Tải bản đầy đủ (.pdf) (34 trang)

Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Võ Nguyên Giáp

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.81 MB, 34 trang )

(1)

Trang | 1
TRƯỜNG THPT VÕ NGUYÊN GIÁP


ĐỀ THI THỬ THPT QUỐC GIA 2021
MƠN TỐN


Thời gian: 90 phút


Câu 1: Tìm GTLN và GTNN của hàm số yx55x45x31 trên đoạn

1; 2


A.


1;2 1;2


min 10, max 2


x  y  x  y


B.


 1;2 1;2


min 2, max 10


x  y  x  y


C.


 1;2 1;2


min 10, max 2



x  y  x  y 


D.


1;2  1;2


min 7, max 1


x  y  x  y


Câu 2: Gía trị lớn nhất của hàm số

 

x 6 8x2
1
f


x



 trên tập xác định của nó là


A. - 2


B.2


3


C. 8
D. 10


Câu 3: Xác định giá trị của tham số m để hàm số yx33mx2m nghịch biến trên khoảng

 

0;1


A. 1


2


m


B. 1


2


m


C. m0


D. m0


Câu 4: Số đường tiệm cận của đồ thị hàm số 1


2
x
y


x



 là


A. 0


B. 1
C. 2
D. 3



(2)

Trang | 2


B.

; 0

2;


C.

; 2



D.

0;



Câu 6: Đồ thị hàm số


2


1


x
y


x




 có bao nhiêu đường tiệm cận ngang:


A.0
B. 1
C. 2
D. 3



Câu 7: Cho hàm số yf x

 

có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?


A. Hàm số có tiệm cận đứng là y = 1
B. Hàm số khơng có cực trị


C. Hàm số có tiệm cận ngang là y = 2
D. Hàm số đồng biến trên R


Câu 8. Cho hàm số 2


3
x
y


x



 có đồ thị

 

C . Có bao nhiêu tiêu điểm M thuộc

 

C sao cho khoảng cách


từ điểm M đến tiệm cận ngang bằng 5 lần khoảng cách từ điểm M đến tiệm cận đứng.
A. 1


B. 2
C. 3
D. 4


Câu 9. Cho hàm số 2 1

 




1
x


y C


x



 . Hệ số góc của tiếp tuyến với đồ thị

 

C sao cho tiếp tuyến đó cắt


trục $Ox,Oy$ lần lượt tại các điểm $A,B$ thỏa mãn OA4OB là:
A. 1


4


B. 1



(3)

Trang | 3


C. 1
4


 hoặc 1
4
D. 1


Câu 10. Cho hàm số 5



2
y


x


 . Khẳng định nào sau đây là đúng?


A. Hàm số đồng biến trên R\ 2

 


B. Hàm số nghịch biến trên

 2;



C. Hàm số nghịch biến trên

 ; 2

2;


D. Hàm số nghịch biến trên R


Câu 11. Trong không gian Oxyz, mặt phẳng

Oxy

có phương trình là


A. z0. B. x0. C. y0. D. x y 0.


Câu 12. Trong không gian Oxyz, cho hai điểm A

1;1;3 ,

 

B 1; 2;3

. Tọa độ trung điểm của đoạn thẳng


AB là:


A.

0;3;6 .

B.

2;1;0

. C. 0; ;33
2


 


 


 . D.

2; 1;0

.


Câu 12: Tính mơ đun của số phức z = 4-3i.


A. z  7 B. z 7 C. z 5 D. z 25
Câu 14: Trên mặt phẳng tọa độ, số phức z 3i 4 được biểu diễn bởi điểm A B C D, , , ?


A. Điểm D B. Điểm B C. Điểm A D. Điểm C


Câu 15. Giá trị lớn nhất của hàm số yx43x22 trên đoạn

 

0;3 bằng


A. 57. B. 55. C. 56. D. 54.


Câu 16. Cho hàm số yf x

 

có đạo hàm f '

 

xx x

1

 

2 x2

. Tìm khoảng nghịch biến của đồ
thị hàm số yf x

 

.



(4)

Trang | 4
Câu 17. Các khoảng nghịch biến của hàm số 2 1


1


x
y


x





 là



A.

 ;

  

\ 1 . B.

;1

. C.

;1

1;

. D.

1;

.


Câu 18. Cho hàm số yf x

 

có đồ thị như hình vẽ. Số nghiệm của phương trình 2f x

 

 3 0 là


A. 3. B. 2. C. 1. D. 0.


Câu 19. Đạo hàm của hàm số yx e. x1 là


A. y' 

1 x e

x1. B. y' 

1 x e

x1. C. y'ex1. D. y'xex.


Câu 20. Số nghiệm thực của phương trình log3xlog3

x 6

log 73 là


A. 0. B. 2. C. 1. D. 3.


Câu 21. Với a, b, c là các số thực dương tùy ý khác 1 và logacx, logbcy. Khi đó giá trị của


 



logc ab


A. 1 1


xy. B.


xy


xy. C.


1



xy . D. xy.


Câu 22. Số nghiệm thực của phương trình 4x12x3 4 0 là


A. 1. B. 2. C. 3. D. 0.


Câu 23. Với a, b là hai số thực dương tùy ý. Khi đó


2


1
ab
a


 



  bằng


A. lna2lnbln

a1

. B. lnalnbln

a1

.


C. lna2lnbln

a1

. D. 2 lnb.


Câu 24. Xác định số thực x để dãy số log 2;log 7;logx theo thứ tự đó lập thành một cấp số cộng.


A. 7
2


x . B. 49



2


x . C. 2


49


x . D. 2


7


x .


Câu 25. Cho khối nón có độ dài đường sinh bằng 2a, góc giữa đường sinh và đáy bằng 60°. Thể tích của
khối nón đã cho là


A.


3


3
3


a




. B.


3



3 3


a




. C.


3


2
3


a




. D.


3


3
a





(5)

Trang | 5
Câu 26. Trong không gian, cho khối hộp chữ nhật AB1 ,m AA'3mBC2cm. Tính thể tích V


của khối hộp chữ nhật ABCD A B C D. ' ' ' '?



A.V  5m3. B. 3


6


Vm . C. 3


3


Vm . D. V 3 5m3.


Câu 27. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, BSA 60 . Tính thể tích V của khối
chóp S.ABCD?


A.


3


6
6


a


V  . B. 3


2


Va . C.


3



2
2


a


V  . D.


3


2
6


a
V  .


Câu 28. Một hình trụ có bán kính đáy bằng 2cm và có thiết diện qua trục là một hình vng. Diện tích
xung quanh của hình trụ là:


A. 2


8cm . B. 2


4cm . C. 2


32cm . D. 2


16cm .


Câu 29. Cho tam giác ABC vuông tại A, cạnh AB6,AC8 và M là trung điểm của cạnh AC. Khi đó



thể tích của khối tròn xoay do tam giác BMC quanh cạnh AB là:


A. 86π. B. 106π. C. 96π. D. 98π.


Câu 30. Cho

 



2


1


2


f x dx


 



2


1


2g x dx8


. Khi đó

 

 



2


1


f xg x dx



 


 


bằng:


A. 6. B. 10. C. 18. D. 0.


Câu 31. Họ nguyên hàm của hàm số f x

 

e2xx2 là:


A.

 



2 3


2 3


x


e x


F x   C. B. F x

 

e2x x3 C.


C. F x

 

2e2x2x C . D.

 



3
2


3



x x


F xe  C.


Câu 32. Trong không gian Oxyz, đường thẳng : 1


2 1 3


x y z


d    đi qua điểm nào dưới đây ?


A.

3;1;3 .

B.

2;1;3 .

C.

3;1; 2 .

D.

3; 2;3 .



Câu 33. Trong không gian Oxyz, cho mặt phẳng

 

P :x2y2z100. Phương trình mặt phẳng

 

Q


song song với

 

P và khoảng cách giữa hai mặt phẳng

 

P

 

Q bằng 7
3 là:


A. x2y2z 3 0;x2y2z170.B. x2y2z 3 0;x2y2z170.


C. x2y2z 3 0;x2y2z170.D. x2y2z 3 0;x2y2z170.


Câu 34. Trong không gian Oxyz, cho hai điểm A

1; 2;3

B

3; 2;1

. Phương trình mặt cầu đường kính


AB là:


A.

x2

 

2 y2

 

2 z 2

2 2. B.

x2

 

2 y2

 

2 z 2

2 4.



(6)

Trang | 6


Câu 35: Kí hiệu z z1, 2 là các nghiệm phức của phương trình 2z24z 3 0. Tính giá trị biểu thức




1 2 1 2


Pz zi zz


A. P1 B. 7


2


PC. P 3 D. 5


2


P
Câu 36: Cho số phức z a bi a c

, 

thỏa mãn

1i z

2z 3 2i. Tính P a b


A. P1 B. P 1 C. 1


2


P  D. 1


2


P


Câu 37. Tìm các giá trị thực của tham số m để hàm số

 

3 2

2




3 3 2 5


f xxxmmx đồng biến
trên khoảng

 

0; 2


A. 1 m 2. B. m1,m2. C. 1 m 2. D. m1,m2.


Câu 38: Hình vẽ bên là đồ thị hàm số y ax b


cx d





 Mệnh đề nào dưới đây đúng?


A. ad > 0 và ab < 0 B. ad < 0 và ab < 0


C. ad > 0 và bd > 0 D. bd < 0 và ab > 0


Câu 39: Đồ thị hàm số 2 1


1


x
y


x






 có tất cả bao nhiêu đường tiệm cận?


A. 2 B. 3 C. 1 D. 4


Câu 40. Số nghiệm của bất phương trình 1 1


2 2


2 log x 1 log x1 là


A. 3. B. Vô số. C. 1. D. 2.


Câu 41. Gọi S là tập hợp các số tự nhiên có ba chữ số (không nhất thiết khác nhau) được lập từ các chữ
số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. Chọn ngẫu nhiên một số abc từ S. Tính xác suất để số được chọn thỏa
mãn a b c.


A. 1


6. B.


11


60. C.


13


60. D.



9
11.



(7)

Trang | 7
A.


3


9
a


V  . B.


3


2
27


a


V  . C.


2


2
9
a


V  . D.



3


6
a


V  .


Câu 43. Cho hình chóp S.ABCD có đáy ABCD là hình vng cạnh a. Tam giác SAB cân tại S
2


SASBa nằm trong mặt phẳng vng góc với đáy ABCD. Gọi  là góc giữa SD và mặt phẳng đáy


ABCD

. Mệnh đề nào sau đây đúng?


A. tan  3.B. cot 3
6


  .C. tan 3
3


  . D. cot 2 3.


Câu 44: Cho z z1, 2 là hai số phức liên hợp của nhau, đồng thời thỏa mãn 1
2
2


( )


z


R


z  và z1z2 2 3.


Tính mơ đun của số phức z1.


A. z1 3 B. 1 5


2


z C. z1 2 D. z1  5


Câu 45. Cho F x

 

là một nguyên hàm của hàm số

 

2

3



4
x


f xe xx . Hàm số F x

2x

có bao
nhiêu điểm cực trị?


A. 6. B. 5. C. 3. D. 4.


Câu 46. Số giá trị nguyên của tham số m 

10;10

để bất phương trình


2 2


3 x 6 x 18 3 xxm  m 1 nghiệm đúng   x

3;6

là:


A. 28. B. 20. C. 4. D. 19.



Câu 47. Cho hàm số yf x

 

có đạo hàm f '

 

x trên . Hình vẽ bên là đồ thị của hàm số yf '

 

x


. Hàm số

 

2



g xf xx nghịch biến trên khoảng nào trong các khoảng dưới đây?


A. 3;
2





 


 . B.


3
;


2





 


 . C.


1
;
2






 


 . D.


1
;


2





 


 .


Câu 48. Một người vay ngân hàng số tiền 50 triệu đồng, mỗi tháng trả ngân hàng số tiền 4 triệu đồng
và phải trả lãi suất cho số tiền còn nợ là 1,1% một tháng theo hình thức lãi kép. Giả sử sau n tháng
người đó trả hết nợ. Khi đó n gần với số nào dưới đây?



(8)

Trang | 8
Câu 49. Cho hàm số f x

 

0 với x ,f

 

0 1 và f x

 

x1. 'f

 

x với mọi x . Mệnh đề
nào dưới đây đúng?


A. f

 

3 2. B. 2 f

 

3 4. C. 4 f

 

3 6. D. f

 

3 6.


Câu 50. Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HCa. Dựng đoạn
thẳng SH vuông góc với mặt phẳng

ABC

với SH2a. Khoảng cách từ điểm C đến mặt phẳng



SAB

bằng


A. 3


7


a


. B. 3 21


7


a


. C. 21


7


a



(9)

Trang | 9
2. ĐỀ SỐ 2


Câu 1. Cho hàm số y  x3

2m1

x2

m21

x5 . Với giá trị nào của tham số m thì đồ thị hàm
số có hai điểm cực trị nằm về hai phía của trục tung?


A.m1
B.m2
C.   1 m 1



D. m2 hoặc m1


Câu 2. Trong tất cả cá giá trị của tham số m để hàm số 1 3 2


3


yxmxmx m đồng biến trên R, giá trị


nhỏ nhất của m là:


A.4
B.1
C. 0
D. 1


Câu 3. Gọi giá trị lớn nhất và nhỏ nhất của hàm số 4 2


2 1


yxx  trên đoạn

1; 2

lần lượt là Mm


. Khi đó giá trị của $M.m$ là:


A.2


B.46


C. 23


D. Một số lớn hơn 46



Câu 4. Có bao nhiêu tiếp tuyến với đồ thị

 

C :yx4 2x2 đi qua gốc tọa độ O?


A.0
B.1


C. 2


D. 3


Câu 5: Cho hàm số yx42(m1)x2 m 2 có đồ thị

 

C . Gọi  là tiếp tuyến với đồ thị

 

C tại
điểm thuộc

 

C có hồnh độ bằng 1. Với giá trị nào của tham số m thì  vng góc với đường thẳng


1


: 2016


4


d y  x



(10)

Trang | 10
Câu 6: Cho hàm số yf x

 

có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?


A. max

 

3


xf x


C.Giá trị cực tiểu của hàm số bằng 2
B. Hàm số đồng biến trên khoảng

;3




D.


 0;4

 



min 1


xf x  




Câu 7: Các giá trị của tham số m để phương trình x x2 2 2 m có đúng 6 nghiệm thực phân biệt


A. 0 m 1
B. m0
C. m1
D. m0


Câu 8: Giả sử tiếp tuyến của đồ thị hàm số y2x36x218x1 song song với đường thẳng


:12 0


d x y có dạng yax b . Khi đó tổng a b là:


A. 15


B. 27
C. 12


D. 11



Câu 9: Cho hàm số yx42 2

m1

x24m2

 

1 . Các giá trị của tham số m để đồ thị hàm số

 

1 cắt
trục hoành tại 4 điểm phân biệt có hồnh độ x x x x1, 2, 3, 4 thoả mãn


2 2 2 2


1 2 3 4 6


xxxx


A. 1


4


m


B. 1


2


m 


C. 1


4


m 


D. 1



4



(11)

Trang | 11
Câu 10: Cho hàm số yx33x22x5 có đồ thị

 

C . Có bao nhiêu cặp điểm thuộc đồ thị

 

C
tiếp tuyến với đồ thị tại chúng là hai đường thẳng song song?


A. Không tồn tại cặp điểm nào


B. 1


C. 2


D. Vô số cặp điểm


Câu 11. Cho các số thực dương ,a b thỏa mãn logax, logby. Tính Plog

 

a b2 3 .


A. P6xy. B. Px y2 3. C. Px2y3. D. P2x3y.


Câu 12. Một hình trụ có diện tích xung quanh bằng S, diện tích đáy bằng diện tích một mặt cầu có bán
kính a. Khi đó thể tích của hình trụ bằng


A. Sa. B. 1


2Sa. C.


1


3Sa. D.


1


4Sa.


Câu 13. Cho hàm số yf x

 

xác định, liên tục trên và có bảng biến thiên như sau:


Tìm giá trị cực đại yCD và giá trị cực tiểu yCT của hàm số đã cho


A. yCD  2 và yCT 2.B. yCD 3 và yCT 0.C. yCD 2 và yCT 0. D. yCD 3 và yCT  2.


Câu 14. Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới đây


A. 3


3 1


   


y x x .


B. 1


1




x
y


x .



C. 1


1







x
y


x .


D. yx33x21.


Câu 15. Tìm đường tiệm cận ngang của đồ thị hàm số 2 2


1




x
y


x .


A. y 2. B. x 1. C. x 2. D. y2.



Câu 16. Tập nghiệm của bất phương trình 32x127 là


A. 1;
2



 


 . B.

3;

. C.
1


;
3



 



(12)

Trang | 12
Câu 17. Cho hàm số f x

 

có đồ thị như hình vẽ. Số nghiệm của phương trình 2f x

 

 3 0 là


A. 3. B. 1.


C. 2. D. 0.


Câu 18. Nếu


5


1



ln
2 1


dx c


x với c thì giá trị của c bằng


A. 9. B. 3. C. 6. D. 81.


Câu 19. Tìm phần thực và phần ảo của số phức liên hợp của số phức z 1 i.


A. Phần thực là 1, phần ảo là 1. B. Phần thực là 1, phần ảo là i.


C. Phần thực là 1, phần ảo là 1. D. Phần thực là 1, phần ảo là i.


Câu 20. Cho hai số phức z1 1 2 ,i z2  3 i. Tìm số phức 2
1


z
z


z .


A. 1 7


10 10


 


z i. B. 1 7



5 5


 


z i. C. 1 7


5 5


 


z i. D. 1 7


10 10


  


z i.


Câu 21. Trên mặt phẳng tọa độ Oxy cho điểm M trong hình vẽ bên là điểm biểu
diễn của số phức z. Tìm z.


A. z  4 3i. B. z  3 4i.


C. z 3 4i. D. z 3 4i.


Câu 22. Trong không gian tọa độ Oxyz, tọa độ điểm G đối xứng với điểm


5; 3;7




G qua trục Oy


A. G 

5;0; 7

. B. G   

5; 3; 7

. C. G

5;3;7

. D. G 

5;3; 7

.


Câu 23. Trong không gian Oxyz, cho A

2;1;1 ,

 

B 0; 1;1

. Phương trình mặt cầu đường kính AB


A.

x1

2y2 

z 1

2 8. B.

x1

2y2 

z 1

2 2.


C.

x1

2y2 

z 1

2 8. D.

x1

2y2 

z 1

2 2.


Câu 24. Trong không gian Oxyz, cho mặt phẳng

 

P :x y 2z 4 0. Một vec-tơ pháp tuyến của mặt
phẳng

 

P


A. n

1;1; 2

. B. n

1;0; 2

. C. n

1; 2; 4

. D. n

1; 1; 2

.


Câu 25. Trong không gian Oxyz, cho đường thẳng : 1 2


2 1 2





x y z


d . Điểm nào dưới đây thuộc


đường thẳng d?


A. M

 1; 2;0

. B. M

1;1; 2

. C. M

2;1; 2

. D. M

3;3; 2

.




(13)

Trang | 13
A. 90. B. 60. C. 30. D. 45.


Câu 27. Cho hàm số f x

 

có đạo hàm f

  

xx1



x2

 

2 x3

 

3 x4 ,

4  x . Số điểm cực trị
của hàm số đã cho là


A. 3. B. 5. C. 2. D. 4.


Câu 28. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y 2x2 x bằng


A. 2 2. B. 2. C. 1. D. 2 2.


Câu 29. Cho 0  b a 1, mệnh đề nào dưới đây đúng?


A. logbalogab. B. logba0. C. logbalogab. D. logab1.


Câu 30. Số giao điểm của đồ thị hàm số yx x2 24 với đường thẳng y3 là


A. 8. B. 2. C. 4. D. 6.


Câu 31. Tập nghiệm của bất phương trình 1

3



3


log x 1 log 2xS

   

a b;  c d; với , , ,a b c d


là các số thực. Khi đó a b c d   bằng:


A. 4. B. 1. C. 3. D. 2.



Câu 32. Tính thể tích khối trịn xoay sinh ra khi quay tam giác đều ABC cạnh bằng 1 quanh AB.


A. 3
4




. B.


4




. C.


8




. D. 3


2




.


Câu 33. Cho tích phân


1



1 ln




e


x


I dx


x . Đổi biến t 1 ln x ta được kết quả nào sau đây?
A.


2
2
1



I t dt. B.


2
2
1


2




I t dt. C.



2
2
1


2




I t dt. D.


2


1


2




I tdt.


Câu 34. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số yxex, trục hoành, hai đường thẳng


2; 3


  


x x có cơng thức tính là


A.



3


2




x


S xe dx. B.


3


2




x


S xe dx. C.


3


2




x


S xe dx . D.



3


2




x


Sxe dx.


Câu 35. Cho hai số phức z a biz ab i . Số phức




z


z có phần thực là


A. 2 2
  


aa bb


a b . B. 2 2


 


aa bb



a b . C. 2 2







a a


a b . D. 2 2


2 
  


bb


a b .


Câu 36. Gọi z1 là nghiệm phức có phần ảo âm của phương trình
2


2 3 0


  


z z . Trên mặt phẳng tọa độ,
điểm nào sau đây là điểm biểu diễn số phức z1?



(14)

Trang | 14


Câu 37. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng : 1 2


1 1 2


 


 




x y z


d . Mặt phẳng


 

P đi qua điểm M

2;0; 1

và vng góc với d có phương trình là


A. x y 2z0. B. x2y 2 0. C. x y 2z0. D. x y 2z0.


Câu 38. Trong không gian Oxyz, cho hai điểm A

1; 2;3

B

2; 4; 1

. Phương trình chính tắc của
đường thẳng d đi qua A B, là


A. 2 4 1


1 2 4




x y z


.B. 1 2 3



1 2 4




x y z


.C. 1 2 3


1 2 4





x y z


.D. 2 4 1


1 2 4





x y z


.


Câu 39. Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B và 5 học sinh lớp 12C
trên một bàn trịn. Tính xác suất P để các học sinh cùng lớp luôn ngồi cạnh nhau.



A. 1


1260


P . B. 1


126


P . C. 1


28


P . D. 1


252


P .


Câu 40. Cho hình chóp S ABCD. có đáy ABCD là hình vng cạnh a, cạnh bên SA

ABCD


3


SAa . Khoảng cách từ A đến mặt phẳng

SBC

bằng


A. 2 5


5



a


. B. a 3. C.


2


a


. D. 3


2


a


.


Câu 41. Có bao nhiêu giá trị nguyên của tham số m để hàm số 10


2




mx
y


x m nghịch biến trên

 

0; 2 ?


A. 4. B. 5. C. 6. D. 9.



Câu 42. Gọi N t

 

là số phần trăm cacbon 14 còn lại trong một bộ phận của một cây sinh trưởng từ t


năm trước đây thì ta có cơng thức

 

100. 0,5

   

%


t
A


N t với A là hằng số. Biết rằng một mẫu gỗ có
tuổi khoảng 3754 năm thì lượng cácbon 14 cịn lại là 65%. Phân tích mẫu gỗ từ một cơng trình kiến trúc
cổ, người ta thấy lượng cácbon 14 còn lại trong mẫu gỗ là 63%. Hãy xác định tuổi của mẫu gỗ được lấy
từ công trình đó


A. 3874. B. 3833. C. 3834. D. 3843.


Câu 43. Cho hàm số yf x

 

liên tục trên và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị
thực của m để phương trình 1

 

0



(15)

Trang | 15
A.
0
3
2



  

m



m . B. m 3. C.


3
2


 


m . D. 0


3


  

m
m .


Câu 44. Một hình trụ có bán kính đáy bằng a, mặt phẳng qua trục cắt hình trụ theo một thiết diện có diện
tích bằng 8a2. Tính diện tích xung quanh của hình trụ.


A. 4a2. B. 8a2. C. 16a2. D. 2a2.


Câu 45. Cho hàm số yf x

 

có đạo hàm liên tục trên đoạn

 

0;1 và thỏa mãn f

 

0 0. Biết


 


1
2
0
9
2



f x dx

 



1
0
3
cos
2 4
 


f xxdx  . Tích phân

 



1


0


f x dx bằng.


A. 6


 . B.


2


 . C.


4


 . D.



1


 .


Câu 46. Cho hàm số yf x

 

liên tục trên và có bảng biến thiên như sau


Biết f

 

0 0, hỏi phương trình f

 

xf

 

0 có bao nhiêu nghiệm?


A. 4. B. 2. C. 3. D. 5.


Câu 47. Cho các số thực a b, thỏa mãn điều kiện 0  b a 1. Tìm giá trị nhỏ nhất của biểu thức


2


4 3 1


log 8log 1


9




ab


a
b


P a .



A. A6. B. 3


3 2 . C. 8. D. 7.


Câu 48. Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị lớn nhất của hàm số


2


3 6 2 1


   


y x x m trên đoạn

2;3

đạt giá trị nhỏ nhất. Số phần tử của tập S


A. 0. B. 3. C. 2. D. 1.


Câu 49. Cho hình hộp chữ nhật ABCD A B C D.    . Gọi M là trung điểm của BB. Mặt phẳng

MDC'


chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A. Gọi


1, 2


V V lần lượt là thể tích của hai khối đa diện chứa CA. Tính 1
2
V
V .
A. 1
2
7
24


V


V . B.


1
2
7
17

V


V . C.


1
2
7
12

V


V . D.



(16)

Trang | 16
Câu 50. Tìm tất cả các giá trị thực của tham số a0 thỏa mãn


2017


2017
2017



1 1


2 2 .


2 2


a
a


a




   


   


A. 0 a 1. B.1 a 2017. C. 0 a 2017. D. a2017.


ĐÁP ÁN


1-C 2-B 3-C 4-D 5-A 6-D 7-A 8-A 9-A 10-D


11-D 12-A 13-B 14-B 15-A 16-D 17-A 18-B 19-A 20-C


21-C 22-B 23-B 24-A 25-B 26-D 27-C 28-D 29-A 30-D


31-B 32-B 33-B 34-B 35-A 36-D 37-A 38-C 39-B 40-D



(17)

Trang | 17


3. ĐỀ SỐ 3


Câu 1: Viết phương trình tiếp tuyến của đồ thị hàm số y x46x25 tại điểm cực tiểu của nó


A. y = 5


B. y = - 5


C. y = 0


D. y = x + 5


Câu 2: Giao điểm của hai đường tiệm cận của đồ thị hàm số nào dưới đây nằm trên đường thẳng
:


d yx?


A. 2 1


3
x
y


x





B. 4



1
x
y


x





C. 2 1


2
x
y


x





D. 1


3


y
x






Câu 3: Có tất cả bao nhiêu loại khối đa diện đều?
A. 3


B. 5


C. 6


D. 4


Câu 4: Cho hình chóp S ABC. Dcó đáy là hình vng cạnh a, D 3a
2


S  . Hình chiếu vng góc của điểm


S trên mặt phẳng đáy là trung điểm của cạnh AB. Tính khoảng cách từ điểm A đến mặt phẳng

SBD

?


A. 3a
4


d


B. 2a
3


d


C. 3a


5


d


D. 3a
2


d


Câu 5: Cho hàm số 2 3
2
x
y


x



 có đồ thị

 

C và đường thẳng d y:  x m. Các giá trị của tham số mđể



(18)

Trang | 18
A. m > 2


B. m > 6


C. m = 2


D. m < 2 hoặc m > 6


Câu 6: Cho hàm số 3 2



3


yxxm có đồ thị

 

C .Để đồ thị

 

C cắt trục hoành tại ba điểm A,B,C sao
cho C là trung điểm của AC thì giá trị của tham số m là:


A. m = - 2


B. m = 0


C. m = - 4


D. - 4 < m < 0


Câu 7: Tìm các giá trị của tham số m để phương trình: x33xm2m có 3 nghiệm phân biệt?


A. - 2 < m < 1


B. - 1 < m < 2


C. m < 1


D. m > - 21


Câu 8: Cho hình chóp tam giác S.ABC có M, N lần lượt là trung điểm của các cạnh SA và $SB$.Tỉ số


.
.


S CMN


S CAB
V


V


A. 1
3
B. 1
8
C. 1
2
D. 1
4


Câu 9: Cho hình hộp chữ nhật ABCD.A B C D    có AB = 2AD = 3AA' = 6a. Thể tích của khối hộp chữ
nhật ABCD.A B C D    là:


A. 36a 3


B.16a3
C. 18a3
D. 27a3


Câu 10: Cho hình tứ diện ABCD có DA = BC = 5, AB = 3, AC = 4. Biết DA vng góc với mặt phẳng



(19)

Trang | 19
A. V = 10


B. V = 20



C. V = 30


D. V = 60


Câu 11. Cho các số thực dương a b, thỏa mãn logax, logby. Tính Plog

 

a b2 3 .


A. P6xy. B. Px y2 3. C. Px2y3. D. P2x3y.


Câu 12. Một hình trụ có bán kính đáy ra độ dài đường sinh l2a Diện tích tồn phần của hình trụ
này là


A. 2a2. B. 4a2. C. 6a2. D. 5a2.


Câu 13. Cho hàm số yf x

 

có bảng biến thiên dưới đây.


Khẳng định nào sau đây là khẳng định đúng?


A. Hàm số đạt cực đại tại x2. B. Hàm số đạt cực đại tại x 2.
C. Hàm số đạt cực đại tại x4. D. Hàm số đạt cực đại tại x3.
Câu 14. Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?


A. y  x4 3x22. B. y  x4 2x21.
C. y  x4 x21. D. y  x4 3x23.


Câu 15. Đồ thị hàm số 24 4


2 1


x
y



x x





  có tất cả bao nhiêu đường tiệm cận?


A. 2. B. 0. C. 1. D. 3.


Câu 16. Tập nghiệm của bất phương trình log2xlog 82

x



A.

8;

. B.

; 4 .

C.

 

4;8 . D.

 

0; 4 .


Câu 17. Cho hàm số yf x

 

có bảng biến thiên như hình vẽ bên. Số nghiệm của phương trình


 

1



(20)

Trang | 20


A. 1. B. 2. C. 4. D. 3.


Câu 18. Biết

 



1


0


2;



f x dx


1

 



0


4.


g x dx 


Khi đó

 

 



1


0


f xg x dx


 


 


bằng


A. 6. B. 6. C. 2. D. 2.


Câu 19. Tìm phần ảo của số phức z 5 8 .i


A. 8. B. 8i. C. 5. D. -8.



Câu 20. Cho hai số phức z1 2 7iz2   4 i. Điểm biểu diễn số phức z1z2 trên mặt phẳng tọa độ
là điểm nào dưới đây?


A. Q

 2; 6 .

B. P

 5; 3 .

C. N

6; 8 .

D. M

3; 11 .



Câu 21. Số phức được biểu diễn bởi điểm M

2; 1



A. 2i. B.1 2 . i C. 2i. D.  1 2 .i


Câu 22. Trong không gian với hệ tọa độ Oxyz, tọa độ hình chiếu vng góc của điểm A

2; 1;0

lên mặt
phẳng

 

P : 3x2y  z 6 0 là


A.

1;1;1 .

B.

1;1; 1 .

C.

3; 2;1 .

D.

5; 3;1 .



Câu 23. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu

 

S :x2 y2 z2 4x2y6z 1 0. Tâm
của mặt cầu (S) là


A. I

2; 1;3 .

B. I

2;1;3 .

C. I

2; 1; 3 . 

D. I

2;1; 3 .



Câu 24. Trong không gian Oxyz, mặt phẳng

 

P :x2y 5 0 nhận vec-tơ nào trong các vec-tơ sau làm
vec-tơ pháp tuyến?


A. n

1; 2; 5 .

B. n

0;1; 2 .

C. n

1; 2;0 .

D. n

1; 2;5 .



Câu 25. Trong không gian Oxyz, cho tam giác đều ABC với A

6;3;5

và đường thẳng BC có phương


trình 1 2 .


1 1 2



x y z


 Gọi  là đường thẳng đi qua trọng tâm G của tam giác ABC và vng góc với


mặt phẳng (ABC). Điểm nào dưới đây thuộc đường thẳng ?


A. M

 1; 12;3 .

B. N

3; 2;1 .

C. P

0; 7;3 .

D. Q

1; 2;5 .




(21)

Trang | 21
A. 60o. B. 30o. C. 90o. D. 45o.


Câu 27. Cho hàm số f x

 

có đạo hàm f

 

xx x

1

 

2 x2

 

3 x3 .

4 Số điểm cực trị của hàm số là


A. 2. B. 1. C. 0. D. 3.


Câu 28. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số


2
1
2
x
y
x



 trên tập hợp


3



; 1 1; .


2
D      


  Tính PMm.


A. P2. B. P0. C. P  5. D. P 3.


Câu 29. Cho số thực a1,b0. Mệnh đề nào dưới đây đúng?


A. logab2  2loga b. B. logab2 2logab.
C. logab2 2loga b. D. 2


logab  2logab.
Câu 30. Tìm số giao điểm của đồ thị hàm số 3 2


3 3 1


yxxx và đồ thị hàm số 2


1.


yx  x


A. 1. B. 0. C. 2. D. 3.


Câu 31. Tập nghiệm của bất phương trình


2 1


2
1
1
1
x
a

 


  (với a là tham số, a0) là


A. ; 1 .
2
 


 


  B.

;0 .

C.


1


; .


2



 


  D.

0;

.


Câu 32. Trong không gian, cho tam giác ABC vuông tại A AB, aACa 3.Tính độ dài đường sinh
l của hình nón có được khi quay tam giác ABC xung quanh trục AB.


A. la. B. l 2 .a C. la 3. D. la 2.


Câu 33. Cho tích phân


1
2
0
.
4
dx
I
x



Nếu đổi biến số 2sin , ;


2 2


xt t   


  thì
A.
6
0
.


I dt


B.


6


0


.


I tdt




C.


6
0
.
dt
I
t


D.


3
0
.


I dt



Câu 34. Viết cơng thức tính thể tích V của vật thể nằm giữa hai mặt phẳng x0 và xln 4, biết khi cắt
vật thể bởi mặt phẳng vng góc với trục hồnh tại điểm có hoành độ x

0 x ln 4 ,

ta được thiết diện
là một hình vng có độ dài cạnh là xex.


A.


ln 4


0


.


x


V

xe dx B.


ln 4


0


.


x


V 

xe dx C.

 




ln 4
2
0


.


x


V 

xe dx D.


ln 4


0


.


x
V

xe dx
Câu 35. Cho hai số phức z1  3 4iz2   2 i. Tìm số phức liên hợp của z1z2.



(22)

Trang | 22
Câu 36. Gọi z0 là nghiệm phức có phần ảo âm của phương trình


2


2z 2z130. Trên mặt phẳng tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức wiz0?


A. 5 1; .
4 4



M


  B.


5 1


; .


4 4


N  


  C.


5 1


; .


2 2


P  


  D.


5 1


; .


2 2



Q


 


Câu 37. Trong không gian toạ độ Oxyz, cho đường thẳng

 

: 3 2 1.


1 1 2


x y z


d     


 Mặt phẳng (P) đi


qua điểm M

2;0; 1

và vuông góc với (d) có phương trình là


A.

 

P :x y 2z0. B.

 

P : 2x z 0. C.

 

P :x y 2z 2 0. D.

 

P :x y 2z0.


Câu 38. Trong không gian Oxyz, cho hai điểm A

1;0;1 ,

 

B 1; 2;1 .

Viết phương trình đường thẳng  đi
qua tâm đường trịn ngoại tiếp tam giác OAB và vng góc với mặt phẳng (OAB).


A. : 1 .
1
x t
y t
z t




 
  


B. : 1 .
1
x t
y t
z t



 
  

C.
3


: 4 .


1
x t
y t
z t
 


 
  


D.
1
: .
3
x t
y t
z t
  



  


Câu 39. Xếp ngẫu nhiên ba người đàn ông, hai người đàn bà và một đứa bé vào ngồi 6 cái ghế xếp thành
hàng ngang. Xác suất sao cho đứa bé ngồi giữa hai người đàn bà là bao nhiêu?


A. 1 .


30 B.


1
.
5 C.
1
.
15 D.
1
.
6



Câu 40. Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh đều bằng a. Khoảng cách từ A đến
mặt phẳng (A'BC) bằng


A. 3.
4
a


B. 21.


7
a


C. 2.
2
a


D. 6.
4
a


Câu 41. Có bao nhiêu giá trị nguyên của tham số m để hàm số yx3

m1

x23x1 đồng biến trên
khoảng

 ;

?


A. 6. B. 8. C. 7. D. 5.


Câu 42. Các nhà khoa học đã tính tốn khi nhiệt độ trung bình của trái đất tăng thêm 2°C thì mực nước
biển sẽ dâng lên 0,03m. Nếu nhiệt độ tăng lên 5°C thì nước biển sẽ dâng lên 0,1m và người ta đưa ra
công thức tổng quát như sau: Nếu nhiệt độ trung bình của trái đất tăng lên toC thì nước biển dâng lên



 

t

 



f tka m trong đó k, a là các hằng số dương. Hỏi khi nhiệt độ trung bình của trái đất tăng thêm bao
nhiêu độ C thì mực nước biển dâng lên 0,2m?


A. 9,2oC. B. 8,6oC. C. 7,6oC. D. 6,7oC.



(23)

Trang | 23


Phương trình f x

 

 2 0 có bao nhiêu nghiệm?


A. 1. B. 3. C. 2. D. 0.


Câu 44. Cho hình trụ có bán kính đáy bằng R và chiều cao bằng 3 .
2


R


Mặt phẳng () song song với trục
của hình trụ và cách trục một khoảng bằng .


2


R


Diện tích thiết diện của hình trụ cắt bởi mặt phẳng () là


A.


2



2 3


.
3


R


B.


2


3 3


.
2


R


C.


2


3 2


.
2


R



D.


2


2 2


.
3


R


Câu 45. Cho hàm số f x

 

có đạo hàm liên tục trên

1;1

và thỏa mãn

 

 



1


0


1 7, 1


f

xf x dx . Khi


đó

 



1
2
0


x fx dx


bằng


A. 6. B. 8. C. 5. D. 9.


Câu 46. Cho hàm số yf x

 

liên tục trên và có bảng biến thiên như sau


Tìm tất cả các giá trị của tham số m sao cho phương trình f x

2018

 2 m có bốn nghiệm thực phân
biệt.


A.   3 m 1. B. 0 m 1. C. Khơng có giá trị m. D. 1 m 3.
Câu 47. Xét các số thực a, b thỏa mãn điều kiện 1 1.


3  b a Tìm giá trị nhỏ nhất của biểu thức


2


3 1


log 12 log 3.


4


a b


a
b


P   a


 



A. minP13. B.


3


1


min .


2


PC. minP9. D. 3



(24)

Trang | 24
Câu 48. Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị nhỏ nhất của hàm số


3


3


y  xxm trên đoạn

 

0; 2 bằng -3. Tổng tất cả các phần tử của S


A. 1. B. 2. C. 0. D. 6.


Câu 49. Cho hình hộp chữ nhật ABCD.A'B'C'D' có thể tích bằng 1 và G là trọng tâm BCD'. Thể tích của
khối chóp G.ABC'


A. 1.
3


VB. 1.



6


VC. 1 .


12


VD. 1 .


18


V


Câu 50. Cho a, b, c là các số thực thuộc đoạn [1; 2] thỏa mãn log32alog23blog32c1. Khi biểu thức




3 3 3


2 2 2


3 log a log b log c


Pa   b c abc đạt giá trị lớn nhất thì tổng a b c  là


A. 3. B. 3


1
3



3.2 C. 4. D. 6


ĐÁP ÁN


1-B 2-B 3-B 4-B 5-D 6-A 7-A 8-D 9-A 10-A


11-D 12-C 13-A 14-B 15-A 16-C 17-A 18-D 19-D 20-A


21-C 22-B 23-C 24-C 25-D 26-A 27-A 28-C 29-C 30-C


31-A 32-B 33-A 34-A 35-A 36-D 37-D 38-A 39-C 40-B



(25)

Trang | 25
4. ĐỀ SỐ 4


Câu 1: Cho hai vị trí A,B cách nhau,cùng nằm về một phía bờ sơng như hình vẽ. Khoảng cách từ A
từ B đến bờ sông lần lượt là 118m và 487km. Một người đi từ A đến bờ sông để lấy nước mang về B.
Đoạn đường ngắn nhất mà người đó có thể đi là:


A. 569,5m


B. 671,4m


C. 779,8m


D. 741,2m


Câu 2: Số cạnh của khối bát diện đều là:
A. 9



B. 10


C. 11


D. 12


Câu 3: Cho hình chóp S ABC. Dcó đáy ABCD là hình vng cạnh aSA

ABCD

, SA2a. Thể


tích khối chóp S.ABC là


A.


3


4


a


B.


3


3


a


C.


3



2
5


a


D.


3


6


a


Câu 4: Cho hình chóp S ABC. Dcó thể tích V đáy ABCD là hình bình hành. Gọi E,F lần lượt là trung
điểm của các cạnh AB và AD. Thể tích của khối chóp S.AECF là


A.


2


V


B.


4


V


C.



3



(26)

Trang | 26
D.


6


V


Câu 5: Cho hình lăng trụ ABC.A'B'C'. Gọi E,F lần lượt là trung điểm của BB' và CC'. Mặt phẳng

AEF



chia khối lăng trụ thành hai phần có thể tích V1V2 như hình vẽ. Tỉ số 1
2


V
V






A. 1


B. 1
3
C. 1
4
D. 1
2



Câu 6: Cho hình chóp tứ giác S ABC. D có đáy là hình chữ nhật, ABa,ADa 2. Biết


D



SAABC và góc giữa đường thẳng SC với mặt phẳng đáy bằng 45. Thể tích khối chóp S ABC. D


bằng


A.a3 2


B.3a3
C. a3 6


D.


3


6
3


a


Câu 7: Thể tích khối tứ diện đều cạnh a


A.


3


3



a


B.


3


2 3


a


C.


3



(27)

Trang | 27
D.a3


Câu 8: Số đỉnh của khối bát diện đều là
A.6


B.7


C.8


D.9


Câu 9: Cho tứ diện đều ABCD cạnh bằng a. Khoảng cách d giữa hai đường thẳng ADvà BC là:


A. 3



2
a


d


B. 2


2
a


d


C. 2


3
a


d


D. 3


3


a
d


Câu 10: Cho hình chóp tứ giác S ABC. Dcó M,N,P,Q lần lượt là trung điểm của các cạnh SA SB SC S, , , D.
Tỉ số .


. D



S MNPQ
S ABC
V


V


A.1


8


B. 1


16


C.3
8
D.1
6


Câu 11. Biết log 3m, log 5n, tìm log 459 theo m, n.


A. 1 .
2


n
m


B. 1 n.



m


C. 2 .


2
n


m


D. 1 .


2
n


m


Câu 12. Hình trụ trịn xoay có đường kính đáy là 2a, chiều cao là h2a có thể tích là


A. V 2a3. B.V a3. C. V 2a2. D. V 2a h2 .



(28)

Trang | 28
A. Hàm số có giá trị cực tiểu bằng –1. B. Hàm số đạt cực tiểu tại x0.


C. Hàm số đạt cực đại tại x0. D. Hàm số có đúng hai điểm cực trị.


Câu 14. Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?


A. yx42x23. B. yx42x23. C. y  x4 2x23. D. yx33x23.



Câu 15. Đồ thị hàm số 2 3


1
x
y


x



 có các đường tiệm cận đứng, tiệm cận ngang lần lượt là
A. x1 và y2. B. x2 và y1 C. x1 và y 3 D. x 1 và y2
Câu 16. Tập nghiệm của bất phương trình 32x127 là


A.

2;

. B.

3;

. C. 1;
3



 


 . D.


1


; .


2



 



 


Câu 17. Cho hàm số yf x

 

ax4bx2c có đồ thị như hình vẽ. Số nghiệm của phương trình


 



2f x  3 0 là


A. 3. B. 1.


C. 2. D. 4.


Câu 18. Cho các số thực a, b ( a < b). Nếu hàm số yf x

 

có đạo hàm là
hàm liên tục trên thì


A.

 

 

 

.


b


a


f x dxfafb


B.


 

 

 

.


b



a


fx dxf bf a



(29)

Trang | 29
C.

 

 

 

.


b


a


fx dxf af b


D.

 

 

 

.


b


a


f x dxfbfa



Câu 19. Số phức liên hợp của số phức z 6 4i


A. z  6 4 .i B. z 4 6 .i C. z 6 4 .i D. z  6 4 .i


Câu 20. Cho hai số phức z1 2 3iz2   4 5i. Tìm số phức z z1 z2.


A. z 2 2 .i B. z  2 2 .i C. z 2 2 .i D. z  2 2 .i



Câu 21. Số phức z thỏa mãn z 1 2i được biểu diễn trên mặt phẳng tọa độ bởi điểm nào sau?


A. Q( 1; 2).  B. M(1; 2). C. P( 1; 2). D. N(1; 2).


Câu 22. Trong không gian Oxyz, cho điểm A

1; 2;3

. Hình chiếu vng góc của điểm A lên mặt phẳng
(Oxy) là điểm M có tọa độ


A. M

1; 2;0

B. M

0; 2;3

C. M

1;0;3

D. M

2; 1;0



Câu 23. Trong không gian Oxyz, cho mặt cầu

 

S :x2y2 z2 8x10y6z490. Tìm tọa độ tâm I
và bán kính R của mặt cầu (S).


A. I

4;5; 3

R1.B. I

4; 5;3

R7.C. I

4;5; 3

R7. D. I

4; 5;3



1.


R


Câu 24. Cho đường thẳng



2


: 1


2 2









  


  


 


x t


d y t t


z t


. Phương trình chính tắc của đường thẳng d là:


A. 2 1 2


1 1 2




x y z


. B. 2 1 2


1 1 2





x y z


.


C. 1 2 4


1 1 2




x y z


. D. 1 1 2


2 1 2





x y z


.


Câu 25. Trong không gian Oxyz, đường thẳng : 1 2


2 1 1


 


  



 


x y z


không đi qua điểm nào dưới đây?


A. A

1; 2;0

B. B

 1; 1;1

C. C

3; 3; 1 

D. D

1; 2;0



Câu 26. Cho hình lập phương ABCD A B C D.    . Góc giữa hai đường thẳng AC và DA bằng


A. 60 . B. 45 . C. 90 . D. 120 .


Câu 27. Cho hàm số f x

 

f

 

xx x

1



x2

2. Số điểm cực trị của hàm số đã cho là


A. 2. B. 3. C. 4. D. 1.


Câu 28. Cho hàm số y x 1
x


  . Giá trị nhỏ nhất của hàm số trên

0;

bằng



(30)

Trang | 30
Câu 29. Cho a, b, c, d là các số thực dương, khác 1 bất kì. Mệnh đề nào dưới đây đúng?


A. ac bd ln a d.


b c


 


   


  B. ln .


c d a c


a b


b d


 
   


 


C. ln .


ln


c d a c


a b


b d


   D. ln .


ln


c d a d



a b


b c


  


Câu 30. Tìm số giao điểm của đồ thị hàm số yx43x25 và trục hoành


A. 1. B. 3. C. 4. D. 2.


Câu 31. Tập nghiệm của bất phương trình log3

x22

3 là


A. S     ( ; 5] [5; ).B. S  . C. S  . D. S  

5;5 .



Câu 32. Cho một hình chữ nhật có đường chéo có độ dài 5, một cạnh có độ dài 3. Quay hình chữ nhật
đó (kể cả các điểm bên trong) quanh trục chứa cạnh có độ dài lớn hơn, ta thu được một khối trụ có thể
tích là


A.12

. B. 48. C. 36

. D. 45

.


Câu 33. Cho tích phân


3


01 1


x


I dx



x




 


. Viết dạng của I khi đặt tx1.


A.



2
2
1


2t 2t dt.


B.



2
2
1


2t 2t dt.


C.



2
2
1



2 .


tt dt


D.



2
2
1


2tt dt.



Câu 34. Đồ thị trong hình bên là của hàm số yf x

 

, S là diện tích hình phẳng
(phần tơ đậm trong hình). Chọn khẳng định đúng.


A.

 

 



0 1


2 0


.


S f x dx f x dx


B.

 




1


2


.


S f x dx




C.

 

 



2 1


0 0


.


S f x dx f x dx


D.

 

 



0 1


2 0


.



S f x dx f x dx




Câu 35. Cho hai số phức z1  1 3 ,i z2  3 4i. Môđun của số phức  z1 z2 bằng


A. 17. B. 15. C. 17. D. 15.


Câu 36. Gọi z0 là nghiệm phức có phần ảo âm của phương trình
2


2z 6z 5 0. Tìm iz0?


A. . 0 1 3 .
2 2


i z    i B. . 0 1 3 .


2 2


i z   i C. . 0 1 3 .
2 2


i z    i D. . 0 1 3 .


2 2


i z   i



Câu 37. Trong không gian Oxyz, cho đường thẳng

 

: 1 2 3


2 1 2


x y z


d     


 . Mặt phẳng (P) vng góc


với (d) có véc – tơ pháp tuyến là



(31)

Trang | 31
Câu 38. Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A

1; 2; 3 , 

 

B 1; 4;1

và đường thẳng


2 2 3


:


1 1 2


x y z


d     


 . Phương trình nào dưới đây là phương trình của đường thẳng đi qua trung điểm


của đoạn AB và song song với d?


A. 1 1.



1 1 2


x y z


B.


1 1 1


.


1 1 2


x y z


C.


2 2


.


1 1 2


x y z


D.


1 1


.



1 1 2


x y z


Câu 39. Có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 năm và 5
nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh
nam đều ngồi đối diện với một học sinh nữ.


A. 4 .


63 B.


1
.


252 C.


8
.


63 D.


1
.
945


Câu 40. Cho hình chóp S.ABCD có đáy là hình chữ nhật, ABa AD, 2a. Tam giác SAB cân tại S và
nằm trong mặt phẳng vng góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45.
Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC).



A. 1315.
89


a


B. 2 1315.
89


a


C. 1513.
89


a


D. 2 1513.
89


a


Câu 41. Có bao nhiêu giá trị nguyên của tham số m 

2018; 2018

để hàm số y 2x 6
x m



 đồng biến


trên khoảng

5;

?



A. 2018. B. 2021. C. 2019. D. 2020.


Câu 42. Số lượng của một lồi vi khuẩn trong phịng thí nghiệm được tính theo cơng thức S t( )A e. rt,
trong đó A là số lượng vi khuẩn ban đầu, S(t) là số lượng vi khuẩn có sau t phút, r là tỷ lệ tăng trưởng (r >
0), t ( tính theo phút) là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu có 500 con và sau 5
giờ có 1500 con. Hỏi sau bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn đạt 121500 con?


A. 35 giờ. B. 45 giờ. C. 25 giờ. D. 15 giờ.


Câu 43. Cho hàm số yf x

 

liên tục trên và có bảng biến thiên như hình sau:


Hỏi hàm số yf

 

x có bao nhiêu cực trị?


A. 2. B. 5. C. 3. D. 4.


Câu 44. Một hình trụ có bán kính r5cm và khoảng cách giữa hai đáy h7cm. Cắt khối trụ bởi mặt
phẳng song song với trục và cách trục 3 cm. Diện tích thiết diện tạo thành là



(32)

Trang | 32
Câu 45. Cho hàm số f x

 

có đạo hàm liên tục trên đoạn [0; 1] và thỏa mãn


 

1

  



0


0 6, 2 2 6


f

xfx dx . Tích phân

 



1



0


f x dx


có giá trị bằng


A. – 3. B. – 9. C. 3. D. 6.


Câu 46. Cho hàm số yf x

 

liên tục trên có bảng biến thiên như hình vẽ.


Số nghiệm của phương trình ff x

 

2 là


A. 4. B. 5. C. 7. D. 9.


Câu 47. Cho hàm số yx2 3 xlnx. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm
số trên đoạn [1; 2]. Khi đó tích M.m bằng


A. 2 74 ln 2. B. 2 74 ln 5. C. 2 74 ln 5. D. 2 74 ln 2.


Câu 48. Gọi S là tập hợp tất cả các giá trị thực của tham số m sao cho giá trị lớn nhất của hàm số


2


1


x mx m
y


x



 




 trên [1; 2] bằng 2. Số phần tử của tập S là


A. 3. B. 1. C. 4. D. 2.


Câu 49. Cho hình hộp chữ nhật ABCD A B C D.    có tổng diện tích của tất cả các mặt là 36, độ dài đường
chéo AC bằng 6. Hỏi thể tích của khối hộp lớn nhất là bao nhiêu?


A. 8. B. 8 2 . C. 16 2 . D. 24 3.


Câu 50. Biết phương trình log5 2 1 2 log3 1


2 2


x x


x x


 




 


 



  có một nghiệm dạng x a b 2 trong đó


a, b là các số nguyên. Tính T2a b .


A. 3. B. 8. C. 4. D. 5.


ĐÁP ÁN


1 – A 2 – B 3 – C 4 – C 5 – C 6 – C 7 – D 8 – D 9 – C 10 – B


11 – D 12 – A 13 – C 14 – B 15 – A 16 – A 17 – D 18 – B 19 – C 20 – B


21 – B 22 – A 23 – D 24 – C 25 – A 26 – A 27 – A 28 – B 29 – D 30 – D



(33)

Trang | 33



(34)

Trang | 34


Website HOC247 cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội
dung bài giảng được biên soạn công phu và giảng dạy bởi những giáo viên nhiều năm kinh nghiệm,
giỏi về kiến thức chuyên môn lẫn kỹ năng sư phạm đến từ các trường Đại học và các trường chuyên
danh tiếng.


I. Luyện Thi Online


- Luyên thi ĐH, THPT QG: Đội ngũ GV Giỏi, Kinh nghiệm từ các Trường ĐH và THPT danh tiếng


xây dựng các khóa luyện thi THPTQG các mơn: Tốn, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và
Sinh Học.



- Luyện thi vào lớp 10 chun Tốn: Ơn thi HSG lớp 9luyện thi vào lớp 10 chuyên Toán các


trường PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An và các trường
Chuyên khác cùng TS.Trần Nam Dũng, TS. Phạm Sỹ Nam, TS. Trịnh Thanh Đèo và Thầy Nguyễn
Đức Tấn.


II. Khoá Học Nâng Cao và HSG


- Toán Nâng Cao THCS: Cung cấp chương trình Tốn Nâng Cao, Tốn Chun dành cho các em HS


THCS lớp 6, 7, 8, 9 yêu thích mơn Tốn phát triển tư duy, nâng cao thành tích học tập ở trường và đạt
điểm tốt ở các kỳ thi HSG.


- Bồi dưỡng HSG Toán: Bồi dưỡng 5 phân mơn Đại Số, Số Học, Giải Tích, Hình Học Tổ Hợp


dành cho học sinh các khối lớp 10, 11, 12. Đội ngũ Giảng Viên giàu kinh nghiệm: TS. Lê Bá Khánh
Trình, TS. Trần Nam Dũng, TS. Phạm Sỹ Nam, TS. Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc
Bá Cẩn cùng đôi HLV đạt thành tích cao HSG Quốc Gia.


III. Kênh học tập miễn phí


- HOC247 NET: Website hoc miễn phí các bài học theo chương trình SGK từ lớp 1 đến lớp 12 tất cả


các môn học với nội dung bài giảng chi tiết, sửa bài tập SGK, luyện tập trắc nghiệm mễn phí, kho tư
liệu tham khảo phong phú và cộng đồng hỏi đáp sôi động nhất.


- HOC247 TV: Kênh Youtube cung cấp các Video bài giảng, chuyên đề, ôn tập, sửa bài tập, sửa đề thi


miễn phí từ lớp 1 đến lớp 12 tất cả các mơn Tốn- Lý - Hố, Sinh- Sử - Địa, Ngữ Văn, Tin Học và
Tiếng Anh.



Vững vàng nền tảng, Khai sáng tương lai



Học mọi lúc, mọi nơi, mọi thiết bi – Tiết kiệm 90%


Học Toán Online cùng Chuyên Gia









×