Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (125.55 KB, 4 trang )
<span class='text_page_counter'>(1)</span>SỞ GIÁO DỤC VÀ ĐÀO TẠO TÂY NINH KÌ THI TUYỂN SINH VÀO LỚP 10 NĂM HỌC 2012 – 2013 Ngày thi : 02 tháng 7 năm 2012 Môn thi : TOÁN (Không chuyên) Thời gian : 120 phút (Không kể thời gian giao đề) ---------------------------(Đề thi có 1 trang, thí sinh không phải chép đề vào giấy thi). ĐỀ CHÍNH THỨC Câu 1 : (1điểm) Thực hiện các phép tính a) A 2. 8 b) B 3 5 20 2 Câu 2 : (1 điểm) Giải phương trình: x 2 x 8 0 . 2 x y 5 Câu 3 : (1 điểm) Giải hệ phương trình: 3x y 10 . Câu 4: (1 điểm) Tìm x để mỗi biểu thức sau có nghĩa: 1 2 2 a) x 9 b) 4 x 2 Câu 5: (1 điểm) Vẽ đồ thị của hàm số y x. x 2 2 m 1 x m 2 3 0. Câu 6: (1 điểm) Cho phương trình . a) Tìm m để phương trình có nghiệm. b) Gọi x1 , x2 là hai nghiệm của phương trình đã cho, tìm giá trị nhỏ nhất của biểu thức A x1 x2 x1 x2 . Câu 7: (1 điểm) Tìm m để đồ thị hàm số y 3x m 1 cắt trục tung tại điểm có tung độ bằng 4. Câu 8: (1 điểm) Cho tam giác ABC vuông tại A có đường cao là AH. Cho biết AB 3cm , AC 4cm . Hãy tìm độ dài đường cao AH. Câu 9 : (1 điểm) Cho tam giác ABC vuông tại A. Nửa đường tròn đường kính AB cắt BC tại D. Trên cung AD lấy một điểm E. Nối BE và kéo dài cắt AC tại F. Chứng minh tứ giác CDEF là một tứ giác nội tiếp. Câu 10: (1 điểm) Trên đường tròn (O) dựng một dây cung AB có chiều dài không đổi sao cho chu vi tam bé hơn đường kính. Xác định vị trí của điểm M trên cung lớn AB giác AMB có giá trị lớn nhất. --- HẾT --Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm..
<span class='text_page_counter'>(2)</span> BÀI GIẢI Câu 1 : (1điểm) Thực hiện các phép tính. a) A 2. 8 16 4 b) B 3 5 20 3 5 2 5 5 5 . Câu 2 : (1 điểm) Giải phương trình. x 2 2 x 8 0 . 2. ' 1 1. 8 9 0. , ' 9 3 . x1 1 3 4 , x2 1 3 2 . S = 4; 2 Vậy . Câu 3 : (1 điểm) Giải hệ phương trình. 2 x y 5 5 x 15 x 3 x 3 3 x y 10 3 x y 10 9 y 10 y 1 . 3;1 Vậy hệ phương trình đã cho có nghiệm duy nhất . Câu 4 : (1 điểm) Tìm x để mỗi biểu thức sau có nghĩa: 1 2 2 2 a) x 9 có nghĩa x 9 0 x 9 x 3 . 4 x 2 có nghĩa 4 x 2 0 x 2 4 2 x 2 . 2 Câu 5 : (1 điểm) Vẽ đồ thị của hàm số y x . b). BGT x. y x. 2. 2 4. 1 0 1 2 1 0 1 4. Câu 6 : (1 điểm) x 2 2 m 1 x m 2 3 0. . a) Tìm m để phương trình có nghiệm. 2 ' m 1 1. m 2 3 m 2 2m 1 m 2 3 2m 2. . ' 0 2m 2 0 m 1. Phương trình có nghiệm b) Tìm giá trị nhỏ nhất của biểu thức A x1 x2 x1 x2 ..
<span class='text_page_counter'>(3)</span> Điều kiện m 1 . 2 Theo Vi-ét ta có : x1 x2 2m 2 ; x1 x2 m 3 . 2 A x1 x2 x1 x2 2m 2 m 2 3 m 2 2m 5 m 1 4 4. . A min 4 khi m 1 0 m 1 (loại vì không thỏa điều kiện m 1 ). 2 2 A m 1 4 1 1 4 A 8 . Mặt khác : (vì m 1 ) A min 8 khi m 1 . Kết luận : Khi m 1 thì A đạt giá trị nhỏ nhất và A min 8 . Cách 2: Điều kiện m 1 . 2 Theo Vi-ét ta có : x1 x2 2m 2 ; x1 x2 m 3 .. A x1 x2 x1 x2 2m 2 m 2 3 m 2 2m 5 . 2 2 Vì m 1 nên A m 2m 5 1 2.1 5 hay A 8 Vậy A min 8 khi m 1 .. Câu 7 : (1 điểm) Đồ thị hàm số y 3x m 1 cắt trục tung tại điểm có tung độ bằng 4. m 1 4 m 5 . Vậy m 5 là giá trị cần tìm. Câu 8 : (1 điểm). Ta có: BC AB2 AC2 32 4 2 5 cm . AH.BC AB.AC AB.AC 3.4 AH 2, 4 cm BC 5 .. Cách 2: 1 1 1 2 2 AH AB AC2 AB2 .AC 2 32.42 32.42 2 AH 2 2 AB AC 2 32 42 5 . 3.4 AH 2, 4 cm 5 .. Câu 9 : (1 điểm) AB O; 900 2 cắt GT ABC , A , nửa , BE cắt AC tại F. BC tại D, E AD KL CDEF là một tứ giác nội tiếp 1 1 1 sđAmB C sđAED sđADB sđAED sđBD 2 2 2 Ta có : ( C là góc có đỉnh ngoài đường tròn).. . . .
<span class='text_page_counter'>(4)</span> 1 BED sđBD 2 Mặt khác ( BED góc nội tiếp). 1 sđBD BED C 2 Tứ giác CDEF nội tiếp được (góc ngoài bằng góc đối trong). Câu 10: (1 điểm). O ,. dây AB không đổi, AB 2R , (cung lớn). M AB Tìm vị trí M trên cung lớn AB để chu KL vi tam giác AMB có giá trị lớn nhất. GT. Gọi P là chu vi MAB . Ta có P = MA + MB + AB . MA + MB max . Do AB không đổi nên Pmax Do dây AB không đổi nên AmB không đổi. Đặt sđAmB (không đổi). Trên tia đối của tia MA lấy điểm C sao cho MB = MC . 1 2C 1 MBC cân tại M M (góc ngoài tại đỉnh MBC cân) 1 1 1 1 M 1 1 1 sđAmB C sđAmB 2 2 2 4 4 (không đổi). 1 4 Điểm C nhìn đoạn AB cố định dưới một góc không đổi bằng . 1 C thuộc cung chứa góc 4 dựng trên đoạn AB cố định. MA + MB = MA + MC = AC (vì MB = MC ). MA + MB max ACmax AC là đường kính của cung chứa góc nói trên. 1 B 2 900 B 0 0 1 B 2 C1 A1 90 A ABC 90 (do B1 C1 ) AMB cân ở M. (cung lớn). MA = MB MA MB M là điểm chính giữa của AB thì chu vi MAB có giá trị lớn nhất. Vậy khi M là điểm chính giữa của cung lớn AB --- HẾT ---.
<span class='text_page_counter'>(5)</span>