Tải bản đầy đủ (.pdf) (1 trang)

de thi thu

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (63.82 KB, 1 trang )

<span class='text_page_counter'>(1)</span>www.MATHVN.com SỞ GD & ĐT HÀ TĨNH TRƯỜNG THPT TRẦN PHÚ www.MATHVN.com. ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2013 Môn: TOÁN Thời gian làm bài: 180 phút không kể thời gian giao đề. I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2 Câu 1 (2,0 điểm). Cho hàm số y = ( x + 2 )( x − 1) ( C ) . a) Khảo sát và vẽ đồ thị hàm số ( C ) .. b) Tìm các điểm M trên đường thẳng d : y = −2x + 19 , biết rằng tiếp tuyến của đồ thị ( C ) đi qua điểm M vuông góc với đường thẳng x + 9y − 8 = 0 . Câu 2 (2,0 điểm). ( 2sin x − 1)( cos 2x + sin x + 1) = 3 + 2cos x . a) Giải phương trình 3 sin x − sin 2x 9 2x b) Giải phương trình 2 + −1 = 0 . x 2x 2 + 9  y 4 − 2xy 2 + 7y 2 = − x 2 + 7x + 8 Câu 3 (1,0 điểm). Giải hệ phương trình  . 2  3y + 13 − 15 − 2x = x + 1 Câu 4 (1,0 điểm). Cho lăng trụ đứng ABC.A 'B'C ' , có đáy ABC là tam giác đều cạnh bằng a. Gọi G là trọng tâm của tam giác ABC , biết rằng khoảng cách từ điểm G đến mặt phẳng ( A'BC) bằng a . Tính thể tích khối lăng trụ ABC.A'B'C' và cosin góc giữa hai đường thẳng A'B và AC' . 15 Câu 5 (1,0 điểm). Cho a, b, c là ba số dương thỏa mãn điều kiện a 3 + b3 = c3 .. Tìm giá trị nhỏ nhất của biểu thức M =. a 2 + b2 − c2 . ( c − a )( c − b ). II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) A. Theo chương trình Chuẩn. Câu 6a (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD có đỉnh A ( −3;5 ) , tâm I thuộc đường thẳng d : y = − x + 5 và diện tích bằng 25. Tìm tọa độ các đỉnh của hình vuông ABCD, biết rằng tâm I có hoành độ dương. n Câu 7a (1,0 điểm). Khai triển nhị thức P(x) = (1 − 6x ) = a 0 + a1x + ... + a k x k + ... + a n x n . Tính giá trị a a của biểu thức T = a 0 + 1 + ... + nn , biết rằng n là số nguyên dương thỏa mãn 2C 2n − 8C1n = n . 2 2 1 Câu 8a (1,0 điểm). Giải phương trình log 22x x + log 2x 3 x = . 2 B. Theo chương trình Nâng cao. Câu 6b (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hai đường thẳng d : x − 2y − 1 = 0 , d ' : x − 2y + 21 = 0 và điểm A ( 3;4 ) . Hai điểm B, C lần lượt nằm trên đường thẳng d và d’ sao cho tam giác ABC vuông có độ dài cạnh huyền BC = 10 . Viết phương trình đường tròn ngoại tiếp tam giác ABC. Câu 7b (1,0 điểm). Một chiếc hộp đứng 6 cái bút màu xanh, 6 cái bút màu đen, 5 cái bút màu tím và 3 cái bút màu đỏ. Lấy ngẫu nhiên ra 4 cái bút. Tính xác suất để lấy được ít nhất 2 bút cùng màu. 3  Câu 8b (1,0 điểm). Giải phương trình: 27 x − 271−x − 16  3x − x  + 6 = 0 . 3   ---------HẾT-------www.mathvn.com.

<span class='text_page_counter'>(2)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×