Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (103.23 KB, 4 trang )
<span class='text_page_counter'>(1)</span>GIẢI TOÁN THẾ NÀO ? MỘT SỐ DẠNG TOÁN SỬ DỤNG PHÉP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ Sau khi xem xong tạp chí Toán Tuổi thơ 2 số 5 (tháng 7 năm 2003), tôi rất tâm đắc với các bài toán phân tích đa thức thành nhân tử. Do đó tôi mạnh dạn trao đổi với bạn đọc về vấn đề vận dụng phép phân tích đa thức thành nhân tử vào giải một số dạng toán ở bậc THCS. 1. Rút gọn các biểu thức đại số. Bài toán 1 : Rút gọn :. với ab ≠ 0. Lời giải :. Bài toán 2 : Rút gọn :. Lời giải :. 2. Chứng minh bất đẳng thức Bài toán 3 : Cho ΔABC với góc A ≥ góc B ≥ góc C. Chứng minh :.
<span class='text_page_counter'>(2)</span> Lời giải : Hạ AH vuông góc với BC ; BI vuông góc với AC. Ta có AH = ha, BI = hb. Dễ thấy 2 tam giác vuông AHC và BIC đồng dạng và chung góc C. => ha/hb = AH/BI = b/a . áp dụng điều tương tự ta có :. Vì góc A ≥ góc B ≥ góc C tương đương với a ≥ b ≥ c nên (**) đúng, tức là (*) được chứng minh. 3. Giải phương trình và bất phương trình Bài toán 4 : Giải phương trình : 4x3 - 10x2 + 6x - 1 = 0 (1) Lời giải : (1) 4x3 - 2x2 - 8x2 + 4x + 2x - 1 = 0 tương đương 2x2(2x - 1) - 4x(2x 1) + (2x - 1) = 0 hay (2x - 1)(2x2 - 4x + 1) = 0. Bài toán 5 : Giải phương trình :.
<span class='text_page_counter'>(3)</span> Lời giải : Ta có : Vậy phương trình (2) có nghiệm duy nhất là x = 3. Bài toán 6 : Giải bất phương trình : 7x3 - 12x2 - 8 < 0 (3) Lời giải : (3) 7x3 - 14x2 + 2x2 - 8 < 0 tương đương với 7x2(x - 2) + 2(x2 - 4) < 0 hay (x - 2)(7x2 + 2x + 4) < 0 tương đương với (x - 2)[6x2 + 3 + (x + 1)2] < 0 hay x - 2 < 0 => x < 2. Vậy bất phương trình (3) có nghiệm là x < 2. 4. Một số bài toán khác. Bài toán 7 : CMR nếu :. với a, b ≠ 0 ; a ≠ b ; a, b ≠ 1/2 thì a + b + 3/2 = 1/a + 1/b. Lời giải : (*) tương đương : a2b - 2a3b - 2b2 + 4ab2 = b2a - 2ab3 - 2a2 + 4a2b hay : 3ab2 - 3a2b - 2a3b + 2b3a - 2b2 + 2a2 = 0 3ab(b - a) + 2ab(b2 - a2) - 2(b2 - a2) = 0 (b - a)[3ab + 2ab(b + a) - 2(a + b)] = 0 Vì a ≠ b => b - a ≠ 0 nên hệ thức trên tương đương với : 3ab + 2ab(b + a) - 2(a + b) = 0 Do a.b ≠ 0 => 3/2 + a + b - (a + b)/ab = 0 => : a + b + 3/2 = 1/a + 1/b . (đpcm). Bài toán 8 : Chứng minh : n2 + 11n + 39 không chia hết cho 49 với "n thuộc N..
<span class='text_page_counter'>(4)</span> Lời giải : Xét M = n2 + 11n + 39 = n2 + 2n + 9n + 18 + 21 = (n + 2)(n + 9) + 21. Có (n + 9) - (n + 2) = 7 => n + 9 và n + 2 cùng chia hết cho 7 hoặc không cùng chia hết cho 7. - Nếu n + 9 và n + 2 cùng chia hết cho 7 thì (n + 9)(n + 2) chia hết cho 49 mà 21 không chia hết cho 49 nên M không chia hết cho 49. - Nếu n + 9 và n + 2 không cùng chia hết cho 7 thì (n + 9)(n + 2) không chia hết cho 7 mà 21 chia hết cho 7 nên M không chia hết cho 49. Vậy n22 + 11n + 39 không chia hết cho 49. Sau đây là một số bài tập để các bạn thử vận dụng : 1. Tìm nghiệm tự nhiên của phương trình : x6 - x4 + 2x3 + 2x2 = y2. 2. Cho ab ≥ 1. Chứng minh : 1/(1 + a2) + 1/(1 + b2) ≥ 2/(1 + ab). 3. Chứng minh rằng với mỗi số nguyên lẻ n thì (n86 - n4 + n2) chia hết cho 1152. Phạm Văn Chiến (GV trường THCS Xuân Phong, Xuân Trường, Nam Định).
<span class='text_page_counter'>(5)</span>