Tải bản đầy đủ (.pdf) (4 trang)

De thi tuyen sinh lop 10 mon Tieng Toan 1213

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.29 MB, 4 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

IBANCH1NH1


sa

GIAo DYC vA DAo

T

~o



BENTRE


~;o ,


DE CHINHTHUC



DE THI TUYEN SINH LOP 10


TRUNG HQC PHO THONG NAM HQC 2012 - 2013
Mon: ToAN


ThOi gian : 120 phut (khong k~ phat d~)


Cau 1.(4 di~m)


Khong sir dung may tinh cAm tay,


a) Tinh: A =

-

J8 -

2J18

+

Fa .



b) Giai phuong trinh: X2- 3x - 18

=

O.


<i>{X+2Y</i> =5
c) Giai h~ phirong trinh:


<i>x-y=-1</i>


Cau 2. (5 diem)



Cho phuong trinh: X2- mx

+

m - 3 =0 (1), voi m 1fttham s6.


a) Chung minh rang phirong trinh (1) luon co 2 nghiem phan biet voi moi m.


b) Khi phuong trinh (1) co hai nghiem phan biet Xl va X2,tim cac gia tri cua m


saD cho Xj

+

X2=2XIX2.


c) Tim gia tri nho nhat cua bieu tlurc B =2(X12+<i>xl) -</i> XIX2'


Cau 3. (5 di~m)


Cho cac ham s6 y =x2 co db thi la (P) va y = - X

+

m co db thi la (d), voi m la


tham s6.


a) V6i m

=

2, hay ve (P) va (d) tren cung mot h~ true toa dQ vuong goc (don vi


tren cac true bang nhau) va tim toa dQ cac giao diem cua (P) va (d) bang phep tinh,


b) Tim m d~ (d) c~t (P) tai hai di~m nam v€ hai phia cua true tung.
Cau 4. (6 di~m)


Cho tam giac ABC (AB<AC) co ba goc d€u nhon va nQi ti~p duong tron tam 0,


ban kinh R. Ve dirong kinh AD va duong cao AH (HEBC). Tir B va C ve BI va CK
cung vuong goc voi AD c~t AD IAnhrot tai I va K.


a) Chirng minh ill giac ABHI va tir giac AHKC nQi tiep,



b) Chirng minh: IH <i>II</i> CD.


c) Chirng minh: LlIHK va LlBAC dbng dang.


d) Cho

<i>RAe</i>

=60°. Tinh dien tich cua hinh gioi han boi day BC va cung nho BC


cua dirong tron tam

°

theo R.


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

---HET---.'-. SOGIAODVCvABAoT~O
BENTRE


WONG DAN CHAM


'nn TUYEN SINH LOP 10 TRUNG HQC PH6 THONG
NAM HQC 2012 - 2013


Mon: ToAN


DE

CHINH T

RU

e



, CA'


.. au


Caul


a) <i>A</i> =J8 -2.J18 +J50 = ~4.2 -2..)9.2 +..)25.2


=

2

.

J2 -

<i>2</i>

<i>.</i>

<i>3</i>

<i>.</i>

<i>J2</i>

+

5

.

J2

0,50



---~

--

(2

-

~-

6

-;

S

-)

J2

-

~

--

:]2

--

-

----

-

---

-

--

-

-

---

--

---

---

- --

-

--

0

;

50

---

-- ----

---

-



---b) Giai phirong trinh: <i>Xl -</i> 3x - 18=O.


~

=

9 - 4.(-18)

=

81>0

<i>~.Ji</i>

=

9 0,50


_.•...- --- --- - -- --- - -_.•.- --_.•._.•..•..•.- - --_.•..•..•..•..•..•._.•..•...•..•..•...._.•..•..•..•._.•..•.-.•..•..•..•..•..•..•._.•._... .•..•..•...•..•.

~

-

.

-

....•..•..•..•.:~-.•..•..•..•..•.


Ph inhcc hie 3+9 6 3-9 1,00 MOlnghl~m


irong tn co ng rem: XI =-2- = ; <i>x2</i> =-2- =-3 0,50
<i>{X+</i> <i>2y</i> =5 (1)


c) Giaih~ phirong trinh:


<i>x-</i> <i>y</i> =-1 (2)


_1_

~

Y_{

!

>-~~:

{~

2

_

~~

_

~l!<;Y

_

~:}

_~ _

X

~

__

<i>~</i>

<i>_</i>

<i>'</i>

<i>1_</i>

<i>~</i>

<i>_</i>

<i>~</i>

~!~~ _


_

J~~y

_

X _~_~_

~

~~

_

G

2

_t_~_

~l!

_

<l~:

__

~

_

.

: _

~

~

_

_

~!

_

~

_

_

~_~_

<i>J</i> <i>~~~~</i> <i>_</i>


V~yh~ co nghiem:

<i>{</i>

<i>X</i>

=

1 0 50


<i>y=2</i> <i>'</i>


Cho phuong trinh: <i>XL -</i> mx

+

m - 3=0 (1)


a) Taco ~=m2-4(m-3)=m2-4m+12 0,50


<i>::::</i>

<i>::</i>

<i>:::::::</i>

<i>{</i>

<i>~</i>

<i>~:~</i>

<i>l ~:</i>

<i>:</i>

~

<i>::::~</i>

?::

~

:

(~

~

<i>!</i>

<i>r:</i>

<i>:</i>

!:

<i>e</i>

<i>!:</i>

<i>!</i>

<i>r</i>

<i>:</i>

<i>):</i>

<i>:</i>

<i>::</i>

<i>:::</i>

<i>::::::</i>

<i>:</i>

<i>:</i>

<i>:</i>

<i>::::::</i>

<i>:</i>

<i>::</i>

<i>:</i>

<i>:::</i>

<i>:</i>

<i>:</i>

~

~

$~

::

:::

:::

:

::

:

::

:

::

:

:::::::::




V~yphuong trinh (1) luon co hai nghiem phan biet voi moi 0,50
m.


b) Khi phirong trinh (1) co hai nghiem phan bi~t Xlva X2,


<i>{Xl</i> <i>+X2</i> <i>=m</i>


theo Viet ta co: 0,50


<i>Xl,X2</i> <i>=m-3</i>


---,--- --- ---


---Theo

de

bai, ta co x, + X2= 2XIX2¢:} m = 2(m - 3) 0,50


--- --- ---


-¢:}m = 2m - 6 ¢:}m = 6. 0,50


c) Tim gia tri nho nhat cua bieu tlurc B = <i>2(x,l.</i> + <i>X2l) -</i> X,X2


Ta co B = 2(X12+ <i>xl) -</i> XIX2


= 2[(XI + X2)2- 2XIX2]- XIX2.=2(XI + X2)2- 5XIX2


0,50


---:[---2--- --- ---



-= 2m - 5(m - 3) = 2m - 5m + 15


2 5 5 2 5 2 0,50


<i>=2(m</i> <i>-2·4m)+15=2(m-</i>

<i>4)</i>

-2(4) +15


--- --- ---


<i>-=2(m-~Y+</i> 95 ~ 95


4 8 8 0,50


--- --- ---


-" " inhc nh" . b','( hu BI' 95 khi 5


V'i}.ygra tn 0 at cua leu t ire a

<i>8</i>

<i>1m</i>

=

4 . 0,50


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

Cau3


Cho cac ham so y =x co do thi la (P) va y=-x +m co do


thi la (d),


a) m= 2, ve (P): y = X2

va

(d): y = -x +2 tren cung mot


h~true toa d(>vuong goc.


Bang mot

s6

gia tri:



-

;1

-



-_:--_~_1----:----:---:--1,00


-"(

d

)"

di

-

q~a

-

(

0

; -

i

"j~

~

<i>-</i>

<i>(i</i>

<i>"</i>

<i>;</i>

<i>-</i>

oj

-

-

---

-

-

---

---

-

---

-

---

----

----

-

- ----

-

O;St)

" -

-

-- --

-

--- ---

-

-

-

--

--



<i>----</i>

<i>D6</i>

till

"

~

-

--

-

--

---

-

--

-

---

-

-

----

---

----

---

-

---

--

- --

---

--- ---

---

-

-

--

---

-



<i>-Y</i>

y={l


0,50 (P)


0,50 (d)


-2


y=-:x+2


-

-

* -

XAe

-

diiili

-

tQa

-

d~

-

giao

-

di6m

-

c~a-

CP)" ~~

-

cdj

-

b~ng ph~p

-

ifllil

:-- -

--

-

--- ----

--

----

-

-

---



---Phuong trinh hoanh d(>giao diem cua (P) va (d) la:


<=><i>X2</i>

=

<i>-x</i>+2<=> <i>X2</i> +<i>X</i> <i>-</i> 2

=

0 0,50


.

-, ~~

;.

~

~.

~

.;~

~

.

o~ [:

:

.

: ~~

~;~

.



I

~

:

·

~2

e

::

·

~

···

.

.

...

...

~:~

.. .

..

..



---,---._.--- --- ---



--V~ycac giao diem la: ( 1; 1) va (-2; 4). 0,50


b) Tim m de (d) cat (P) tai hai diem nam ve hai phia cua


true tung


Phuong trinh hoanh d(>giao di~m cua (P) va (d) la


<i>X2</i> <i>+x-m</i>

=

0 (*).


(d) c~t (P) tai hai di~m nam v€ hai phia cua true tung thi (*)


phai co 2 nghiem phan bi~t trai

dfru

<=> a.c<O


<=> l.(-m) < 0 <=>m>O <sub>0,50</sub>


6,00<1


Cau4


0,50 (e)


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

a) Chirng minh tir giac ABHI va ill giac AHKC nQi tiep


Ta co:

<i>AiiB</i>

=

<i>AiB</i>

=

900 (hoac

<i>AiiC</i>

=

<i>AKC</i>

=

900) (gt) 0,50
Nen cac goc

<i>AiiB</i>

va

<i>AiB</i>

cung nhin AB duoi mot goc


vuong

<i>(AiiC</i>

va

<i>AKC</i>

cung nhin AC diroi mQt goc vuong)


<i>_Y~X:</i>

Jft:

_

g~~~_

~~~~_

{h~~~

<i>_tf!_</i>

g~~~

_@_~~ __

~9~_

!!~J?)

:

~

_




Ttrong tv : Tu giac AHKC (ho~c ill giac ABHI nQi tiep). 0,50
0,50


b) Chung minh: IH // CD


Ta co

<i>Aiii</i>

+

<i>Aiii</i>

=

1800 (nr giac ABHI nQi tiep)


-- -- - -- 050


<i>_</i>

<i>M_~</i>

<i>_!!!li</i>

.

t.

!!!~_::

_

?

_

!

Q~__

~~J?__

~~!!_::

<i>J!!!(</i>

< ~)

~

_



Lai co

<i>Aiii</i>

=

<i>AiiC</i>

(goc nQi tiep cua (0» (2)


---

----

-

~~~~--

---

---


<i>----Tir</i> (1)va (2) ta co

<i>JiiK</i>

=

<i>AiiC</i>

nen IHI/CD 0,50


c) Chung minh: ~IHK va ~BAC dong dang
Ta co

<i>Aiii</i>

=

<i>JiiK</i>

(cmt)


<i>_</i>

<i>y~</i>

<i>__</i>

<i>1f!j</i>

<i>_</i>

<i>::</i>

<i>_</i>

<i>1XH</i>

<i>__</i>

(~l!~g

_

~~~

_

~~~g

_

A~J

~~~~

_



Nen ~ IHK - ~ BAC (g.g) 0,50


d) Tinh dien tich cua hinh <i>(vien phdn BDC)</i> theo ban kinh
R cua dirong tron tam O.


Theo de bai

<i>BAC</i>

=60° ~

roc

=120°(goc nQi tiep bang
mra goc 6 tam).


Tir 0 ve OM.l Be (M E BC) M la trung diem cua BC (ban


kinh vuong goc voi day) va

<i>RoM</i>

=60°, nen <i>MOM</i> la


, ., d}. ( <i>'BMl';I</i> <i>,</i> A <i>BM</i>

<i>R</i>

<i>.</i>

<i>J3</i>



nua tam gIaC eu <i>co</i> <i>a uucrng cao nen</i> = -- ~


2


<i>BC</i> =

<i>R</i>

<i>.</i>

<i>J3),</i>

OM= <i>R .</i>


2


S - <i>nR2n - nR21200.</i> <i>nR2</i> (d d)


quat DOC - 3600 - 3600 = -3- v t <sub>0,50</sub>


--- --- - -- - - -- -- -1- -

<i>-ji</i>

<i>---</i>

<i>-</i>

<i>;i --</i>

<i>--</i>

<i>-ji</i>

<i>2</i>

-;j3

- ---

-

---

-

-

-

--

--

----

-

--

--

-

--

---

-

-

- --

-

-

--

-- --

-

---- - --

-

-- --

--

---

-

-

--



<i>--SflOBC</i> =

<i>2</i>

<i>.</i>

<i>'</i>

<i>2·</i>

<i>R</i> 3 - -4- (dvdt) 0,50


SBIC =Squ,tDOC - S<i>flOBC</i>


n<i>R2</i> <i>R2</i>

<i>.</i>

<i>J3</i>

<i>R2</i>


= - - --

=

<i>(4n-3.J3)-</i> (dvdt)


3 4 12



L-__~ _


0,50


I) Neu hoc sinh him bai khong theo huang ddn cham nhung dung vdn cho dti diem
theo tung cau,


2) Hoc sinh co the dung may tinh cAm tay (cac loai may tinh diroc phep dem vao
phong thi) de lam bai neu de bai khong yeu cAu giai theo phuong phap nao.


</div>

<!--links-->

×