B. m 1
C. m 2
D. m 2
x y 1 z 2
Câu 96. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:
và mặt phẳng
1
2
3
(P): x 2 y 2 z 3 0 . Tọa độ điểm M thuộc đường thẳng (d) và cách mp (P) một đoạn bằng 2 là
A. M 1; 3; 5
B. M 2; 3; 1
C. M 2; 5; 8
D. M 1; 5; 7
--------------------------------------HẾT----------------------------------
12