1
2
22
22
( ): 2 9 0
( ): 2 4 0
ó: 12 8 52 6 4
A d x y
B d x y
Ta c a a b b a b AM
22
2 2 2 2
22
22
22
4 8 20 2 4
a c b d ac bd a c b d AB
c d c d c d BN
22
à : (6 2) (4 4) 4 5M AM AB BN MN
Bài 14.
Cho 3 số dương x,y,z thõa mãn: 3
-x
+ 3
-y
+ 3
-z
=1. Chứng minh rằng:
9 9 9 3 3 3
3 3 3 3 3 3 4
x y z x y z
x y z y z x z x y
Giải:
Đặt:
2 2 2 3 3 3
2 2 2
3 3 3
22
3 3 3
33
3
, , 0
3
1 1 1
1
3
ó:
ì:
.
ó: 3
84
x
y
z
a
abc
b ab bc ca abc
abc
c
a b c a b c
Tac VT
a bc b ca c ab a abc b abc c abc
a a a
V
a abc a ab bc ca a b a c
abc
VT
a b a c b c b a c a c b
a a b a c a
Ta c
a b a c
3
33
3
64 4
33
;
44
3
2 ( )
8 4 4
a
bc
bc
b c b a c a c b
a b a c b c a b c
VT a b c VT VP dpcm
Bài 15.
Page 101 of 130
Tìm Min của:
2 2 2
xyz
H
y z z x x y
Trong đó:
2 2 2 2 2 2
, , 0
2010
x y z
x y y z z x
Giải:
Đặt:
22
22
22
2 2 2 2 2 2
2 2 2
2 2 2 2 2 2
2 2 2 2 2 2 2 2 2
2 2 2
2 2 2
, , 0
2010
ó:
2( ); 2( ); 2( )
2( ) 2( ) 2( )
à : ; ;
2 2 2
1
22
a x y
abc
b y z
abc
c z x
Theo Bunhiacopxki ta c
x y x y y z y z z x z x
xyz
H
y z z x x y
a b c a b c a b c
V x y z
a b c
H
b
2 2 2 2 2 2
2
2 2 2 2 2 2
1 1 1 1 ( )
( ) 2( ) . ì: ( ) ê :
3
22
1 ( ) 1 1 1 1 ( )
.( ) 2( ) .9 2( )
33
2 2 2 2
2010 1005 2
2
2 2 2 2
a b c a b c
ca
abc
a b c a b c V a b c n n
abc
a b c a b c
H a b c a b c a b c
abc
abc
1005 2
224450
2
Min H x y z
Bài 16: Tìm Min, Max của:
2
2 2 2 2
3 12
xy
A
x y x x y
Giải:
Page 102 of 130
2
2
22
2
22
22
2
2
2
2
22
1
ó: . :
3 1 1 12
1 1 12
1
1
1 3 12
1 3 1 1 12
3 1 1 12
1 1 12 1 1
. : 1 12 ( 1) 3 ( )
3 12 4 3
1
'( ) 0 3 ( ) (
3
y
Ta c A Coi t
x
xy
yx
tt
t
A
tt
tt
t
t
tu
Coi u t u A f u
tu
u
f u A f u f
u
11
3) ax .
6 18
à : lim ( ) 0 0
u
MA
V f u MinA
Bài 17: Cho 3 số thực thõa mãn: x
2
+ y
2
+ z
2
=1.
Tìm Min, Max của:
( ) ( )P x y z xy yz zx
Giải:
Đặt:
2 2 2 2
22
3( ) 3 3; 3
1 2 1
à ( ) '( ) 0 1 3; 3
22
ax (1) 1
ó:
( 3) ( 3 1)
t x y z t x y z t
t t t
V P t f t f t t
M P f
Qua BBT ta c
MinP f
Bài 18: Cho 2 số dương x,y thõa mãn: x+y=5/4. Tìm Min của:
41
4
A
xy
Giải:
Ta có:
Page 103 of 130
2
2
5
16
16 60 5
4
.
5
4 4 (5 4 )
4 ( )
4
4 0 , 5
16 16 1 16 1
: à : ( )
5 4 5
5
0
16 1 16
'( ) 0 (1) 1 5
5
4
5
3
yy
y x y
A
xy y y
yy
a y a b
ab
Coi V A f a
b y a b
ab b a a a
a
f a MinA f
a
a
a
Dấu “=” xảy ra khi và chỉ khi x=1; y=1/4
Bài 19: CMR: Với mọi tam giác ABC ta luôn có:
1 os 1 os 1 os
222
33
AAA
ccc
AAA
Giải:
Xét hàm số:
2
cos 1
2
x
yx
' sin à '' 1 cos 0; ;
2
y x x v y x x o
Ta thấy y’ đồng biến và ta có: y > 0. Vậy ta có:
2
cos 1
2
x
x
Áp dụng cho các góc A/2, B/2 , C/2 ta có:
2 2 2
cos 1 ;cos 1 ;cos 1
2 8 2 8 2 8
A A B B C C
2
1 1 1 1 9
2 ( ) 2.
88
18 144
33
88
A B C
VT A B C
A B C A B C
Bài 20: Cho 2 số không âm tùy ý x,y thõa mãn x+y=1: Tìm Min, Max của:
11
xy
S
yx
Page 104 of 130
Giải:
Ta có:
22
2
2
( ) ( ) 2 2
.
1 1 ( ) 1 2
( ) 1 1 2 2 6
à : 0 . : 0; à 2 ( )
4 4 4 2 2
12
inS ( )
6
'0
43
( 2)
ax (0) 1
x y x y x y xy
S
y x xy x y xy
x y t
M xy Coi t xy t v S f t
tt
Mf
S
t
M S f
………………….Hết…………………
Page 105 of 130
ĐỀ LUYỆN TẬP SỐ 09
HÌNH HỌC GIẢI TÍCH PHẲNG
Bài 1: Một hình thoi có một đường chéo có phương trình: x+2y-7=0, một cạnh
có phương trình: x+3y-3=0. Một đỉnh là (0;1). Viết phương trình 3 cạnh và đường
chéo thứ 2 của hình thoi.
Bài 2: Trong mặt phẳng Oxy cho 2 điểm M(1;4) và N(6;2). Lập phương trình
đường thẳng quaN sao cho khoảng cách từ M tới đó bằng 2.
Bài 3: Trong mặt phẳng Oxy cho điểm M(3;1). Viết phương trình đường thẳng
qua M và cắt 2 trục tọa độ Ox, Oy tương ứng tại A và B sao cho OA+OB đạt giá
trị nhỏ nhất.
Bài 4: Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC với A(1;2),
đường trung tuyến BM và đường phân giác trong CD có phương trình lần lượt là:
2x+y+1=0 và x+y-1=0. Viết phương trình đường thẳng BC.
Bài 5: Trong mặt phẳng với hệ trục Oxy cho đường thẳng d có phương trình:
2x+3y+1=02x+3y+1=0 và điểm M(1;1). Viết phương trình đường thẳng đi qua
M tạo với d một góc 45
0
Bài 6: Trong mặt phẳng tọa độ Oxy cho tam giác ABC có đỉnh A(1;0) và 2
đường thẳng lần lượt chứa đường cao kẽ từ B và C có phương trình: x-2y+1=0;
3x+y+1=0. Tính diện tích tam giác ABC .
Bài 7: Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC có AB=AC,
góc BAC = 90
0
. Biết M(1;-1) là trung điểm của BC và G(2/3;0) là trọng tâm
tam giác ABC. Tìm tọa độ các đỉnh ABC.
Bài 8: Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC cân đỉnh A.
Có trọng tâm là G(4/3;1/3), Phương trình đường thẳng BC là: x-2y-4=0, phương
trình đường thẳng BG là: 7x-4y-8=0. Tìm tọa độ các đỉnh A,B,C.
Bài 9: Trong mặt phẳng Oxy, cho hình chữ nhật có tâm I(1/2;0). Phương trình
đường thẳng AB là: x-2y+2=0 và AB=2AD. Tìm tọa độ các đỉnh A,B,C,D. Biết
rằng A có hoành độ âm.
Bài 10: Trong mặt phẳng Oxy cho điểm A(0;2) và đường thẳng d: x-2y+2=0.
Tìm trên d hai điểm B và C sao cho tam giác ABC vuông ở B và AB=2BC.
Câu 11. Cho
ó (5;3); ( 1;2); ( 4;5)ABC c A B C
viết phương trình đường thẳng
đi qua A và chia tam giác ABC thành 2 phần có tỉ số diện tích bằng nhau.
Page 106 of 130
Câu 12. Cho tam giác ABC nhọn, viết phương trình đường thẳng chứa cạnh AC
biết tọa độ chân các đường cao hạ từ A,B,C lần lượt là:
A’(-1;-2) , B’(2;2), C(-1;2).
Câu 13. Cho hình vuông ABCD có đỉnh A(3;0) và C(-4;1) đối diện. Tìm tọa độ
các đỉnh còn lại?
Bài 14: Trong mặt phẳng Oxy cho đường tròn (C) và đường thẳng d:
22
( ): 1 1 4; : 1 0C x y d x y
Viết phương trình đường tròn (C’) đối xứng với (C) qua d.
Bài 15: Cho tam giác ABC với A(8;0), B(0;6) và C(9;3).
Viết phương trình đường tròn ngoại tiếp tam giác ABC.
Bài 16: Trong mặt phẳng tọa độ cho đường thẳng d: 2x-y-5=0 và 2 điểm A(1;2),
B(4;1). Viết phương trình đường tròn có tâm thuộc d và đi qua A,B.
Bài 17: Trong mặt phẳng Oxy cho đường thẳng d: 4x+3y-43=0 và điểm A(7;5)
trên d. Viết phương trình đường tròn tiếp xúc với d tại A và có tâm nằm trên
đường thẳng:
:2 5 4 0xy
Bài 18: Trên mặt phẳng Oxyz cho 2 đường thẳng:
d
1
:3x+4y-47=0 và d
2
:4x+3y-45=0
Lập phương trình đường tròn có tâm nằm trên đường thẳng d: 5x+3y-22=0
Và tiếp xúc với cả d
1
và d
2
.
………………….Hết…………………
Page 107 of 130
HDG ĐỀ LUYỆN TẬP SỐ 09
Các bài toán về hình học giải tích phẳng thực sự cũng không khó khăn gì đâu các
bạn ah!, Để học tốt phần này các bạn cần chuẩn bị cho mình những kiến thức từ
trung học cơ sở như các yếu tố về điểm, đường thẳng trong tam giác và tứ giác, kỹ
năng phát hiện các yếu tố làm cơ sở để tìm ra hướng giải cho bài toán.
Bài 1: Một hình thoi có một đường chéo có phương trình: x+2y-7=0, một cạnh
có phương trình: x+3y-3=0. Một đỉnh là (0;1). Viết phương trình 3 cạnh và
đường chéo thứ 2 của hình thoi.
Giải:
Giả sử A(0;1) và tọa độ B là nghiệm của hệ PT:
3 3 0
(15; 4)
2 7 0
xy
B
xy
Gọi C(a;b) ta có tâm
1
( ; ) à ( 15; 5)
22
ab
O v D a b
;1
30; 9 ( 30) ( 1)( 9) 0(1)
à : 15 2( 5) 7 0 12 2 (2)
AC a b
BD a b a a b b
AC BD
M D BD a b a b
Thế (2) vào (1) ta có: b=-9 hay b=5
-9 (30; 9) (15; 4) ( ) (2;5) (1;3) ( 13;10)
:( 2) 3( 5) 0 : 3 17 0
(2;4) (2; 1) :2 ( 1) 0 2 1 0
( 13;9) (9;13)
:9 13( 1) 0
:9( 2) 1
AB CD
AC
AD BC
b C D B loai C O D
Do n n CD x y hay x y
AC n AC x y x y
AD n n
AD x y
BC x
:9 13 13 0
3( 5) 0 :9 13 83 0
AD x y
y BC x y
Bài 2: Trong mặt phẳng Oxy cho 2 điểm M(1;4) và N(6;2). Lập phương trình
đường thẳng qua N sao cho khoảng cách từ M tới đó bằng 2.
Giải:
Xét trường hợp đường thẳng cần tìm song song với trục tung là:
Page 108 of 130
: 6 0 5 2( )x d M loai
Gọi phương trình đường thẳng cần tìm có dạng:
': ( 6) 2y k x
2
26
2 6 0 ' 2
1
0
2
':
20
20 21 162 0
21
kx y k
kx y k d M
k
k
y
xy
k
Bài 3: Trong mặt phẳng Oxy cho điểm M(3;1). Viết phương trình đường thẳng
qua M và cắt 2 trục tọa độ Ox, Oy tương ứng tại A và B sao cho OA+OB đạt giá trị
nhỏ nhất.
Giải:
Gọi phương trình đường thẳng cần tìm là:
2
2
2
2
1. : ;0 à 0;
31
1
31
( 3 1)
( ) ( 3 1) 3 1 3 3 3
3
0
:1
3 3 1 3
xy
Voi A a v B b
ab
ab
OA OB a b a b a b
ab
a
b
Min OA OB a b b a
ab
xy
PT
Bài 4: Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC với A(1;2),
đường trung tuyến BM và đường phân giác trong CD có phương trình lần lượt
là: 2x+y+1=0 và x+y-1=0. Viết phương trình đường thẳng BC.
Giải:
Gọi A’ là điểm đối xứng với A qua CD và AA’ cắt CD ở I ta có: A’ thuộc BC
Ta có:
AA'
(1; 1) AA': 1 ( 2) 0 1 0
CD
u n x y hay x y
Tọa độ điểm I là nghiệm của hệ:
Page 109 of 130
10
(0;1) '( 1;0). ( ; ). 1 0
10
xy
I A Goi C a b Do C CD a b
xy
Mà trung điểm M của AC có tọa độ là:
1 1 1 1
( ; ) 2. 1 0 2 6 0
2 2 2 2
a b a b
M BM a b
Tọa độ C là nghiệm của hệ PT:
10
( 7;8) ' ( 6;8) (4;3)
2 6 0
:4( 1) 3 0 4 3 4 0
BC
ab
C A C n
ab
BC x y hay x y
Bài 5: Trong mặt phẳng với hệ trục Oxy cho đường thẳng d có phương trình:
2x+3y+1=0 và điểm M(1;1). Viết phương trình đường thẳng đi qua M tạo với d
một góc 45
0
Giải:
Xét đường thẳng cần tìm song song với trục tung là:
21
: 1 0 (1;0) ( ; )
13 2
x n d d
Gọi phương trình đường thẳng cần tìm là:
'
2
': 1 1 1 0 ( ; 1)
1
5 4 0
23
1
os( '; )
5
5 6 0
2
14. 1
5
y k x kx y k n k
xy
k
k
cd
xy
k
k
Bài 6: Trong mặt phẳng tọa độ Oxy cho tam giác ABC có đỉnh A(1;0) và 2 đường
thẳng lần lượt chứa đường cao kẽ từ B và C có phương trình: x-2y+1=0;
3x+y+1=0. Tính diện tích tam giác ABC .
Giải:
Ta có:
(1; 3) : 3 1 0
CK AB
u n AB x y
Tọa độ B là nghiệm của hệ:
Page 110 of 130
3 1 0
( 5; 2)
2 1 0
à : 2;1 2( 1) 0 2 2 0
BH AC
xy
B
xy
V u n x y x y
Và tọa độ C là nghiệm của hệ phương trình:
22
2 2 0
( 3;8) 4 8 4 5
3 1 0
14 1 1 14
. .4 5. 28
22
55
ABC
xy
C AC
y
d B AC BH S AC BH
Bài 7: Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC có AB=AC, góc
BAC = 90
0
. Biết M(1;-1) là trung điểm của BC và G(2/3;0) là trọng tâm tam giác
ABC. Tìm tọa độ các đỉnh ABC.
Giải:
Gọi
00
00
2
;
3
1
( ; ) ; 1 0;2
3
2
AG x y
A x y GM M
AG GM
;2
2 ; 4
( ; ) (2 ; 2 )
2 2 ; 2 2
(1; 3)
(2 ) 2 4 0
0 (4;0); ( 2; 2)
ì:
2 ( 2; 2); (4;0)
2 2 3(2 2 ) 0
AB a b
AC a b
Goi B a b C a b
BC a b
AM
a a b b
AB AC b B C
V
AM BC b B C
ab
Bài 8: Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC cân đỉnh A. Có
trọng tâm là G(4/3;1/3), Phương trình đường thẳng BC là: x-2y-4=0, phương trình
đường thẳng BG là: 7x-4y-8=0. Tìm tọa độ các đỉnh A,B,C.
Giải:
Page 111 of 130
Hoàng độ giao điểm B là nghiệm của hệ PT:
7 4 8 0
(0; 2)
2 4 0
xy
B
xy
Do C thuộc BC nên:
4 2(3 ) 4 0 2 6a b a b
Nhưng do tam giác ABC cân nên:
41
;
33
. 0. à : 2 3 0
2;1
BC
BC
AG a b
AG BC AG u M a b
u
Tọa độ A là nghiệm của hệ PT:
2 6 0
(0;3) (4;0)
2 3 0
ab
AC
ab
Bài 9: Trong mặt phẳng Oxy, cho hình chữ nhật có tâm I(1/2;0). Phương trình
đường thẳng AB là: x-2y+2=0 và AB=2AD. Tìm tọa độ các đỉnh A,B,C,D. Biết
rằng A có hoành độ âm.
Giải:
Phương trình đường thẳng qua I vuông góc với AB là d:2x+y-1=0
Tọa độ giao điểm M của d và B là nghiệm của hệ:
2 1 0
5
(0;1) 2 5
2 2 0
2
xy
M MI AD MI AM
xy
Gọi A(a;b) với a<0 ta có:
22
( 1) 5AM a b
Do A thuộc AB nên a-2b+2=0 => a=2(b-1)
2
02
5 1 5 ( 2;2)
2 2( )
(2;2)
(3;0)
( 1; 2)
ba
bA
b a loai
B
C
D
Bài 10: Trong mặt phẳng Oxy cho điểm A(0;2) và đường thẳng d: x-2y+2=0. Tìm
trên d hai điểm B và C sao cho tam giác ABC vuông ở B và AB=2BC.
Giải:
Page 112 of 130