❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖
❚❘×❮◆● ✣❸■ ❍➴❈ ◗❯❨ ◆❍❒◆
❇Ị■ ❚➷◆ ◆Ú ❚❍❆◆❍ ❳❯❹◆
P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆
❱⑨ ▼❐❚ ❙➮ ❱❻◆ ✣➋ ▲■➊◆ ◗❯❆◆
❚❘❖◆● ❍➐◆❍ ❍➴❈ P❍➃◆●
▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈
❇➻♥❤ ✣à♥❤ ✲ ✷✵✷✵
❇❐ ●■⑩❖ ❉Ư❈ ❱⑨ ✣⑨❖ ❚❸❖
❚❘×❮◆● ✣❸■ ❍➴❈ ◗❯❨ ◆❍❒◆
❇Ị■ ❚➷◆ ◆Ú ❚❍❆◆❍ ❳❯❹◆
P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆
❱⑨ ▼❐❚ ❙➮ ❱❻◆ ✣➋ ▲■➊◆ ◗❯❆◆
❚❘❖◆● ❍➐◆❍ ❍➴❈ P❍➃◆●
▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆
Pữỡ t sỡ
số
ữớ ữợ ❞➝♥ ❦❤♦❛ ❤å❝✿
❚❙✳ ▲➊ ❚❍❆◆❍ ❍■➌❯
❇➻♥❤ ✣à♥❤ ✲ ✷✵✷✵
ử ử
é
ởt số ỵ
❇➚
✐✐✐
✈
✶
✶✳✶
❈⑩❈ ❇❻❚ ✣➃◆● ❚❍Ù❈ ✣❸■ ❙➮ ◗❯❆◆ ❚❘➴◆●
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶
✶✳✷
❈⑩❈ ❈➷◆● ❚❍Ù❈ ▲×Đ◆● ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷
✶✳✸
❈⑩❈ ❍➏ ❚❍Ù❈ ▲×Đ◆● ❈❒ ❇❷◆ ❚❘❖◆● ❚❆▼ ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹
✶✳✹
❚➑◆❍ ❈❍❻❚ ◆●❍■➏▼ ❈Õ❆ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆
✻
✶✳✺
▼➮■ ▲■➊◆ ❍➏ ●■Ú❆ ❈⑩❈ ◆●❍■➏▼ ❈Õ❆ ▼❐❚ ❙➮ P❍×❒◆● ❚❘➐◆❍ ❇❾❈
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
❇❆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✺
✷ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ❍➏ ❚❍Ù❈ ▲×Đ◆● ❚❘❖◆● ❚❆▼ ●■⑩❈ ✶✾
✷✳✶
✷✳✷
P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ❈⑩❈ ❍➏ ❚❍Ù❈ ▲■➊◆ ◗❯❆◆ ✣➌◆ ❈⑩❈
✣×❮◆● ❈Õ❆ ❚❆▼ ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✾
✷✳✶✳✶
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❝↕♥❤ t❛♠ ❣✐→❝ ✳ ✳ ✳
✶✾
✷✳✶✳✷
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ✤÷í♥❣ ❝❛♦ t❛♠ ❣✐→❝
✷✷
✷✳✶✳✸
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ✤÷í♥❣ tr✉♥❣ t✉②➳♥
✷✹
✷✳✶✳✹
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ✤÷í♥❣ ♣❤➙♥ ❣✐→❝
✳
✷✻
✷✳✶✳✺
❍➺ t❤è♥❣ ❜➔✐ t➟♣ ❝→❝ ❤➺ t❤ù❝ ✈➲ ❝→❝ ✤÷í♥❣ ❝õ❛ t❛♠ ❣✐→❝
✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✾
P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ❈⑩❈ ❍➏ ❚❍Ù❈ ▲■➊◆ ◗❯❆◆ ✣➌◆ ❇⑩◆
❑➑◆❍ ❈⑩❈ ✣×❮◆● ❚❘➪◆ ◆❐■✱ ◆●❖❸■ ❱⑨ ❇⑨◆● ❚■➌P ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✷✳✶
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❜→♥ ❦➼♥❤ ✤÷í♥❣ trá♥
❜➔♥❣ t✐➳♣ t❛♠ ❣✐→❝
✷✳✷✳✷
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✽
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❜→♥ ❦➼♥❤ ❝→❝ ✤÷í♥❣
trá♥ ♥ë✐✱ ♥❣♦↕✐ t✐➳♣ t❛♠ ❣✐→❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✷✳✸
✸✽
✹✵
❍➺ t❤è♥❣ ❜➔✐ t➟♣ ❝→❝ ❤➺ t❤ù❝ ✈➲ ❜→♥ ❦➼♥❤ ❝→❝ ✤÷í♥❣ trá♥ ❜➔♥❣ t✐➳♣✱
♥ë✐✱ ♥❣♦↕✐ t✐➳♣ ❝õ❛ t❛♠ ❣✐→❝
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✐
✹✶
✷✳✸
P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆ ❱⑨ ❈⑩❈ ❍➏ ❚❍Ù❈ ❱➋ ❈⑩❈ ●➶❈ ❈Õ❆ ❚❆▼
●■⑩❈
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✼
✷✳✸✳✶
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❤➔♠ s✐♥ ❝→❝ ❣â❝ ✳ ✳
✹✼
✷✳✸✳✷
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❤➔♠ ❝æs✐♥ ❝→❝ ❣â❝
✹✾
✷✳✸✳✸
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❝â ♥❣❤✐➺♠ ❧➔ ❝→❝ ②➳✉ tè t❤❡♦ ❤➔♠ t❛♥❣ ❤♦➦❝
❝æt❛♥❣ ❝→❝ ❣â❝
✷✳✸✳✹
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✺✷
❍➺ t❤è♥❣ ❜➔✐ t➟♣ ♠ët sè ❤➺ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ tr♦♥❣ t❛♠ ❣✐→❝ ✳ ✳ ✳ ✳ ✳ ✳
✺✺
✸ ❈⑩❈ ❇❻❚ ✣➃◆● ❚❍Ù❈ ❚❘❖◆● ❚❆▼ ●■⑩❈
✸✳✶
✸✳✷
✻✼
❇❻❚ ✣➃◆● ❚❍Ù❈ ❱➋ ❈⑩❈ ✣×❮◆● ❈Õ❆ ❚❆▼ ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✻✼
✸✳✶✳✶
❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ❝→❝ ❝↕♥❤ ❝õ❛ t❛♠ ❣✐→❝
✻✼
✸✳✶✳✷
❇➜t ✤➥♥❣ t❤ù❝ ❤➻♥❤ ❤å❝ ❝❤ù❛
✳ ✳ ✳ ✳ ✳
✽✶
✸✳✶✳✸
❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ❝→❝ ✤÷í♥❣ ❝❛♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✽✹
✸✳✶✳✹
❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ✤÷í♥❣ tr✉♥❣ t✉②➳♥
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✽✼
✸✳✶✳✺
❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ❝→❝ ✤÷í♥❣ ♣❤➙♥ ❣✐→❝
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾✵
✸✳✶✳✻
❇➜t ✤➥♥❣ t❤ù❝ ✈➲ ❜→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ❜➔♥❣ t✐➳♣
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
x = p − a, y = p − b, z = p − c
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾✶
❇❻❚ ✣➃◆● ❚❍Ù❈ ❱➋ ❈⑩❈ ●➶❈ ❈Õ❆ ❚❆▼ ●■⑩❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾✺
sin A, sin B, sin C ✳
cos A, cos B, cos C
✸✳✷✳✶
❇➜t ✤➥♥❣ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ ❝❤ù❛
✸✳✷✳✷
❇➜t ✤➥♥❣ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ ❝❤ù❛
✸✳✷✳✸
❇➜t ✤➥♥❣ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ ❝❤ù❛ t❛♥❣ ❤♦➦❝ ❝ỉt❛♥❣ ❝→❝ ❣â❝
B
C
A
sin , sin , sin
2
2
2
A
B
C
cos , cos , cos
2
2
2
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾✺
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✵✵
✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✵✼
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✶✸
✸✳✷✳✹
❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛
✸✳✷✳✺
❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✶✼
✸✳✷✳✻
❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ t❛♥❣ ❤♦➦❝ ❝æt❛♥❣ ❝→❝ ♥û❛ ❣â❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✷✵
✸✳✷✳✼
❇➜t ✤➥♥❣ t❤ù❝ ❝❤ù❛ ❜➻♥❤ ♣❤÷ì♥❣ ❝õ❛ t❛♥❣ ❤❛② ❝ỉt❛♥❣ ❝→❝ ♥û❛ ❣â❝
✶✷✸
❑➌❚ ▲❯❾◆
❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦
✳
✶✷✻
✶✷✼
✐✐
▲❮■ ▼Ð ✣❺❯
✣↕✐ sè✱ ●✐↔✐ t➼❝❤ ✈➔ ❍➻♥❤ ❤å❝ ❧➔ ♥❤ú♥❣ ♣❤➙♥ ♠ỉ♥ ❝ì ❜↔♥ ❝➜✉ t❤➔♥❤ ♥➯♥ ♠ỉ♥ ❚♦→♥ ð ♣❤ê
t❤ỉ♥❣✳ ❈❤ó♥❣ ❝â ♠è✐ ❧✐➯♥ ❤➺ ❝❤➦t ❝❤➩ ✈ỵ✐ ♥❤❛✉ ✈➔ ♠è✐ ❧✐➯♥ ❤➺ ♥➔② ❧➔ ♠ët ✈➜♥ ✤➲ ✤→♥❣ q✉❛♥
t➙♠ ❤✐➺♥ ♥❛②✳ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ tr♦♥❣ ✤↕✐ sè ✈➔ ♠ët sè ✈➜♥ ✤➲ ❧✐➯♥ q✉❛♥ ✤➳♥ t❛♠ ❣✐→❝
tr♦♥❣ ❍➻♥❤ ❤å❝ ♣❤➥♥❣✱ ✤➲✉ ❧➔ ♥❤ú♥❣ ❦✐➳♥ t❤ù❝ ❣➛♥ ❣ơ✐ ✤è✐ ✈ỵ✐ ♥❤ú♥❣ ❛✐ ❤å❝ ✈➔ ♥❣❤✐➯♥ ❝ù✉
❚♦→♥ ❤å❝✳ ❈❤ó♥❣ ❝ơ♥❣ t❤÷í♥❣ ❤❛② ①✉➜t ❤✐➺♥ tr♦♥❣ ❝→❝ ❦ý t❤✐ ❝❤å♥ ❤å❝ s✐♥❤ ❣✐ä✐ ❝→❝ ❝➜♣✳
❚✉② ♥❤✐➯♥✱ ♠è✐ ❧✐➯♥ ❤➺ ❣✐ú❛ ❝❤ó♥❣✱ ✤➦❝ ❜✐➺t ❧➔ ♣❤÷ì♥❣ ♣❤→♣ sû ❞ư♥❣ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✤➸
❝❤ù♥❣ ♠✐♥❤ ❝→❝ ❤➺ t❤ù❝ tr♦♥❣ t❛♠ ❣✐→❝✱ ✤÷í♥❣ trá♥ ❧↕✐ ❝❤÷❛ ✤÷đ❝ ♥❤✐➲✉ ♥❣÷í✐ ❦❤→♠ ♣❤→✳
❇↔♥ t❤➙♥ t→❝ ❣✐↔ ❝❤♦ r➡♥❣ ✤➙② ❧➔ ♠ët ❝❤✉②➯♥ ✤➲ tữỡ ố õ ố ợ ồ s ờ
tổ ✈➔ ❝ơ♥❣ ♣❤ị ❤đ♣ tr♦♥❣ ❝→❝ ❦ý t❤✐ ❤å❝ s✐♥❤ ❣✐ä✐ ❝→❝ ❝➜♣✳
▲✉➟♥ ✈➠♥ ✏
♣❤➥♥❣ ✑
P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✈➔ ♠ët sè ✈➜♥ ✤➲ ❧✐➯♥ q✉❛♥ tr♦♥❣ ❤➻♥❤ ❤å❝
♥❤➡♠ ♠ö❝ ✤➼❝❤ t➻♠ ❤✐➸✉ ❝→❝ t➼♥❤ ❝❤➜t ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛✱ ✤➦❝ ❜✐➺t ❧➔ t➼♥❤
❝❤➜t ❝õ❛ ❝→❝ ♥❣❤✐➺♠✱ t➻♠ tá✐ ♠è✐ q✉❛♥ ❤➺ ❣✐ú❛ ♠ët ✤è✐ t÷đ♥❣ ✤↕✐ sè ❧➔ ữỡ tr
ợ ồ ự ử ❝õ❛ ♥â ✈➔♦ ✈✐➺❝ ❣✐↔✐ ♠ët sè ❞↕♥❣ t♦→♥ ❧✐➯♥ q✉❛♥ ✤➳♥ ❤➺
t❤ù❝ ❧÷đ♥❣ tr♦♥❣ t❛♠ ❣✐→❝ ✈➔ ✤÷í♥❣ trá♥✳ ◆❣♦➔✐ ♣❤➛♥ ▼ð ✤➛✉✱ ❑➳t ❧✉➟♥ ✈➔ ❚➔✐ ❧✐➺✉ t❤❛♠
❦❤↔♦✱ ỗ õ ữỡ ữ s
ữỡ t❤ù❝ ❝❤✉➞♥ ❜à
✳ ❈❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ♣❤ö❝
✈ö ❝❤♦ ❝→❝ ❝❤ù♥❣ ♠✐♥❤ ð ♣❤➛♥ s ở ỗ t tự ỡ ❝→❝ ❤➺ t❤ù❝
❧÷đ♥❣ ❝ì ❜↔♥ tr♦♥❣ t❛♠ ❣✐→❝ ✈➔ ✤÷í♥❣ trá♥✱✳✳✳❀ ❝→❝ t➼♥❤ ❝❤➜t ✈➔ ❝ỉ♥❣ t❤ù❝ ❝ì ❜↔♥ ❧✐➯♥ q✉❛♥
✤➳♥ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ♥❤÷ ❝ỉ♥❣ t❤ù❝ ♥❣❤✐➺♠✱ ✣à♥❤ ❧➼ ❱✐➧t❡✱ ❝→❝ t➼♥❤ ❝❤➜t ✤è✐
①ù♥❣✱ ✣à♥❤ ❧➼ ❙t✉r♠✱ sü ①→❝ ✤à♥❤ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ✸ ♥❤➟♥ ❜❛ sè ✤➦❝ ❜✐➺t ❧➔♠ ♥❣❤✐➺♠✱ ✳ ✳ ✳
❈❤÷ì♥❣ ✷✿ P❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✈➔ ❤➺ t❤ù❝ ❧÷đ♥❣ tr♦♥❣ t❛♠ ❣✐→❝
tr➻♥❤ ❜➔② ♠ët sè ❞↕♥❣ t♦→♥ ✈➲ ❝→❝
✳ ❈❤÷ì♥❣ ♥➔②
✤➥♥❣ t❤ù❝ ❧✐➯♥ q✉❛♥ ✤➳♥ ❝→❝ ✤÷í♥❣ ✈➔ ❝→❝ ❣â❝ ❝õ❛ t❛♠
❣✐→❝ ❜➡♥❣ ❝→❝❤ →♣ ❞ư♥❣ ❝→❝ t➼♥❤ ❝❤➜t ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr ở ừ
ỗ tự ❧✐➯♥ q✉❛♥ ✤➳♥ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✈➔ ❝→❝ ❤➺ t❤ù❝ ✈➲ ❝→❝ ❝↕♥❤✱ ❝→❝ ✤÷í♥❣
❝❛♦✱ tr✉♥❣ t✉②➳♥✱ ✤÷í♥❣ ♣❤➙♥ ❣✐→❝✱ ❜→♥ ❦➼♥❤ ❝õ❛ ❝→❝ ✤÷í♥❣ trá♥ ♥ë✐✱ ♥❣♦↕✐ ✈➔ ❜➔♥❣ t✐➳♣ ✈➔
❝→❝ ❣â❝ ❝õ❛ t❛♠ ❣✐→❝✳
❈❤÷ì♥❣ ✸✿ ❈→❝ ❜➜t tự tr t
ữỡ trữợ ữỡ tr ❜➔② ❤➺ t❤è♥❣ ❝→❝
✐✐✐
✳ ❉ü❛ ✈➔♦ ❝→❝ ❦➳t q✉↔ ✤➣ ❜✐➳t tr♦♥❣
❜➜t ✤➥♥❣ t❤ù❝ tr♦♥❣ t❛♠ ❣✐→❝✳
rữợ tr ở ừ ❡♠ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤
✈➔ s➙✉ s tợ ữớ t t ữợ õ t t
♥➔②✳ ❊♠ ❝ơ♥❣ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ tỵ✐ t♦➔♥ t❤➸ t❤➛② ❝ỉ ❣✐→♦ tr♦♥❣
❦❤♦❛ ❚♦→♥ ✈➔ t❤è♥❣ ❦➯✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ◗✉② ◆❤ì♥ ✤➣ ❞↕② ❜↔♦ ❡♠ tr♦♥❣ s✉èt t❤í✐ ❣✐❛♥ ❤å❝
t➟♣ t↕✐ ❚r÷í♥❣ ✤➸ ❡♠ ❝â ✤÷đ❝ ♥➲♥ t↔♥❣ tr✐ t❤ù❝ ❝ơ♥❣ ♥❤÷ ❦✐♥❤ ♥❣❤✐➺♠ ở số qỵ
tr tữỡ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤✱ ❜↕♥ ❜➧ ✤➣ ✤ë♥❣ ✈✐➯♥✱ ❦❤➼❝❤
❧➺ ✈➔ ❣✐ó♣ ✤ï ❡♠ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥✳ ❈✉è✐ ❝ò♥❣✱ ❡♠ ỷ
ớ ỡ t tợ ỵ t ổ tr ở ỗ tớ qỵ
t õ ỵ ỳ ❝á♥ t❤✐➳✉ sât✱ ❣✐ó♣ ❡♠ rót r❛ ✤÷đ❝ ❦✐♥❤ ♥❣❤✐➺♠
❝❤♦ ❧✉➟♥ ✈➠♥ ❝ơ♥❣ ♥❤÷ q✉→ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ s❛✉ ♥➔②✳ t ữủ sỹ t
t ừ ỵ t ổ ụ ữ sỹ õ ỵ ừ
❞ị ❤➳t sù❝ ❝è ❣➢♥❣ ♥❤÷♥❣ ❧✉➟♥ ✈➠♥ ❦❤ỉ♥❣ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ s❛✐ sât✱ t→❝ ❣✐↔ r➜t ♠♦♥❣
♥❤➟♥ ✤÷đ❝ sü õ ỵ ỳ ỵ ừ ỵ t❤➛② ❝ỉ ✈➔ ❜↕♥ ✤å❝✳ ❳✐♥ ❝❤➙♥ t❤➔♥❤
❝↔♠ ì♥✦
◗✉② ◆❤ì♥✱ ♥❣➔② ✷✽ t❤→♥❣ ✼ ♥➠♠ ✷✵✷✵
❍å❝ ✈✐➯♥
❇ị✐ ❚ỉ♥ ◆ú ❚❤❛♥❤ ❳✉➙♥
✐✈
ởt số ỵ
a, b, c
a+b+c
p=
2
S, SABC
r, R
ra :
ha :
ma :
la :
✤ë ❞➔✐ ❝→❝ ❝↕♥❤
BC, CA, AB
❝õ❛ t❛♠ ❣✐→❝ABC.
♥û❛ ❝❤✉ ✈✐ ❝õ❛ t❛♠ ❣✐→❝✳
❞✐➺♥ t➼❝❤ t❛♠ ❣✐→❝
ABC.
❧➛♥ ❧÷đt ❧➔ ❜→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ♥ë✐✱ ♥❣♦↕✐ t✐➳♣ ❝õ❛ t❛♠ ❣✐→❝✳
A ❝õ❛
ABC.
❜→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ❜➔♥❣ t✐➳♣ ù♥❣ ✤➾♥❤
✤÷í♥❣ ❝❛♦ ♥è✐ tø ✤➾♥❤
A
❝õ❛ t❛♠ ❣✐→❝
✤÷í♥❣ tr✉♥❣ t✉②➳♥ ♥è✐ tø ✤➾♥❤
✤÷í♥❣ ♣❤➙♥ ❣✐→❝ ♥è✐ tø ✤➾♥❤
✈
A
A
ABC.
ABC.
❝õ❛ t❛♠ ❣✐→❝
❝õ❛ t❛♠ ❣✐→❝
t❛♠ ❣✐→❝
ABC.
❈❤÷ì♥❣ ✶
❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚
✶✳✶ ❈⑩❈ ❇❻❚ ✣➃◆● ❚❍Ù❈ ✣❸■ ❙➮ ◗❯❆◆ ❚❘➴◆●
❇➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤②
❆▼✲●▼✮✳
✭❇➜t ✤➥♥❣ t❤ù❝ tr✉♥❣ ❜➻♥❤ ❝ë♥❣✲ tr✉♥❣ ❜➻♥❤ ♥❤➙♥✱ ❜➜t ✤➥♥❣ t❤ù❝
●✐↔ sû a1, a2, ..., an ❧➔ ❝→❝ sè t❤ü❝ ❦❤æ♥❣ ➙♠✳ ❑❤✐ ✤â
a1 + a2 + ... + an
n
√
n
a1 a2 ...an
✭✶✳✶✳✶✮
❉➜✉ ❜➡♥❣ ①↔② r❛ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ a1 = a2 = ... = an.
❇➜t ✤➥♥❣ t❤ù❝ ❇✉♥②❛❦♦✈s❦②✳ ❱ỵ✐ ♠å✐ ❜ë 2n sè t❤ü❝ ai, bi, i = 1, ...n t❛ ❝â
(a1 b1 + a2 b2 + ...an bb )2 ≤ (a21 + a22 + ... + a2n )(b21 + b22 + ... + b2n ).
✭✶✳✶✳✷✮
❉➜✉ ❜➡♥❣ ①↔② r❛ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ tỗ t số t R s bi = tai ❤♦➦❝ ai = tbi, i = 1, 2, ...n.
❇➜t ✤➥♥❣ t❤ù❝ ❈❤❡❜②s❤❡✈✳ ❛✮ ❈❤♦ ❤❛✐ ❞➣② ✤ì♥ ✤✐➺✉ ❝ị♥❣ ❝❤✐➲✉ a1 a2 ... an ✈➔
b1 b2 ... bn . ❑❤✐ ✤â
(a1 + a2 + ... + an )(b1 + b2 + ... + bn ) ≤ n(a1 b1 + a2 b2 + ... + an bn ).
❜✮
❈❤♦ ❤❛✐ ❞➣② ✤ì♥ ✤✐➺✉ tr→✐ ❝❤✐➲✉ a1
a2
(a1 + a2 + ... + an )(b1 + b2 + ... + bn )
...
an
✈➔ b1
b2
...
n(a1 b1 + a2 b2 + ... + an bn ).
✭✶✳✶✳✸✮
bn .
❑❤✐ ✤â
✭✶✳✶✳✹✮
❚r♦♥❣ ❝↔ ❤❛✐ ❞↕♥❣ tr➯♥✱ ❞➜✉ ❜➡♥❣ ①↔② r❛ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ a1 = a2 = ... = an ❤♦➦❝ b1 = b2 =
... = bn .
❇➜t ✤➥♥❣ t❤ù❝ ◆❡s❜✐tt ❝❤♦ ❜❛ sè ❞÷ì♥❣ ●✐↔ sû a , a , ..., a ❧➔ sè t❤ü❝ ❦❤æ♥❣ ➙♠✳ ❑❤✐
✤â
✳
b
c
a
+
+
b+c b+c a+b
✶
1
2
3
.
2
n
✭✶✳✶✳✺✮
❇➜t ✤➥♥❣ t❤ù❝ ❙❝❤✇❛r③ ❈❤♦ a , ..., a ❧➔ ❝→❝ sè t❤ü❝✱ b , ..., b ❧➔ ❝→❝ sè ❞÷ì♥❣✱x ∈ N .
✳
❑❤✐ ✤â
1
n
1
n
a2
(a1 + a2 + ... + an )2
a21 a22
+
+ ... + n =
.
b1
b2
b2
b1 + b2 + ... + bn
∗
✭✶✳✶✳✻✮
❉➜✉ ❜➡♥❣ ①↔② r❛ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ a1 = a2 = ... = an.
❇➜t ✤➥♥❣ t❤ù❝ ❇❡r♥♦✉❧❧✐✳ ❱ỵ✐ x > −1✱ t❛ ❧✉ỉ♥ ❝â
α
✐✮ (1 + x) ≤ 1 + αx ✈ỵ✐ 0 < α < 1;
α
✐✐✮ (1 + x)
1 + αx ✈ỵ✐ α < 0 ❤♦➦❝ 1.
ìẹ
ỳ õ ữủ ❣✐→❝ s❛♦ ❝❤♦ ❝→❝ ❝æ♥❣ t❤ù❝ ❝â ♥❣❤➽❛✳ ❚❛ ❝â
❈→❝ ❤➡♥❣ ✤➥♥❣ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ ❝ì ❜↔♥
✿
a) sin2 α + cos2 α = 1;
sin α
;
b) tan α =
cos α
c) tan α cot α = 1;
1
d) 2 = 1 + tan2 α;
cos α
1
e) 2 = 1 + cot2 α.
sin α
❈æ♥❣ t❤ù❝ ❝ë♥❣ ❣â❝
✭✶✳✷✳✶❛✮
✭✶✳✷✳✶❜✮
✭✶✳✷✳✶❝✮
✭✶✳✷✳✶❞✮
✭✶✳✷✳✶❡✮
✿
a) sin(α ± β) = sin α cos α ± cos α sin α.
✭✶✳✷✳✷❛✮
b) cos(α ± β) = cos α cos β ∓ sin β cos α.
tan α ± tan β
.
c) tan(α ± β) =
1 ∓ tan α tan β
✭✶✳✷✳✷❜✮
✭✶✳✷✳✷❝✮
❈æ♥❣ t❤ù❝ ❣â❝ ♥❤➙♥ ✤æ✐
✿
a) sin 2α = 2 sin α cos α.
✭✶✳✷✳✸✮
b) cos 2α = cos2 α − sin2 α = 2 cos2 α − 1 = 1 − 2 sin2 α.
2 tan α
c) tan 2α =
.
1 − tan2 α
✭✶✳✷✳✹✮
❈æ♥❣ t❤ù❝ ❤↕ ❜➟❝
✭✶✳✷✳✺✮
✿
1 − cos 2α
;
2
1 + cos 2α
b) cos2 =
;
2
1 − cos 2α
c) tan2 α =
.
1 + cos 2α
a) sin2 α =
✷
✭✶✳✷✳✻❛✮
✭✶✳✷✳✻❜✮
✭✶✳✷✳✻❝✮
❈æ♥❣ t❤ù❝ ♥❤➙♥ ❜❛
✿
13a) sin 3α = −4 sin3 α + 3 sin α.
✭✶✳✷✳✼❛✮
13b) cos 3α = 4 cos3 α − 3 cos α.
✭✶✳✷✳✼❜✮
▲✐➯♥ ❤➺ ❣✐ú❛ sin 2α, cos 2α ✈➔ tan α
✿
2 tan α
.
1 + tan2 α
1 − tan2 α
b) cos 2α =
.
1 + tan2 α
a) sin 2α =
❈æ♥❣ t❤ù❝ ❜✐➳♥ ✤ê✐ t➼❝❤ t❤➔♥❤ tê♥❣
✭✶✳✷✳✽❛✮
✭✶✳✷✳✽❜✮
✿
1
a) cos α cos β = [cos(α − β) + cos(α + β)].
2
1
b) sin α sin β = [cos(α − β) − cos(α + β)].
2
1
c) sin α cos β = [sin(α − β) + sin(α + β)].
2
✭✶✳✷✳✾❛✮
✭✶✳✷✳✾❜✮
✭✶✳✷✳✾❝✮
❈æ♥❣ t❤ù❝ ❜✐➳♥ ✤ê✐ tê♥❣ t❤➔♥❤ t➼❝❤
✿
α+β
α−β
cos
.
2
2
α+β
α−β
b) sin α − sin β = 2 cos
sin
.
2
2
α−β
α+β
cos
.
c) cos α + cos β = 2 cos
2
2
α+β
α+β
d) cos α − cos β = −2 sin
sin
.
2
2
sin(α ± β)
e) tan α ± tan β =
.
cos α cos β
a) sin α + sin β = 2 sin
✸
✭✶✳✷✳✶✵❛✮
✭✶✳✷✳✶✵❜✮
✭✶✳✷✳✶✵❝✮
✭✶✳✷✳✶✵❞✮
✭✶✳✷✳✶✵❡✮
❈→❝ ❤➺ t❤ù❝ ❧÷đ♥❣ ❣✐→❝ ❝ì ❜↔♥ tr♦♥❣ t❛♠ ❣✐→❝
✿
B
C
A
cos cos .
2
2
2
b) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.
a) sin A + sin B + sin C = 4 cos
✭✶✳✷✳✶✶❛✮
✭✶✳✷✳✶✶❜✮
c) sin2 A + sin2 B + sin2 C = 2(1 + cos A cos B cos C).
A
B
C
d) cos A + cos B + cos C = 1 + 4 sin sin sin .
2
2
2
e) cos 2A + cos 2B + cos 2C = −1 − 4 cos A cos B cos C.
✭✶✳✷✳✶✶❞✮
f ) cos2 A + cos2 B + cos2 C = 1 − 2 cos A cos B cos C.
✭✶✳✷✳✶✶❢ ✮
g)❱ỵ✐
♠å✐ t❛♠ ❣✐→❝
ABC
✭✶✳✷✳✶✶❝✮
✭✶✳✷✳✶✶❡✮
❦❤æ♥❣ ✈✉æ♥❣✱ t❛ ❝â
tan A + tan B + tan C = tan A tan B tan C.
A
B
C
A
B
C
h) cot + cot + cot = cot cot cot .
2
2
2
2
2
2
A
B
B
C
C
A
k) tan tan + tan tan + tan tan = 1.
2
2
2
2
2
2
l) cot A cot B + cot B cot C + cot C cot A = 1.
✭✶✳✷✳✶✶❣✮
✭✶✳✷✳✶✶❤✮
✭✶✳✷✳✶✶✐✮
✭✶✳✷✳✶✶❥✮
m) tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C.
✭✶✳✷✳✶✶❦✮
✶✳✸ ❈⑩❈ ❍➏ ❚❍Ù❈ ▲×Đ◆● ❈❒ ❇❷◆ ❚❘❖◆● ❚❆▼
●■⑩❈
▼ư❝ ♥➔② tâ♠ t➢t ♠ët sè ❤➺ t❤ù❝ ❧÷đ♥❣ ❝ì ❜↔♥ tr♦♥❣ t❛♠ ❣✐→❝ ✤➸ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ❦➳t q✉↔
s❛✉ ♥➔②✳ ❚ø ✤➙② ✈➲ s❛✉ t❛ sû ❞ư♥❣ ❝→❝ ❦➼ ❤✐➺✉ s❛✉ ✤➙②✿
• a, b, c
ã p, S
ữủt ở ❝↕♥❤
✭❤❛②
SABC ✮
BC, CA, AB
❝õ❛ t❛♠ ❣✐→❝
ABC;
❧➛♥ ❧÷đt ❧➔ ♥û❛ ❝❤✉ ✈✐✱ ❞✐➺♥ t➼❝❤ ❝õ❛ t❛♠ ❣✐→❝
ABC, p =
a+b+c
;
2
• r, R ❧➛♥ ❧÷đt ❧➔ ❜→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ♥ë✐✱ ♥❣♦↕✐ t✐➳♣ ❝õ❛ t❛♠ ❣✐→❝ ABC;
• ma , ha , lc , ra ❧➛♥ ❧÷đt ❧➔ ✤ë ❞➔✐ ✤÷í♥❣ tr✉♥❣ t✉②➳♥✱ ✤÷í♥❣ ữớ ữớ
trỏ t ự ợ ❝↕♥❤ BC ✭❤❛② ✤➾♥❤ A✮ ❝õ❛ t❛♠ ❣✐→❝ ABC;
❚r♦♥❣ t❛♠ ❣✐→❝ ABC t❛ ❝â
✣à♥❤ ❧➼ ❤➔♠ sè s✐♥
✿
a
b
c
=
=
= 2R.
sin A
sin B
sin C
✣à♥❤ ❧➼ ❤➔♠ sè ❝♦s✐♥
✭✶✳✸✳✶✮
✿
a2 = b2 + c2 − 2bc cos A; b2 = a2 + c2 − 2ac cos B; c2 = a2 + b2 − 2ac cos C.
✹
✭✶✳✸✳✷✮
❍➺ q✉↔ ❧➔
cos A =
a2 + c 2 − b 2
a2 + b2 − c2
b 2 + c 2 − a2
; cos B =
; cos C =
.
2bc
2ac
2ab
❈ỉ♥❣ t❤ù❝ ✤÷í♥❣ tr✉♥❣ t✉②➳♥
m2a =
✭✶✳✸✳✸✮
✿
2(b2 + c2 ) − a2 2 2(a2 + c2 ) − b2 2 2(a2 + b2 ) − c2
; mb =
; mc =
.
4
4
4
✣à♥❤ ❧➼ ❤➔♠ sè t❛♥❣
✭✶✳✸✳✹✮
✿
A−B
tan
a−b
A−B
C
2
=
= tan
tan .
A+B
a+b
2
2
tan
2
✭✶✳✸✳✺✮
✣à♥❤ ❧➼ ✈➲ ❤➻♥❤ ❝❤✐➳✉
✿
B
C
+ cot
2
2
A
B
c = b. cos A + a. cos B = r cot + cot
2
2
a = b. cos C + c. cos B = r cot
; b = c. cos A + a. cos C = r cot
C
A
+ cot
2
2
;
✭✶✳✸✳✻✮
.
❈→❝ ❝æ♥❣ t❤ù❝ t➼♥❤ ❞✐➺♥ t➼❝❤ t❛♠ ❣✐→❝
✿
1
1
1
S = aha = bhb = chc
2
2
2
1
1
1
= bc sin A = ac sin B = ab sin C
2
2
2
abc
= 2R2 sin A sin B sin C =
4R
= p(p − a)(p − b)(p − c) = pr
= ra (p − a) = rb (p − b) = rc (p − c)
√
arb rc
= rra rb rc =
.
rb + rc
✭✶✳✸✳✼✮
❚ø ✤➙② t❛ ❝â ❝→❝ ❤➺ q✉↔ s❛✉ ✤➙②✿
2 p(p − a)(p − b)(p − c)
,
a
1
1
1
1
1
1
1
=
+ + =
+
+ .
r
ra rb rc
ha hb hc
ha =
❇→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ♥❣♦↕✐ t✐➳♣ t❛♠ ❣✐→❝
R=
✭✶✳✸✳✾✮
✿
a
b
c
abc
=
=
=
=
2 sin A
2 sin B
2 sin C
4S
4
✺
✭✶✳✸✳✽✮
abc
p(p − a)(p − b)(p − c)
.
✭✶✳✸✳✶✵✮
❇→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ♥ë✐ t✐➳♣ t❛♠ ❣✐→❝
r = (p − a) tan
✿
A
B
C
S
= (p − b) tan = (p − c) tan = =
2
2
2
p
❇→♥ ❦➼♥❤ ✤÷í♥❣ trá♥ ❜➔♥❣ t✐➳♣ t❛♠ ❣✐→❝
ra = p tan
A
S
=
=
2
p−a
❈ỉ♥❣ t❤ù❝ ✤÷í♥❣ ♣❤➙♥ ❣✐→❝
(p − a)(p − b)(p − c)
.
p
✭✶✳✸✳✶✶✮
✿
p(p − b)(p − c)
.
p−a
✭✶✳✸✳✶✷✮
✿
A
2 = 2 bcp(p − a) .
b+c
b+c
2bc cos
la =
✭✶✳✸✳✶✸✮
❚❛ ❝â ♠ët sè ❤➺ q✉↔ ✤ì♥ ❣✐↔♥ s❛✉ ✤➙②✿
a + b + c = 2p;
✭✶✳✸✳✶✹✮
ab + bc + ca = p2 + 4Rr + r2 ;
✭✶✳✸✳✶✺✮
abc = 4pRr.
✭✶✳✸✳✶✻✮
❚❤➟t ✈➟②✱ ✤➥♥❣ t❤ù❝ ✤➛✉ t✐➯♥ ❧➔ ❤✐➸♥ ♥❤✐➯♥✳ ❚ø ❤❛✐ ❝æ♥❣ t❤ù❝ t➼♥❤ ❞✐➺♥ t➼❝❤ t❛♠ ❣✐→❝
tr♦♥❣ ✭✶✳✸✳✼✮✿
S∆ABC
abc
= pr =
4R
t❛ s✉② r❛
abc = 4pRr✳
ABC
▼➦t ❦❤→❝✱ ❝ô♥❣ tø ✭✶✳✸✳✼✮ t❛ ❝â
S 2 = p2 r2 = p(p − a)(p − b)(p − c) ⇔ pr2 = p3 − (a + b + c)p2 + (ab + bc + ca)p − abc
⇔ pr2 = p3 − 2p3 + (ab + bc + ca)p − 4pRr
⇔ ab + bc + ca = p2 + 4Rr + r2 .
❉♦ ✤â
ab + bc + ca = p2 + 4Rr + r2 .
ế Pì
ỵ ✭✣à♥❤ ❧➼ ❱✐➧t❡ ✈➲ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛✮✳ P❤÷ì♥❣ tr➻♥❤
x3 + ax2 + bx + c = 0
✭✶✳✹✳✶✮
❝â ❜❛ ♥❣❤✐➺♠ ✭❦➸ ❝↔ ♥❣❤✐➺♠ ♣❤ù❝✮ x1, x2, x3 t❤ä❛ ♠➣♥ ❝→❝ t➼♥❤ ❝❤➜t s❛✉ ✤➙②✿
T1 = x1 + x2 + x3 = −a;
✭✶✳✹✳✷❛✮
T2 = x1 x2 + x2 x3 + x3 x1 = b;
✭✶✳✹✳✷❜✮
T3 = x1 x2 x3 = −c.
✭✶✳✹✳✷❝✮
✻
✣↔♦ ❧↕✐✱ ♥➳✉ ❜❛ sè ♣❤ù❝ x1, x2, x3 t❤ä❛ ♠➣♥ ❝→❝ t➼♥❤ ❝❤➜t ✭✶✳✹✳✷❛✮✱✭✶✳✹✳✷❜✮✱✭✶✳✹✳✷❝✮ t❤➻
❝❤ó♥❣ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ x3 + ax2 + bx + c = 0✳
❈❤ù♥❣ ♠✐♥❤✳ ❱➻ x1, x2, x3 ❧➔ ❜❛ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ♥➯♥ ♣❤➙♥ t➼❝❤ ✤❛ t❤ù❝
t❤➔♥❤ tứ số t ữủ ỗ t tự s ú ✈ỵ✐ ♠å✐
x✿
x3 + ax2 + bx + c = (x − x1 )(x − x2 )(x − x3 )
= x3 − (x1 + x2 + x3 )x2 + (x1 x2 + x2 x3 + x3 x1 )x − (x1 x2 x3 ).
s số ừ ỗ t tự t❛ ✤✐ ✤➳♥ ❝→❝ t➼♥❤ ❝❤➜t ✭✶✳✹✳✷❛✮✱ ✭✶✳✹✳✷❜✮✱ ✭✶✳✹✳✷❝✮✳
❚ø ❜❛ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ✭✶✳✹✳✷❛✮✱ ✭✶✳✹✳✷❜✮✱ ✭✶✳✹✳✷❝✮✱ ❦➳t ❤đ♣ ✈ỵ✐ ❝→❝ t➼♥❤ ❝❤➜t ✤è✐ ①ù♥❣
❝õ❛ ♥❣❤✐➺♠✱ t❛ s✉② r❛ ❝→❝ t q ữợ t q rt õ ➼❝❤ ❝❤♦ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉
♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✈➔ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ❤➺ t❤ù❝ tr♦♥❣ t❛♠ ❣✐→❝✱ ✤÷í♥❣ trá♥✳
▼➺♥❤ ✤➲ ợ ữ tr t õ
1
1
b
1
+
+
=
;
x1 x 2 x3
c
b) T5 = x21 + x22 + x23 = a2 − 2b;
a) T4 =
✭✶✳✹✳✸❛✮
✭✶✳✹✳✸❜✮
c) T6 = (x1 + x2 )2 + (x2 + x3 )2 + (x3 + x1 )2 = 2(a2 − b);
2
2
2
✭✶✳✹✳✸❝✮
2
d) T7 = (x1 − x2 ) + (x2 − x3 ) + (x3 + x1 ) = 2(a − 3b);
✭✶✳✹✳✸❞✮
2
e) T8 = (x1 + x2 )(x2 + x3 ) + (x2 + x3 )(x3 + x1 ) + (x3 + x1 )(x1 + x2 ) = a + b.
1
1
x1 x2 + x2 x3 + x 3 x1
T2
−b
1
+
+
=
=
=
.
x 1 x2 x3
x1 x2 x3
T3
c
T5 = x21 + x22 + x23 = (x1 + x2 + x3 )2 − 2(x1 x2 + x2 x3 + x3 x1 ) = T12 + 2T2 = a2 − 2b.
❈❤ù♥❣ ♠✐♥❤✳
❜✮
✭✶✳✹✳✸❡✮
❛✮
T4 =
❝✮ ❚❛ ❝â
T6 = (x1 + x2 )2 + (x2 + x3 )2 + (x3 + x1 )2 = 2(x21 + x22 + x23 ) + 2(x1 x2 + x2 x3 + x3 x1 )
= 2(T5 + T2 ) = 2(a2 − 2b + b) = 2(a2 − b).
❞✮ ❚❛ ❝â
T7 = (x1 − x2 )2 + (x2 − x3 )2 + (x3 + x1 )2 = 2(x21 + x22 + x23 ) − 2(x1 x2 + x2 x3 + x3 x1 )
= 2(T5 − T2 ) = 2(a2 − 2b − b) = 2(a2 − 3b).
❡✮ ❈✉è✐ ❝ò♥❣
T8 = (x1 + x2 )(x2 + x3 ) + (x2 + x3 )(x3 + x1 ) + (x3 + x1 )(x1 + x2 )
= x21 + x22 + x23 + 3(x1 x2 + x2 x3 + x3 x1 ) = T5 + 3T2 = (a2 − 2b) + 3b = a2 + b.
✼
▼➺♥❤ ✤➲ ✶✳✸✳ ❚❛ ❝â
a) T9 = x31 + x32 + x33 = −a3 + 3ab − 3c;
✭✶✳✹✳✹❛✮
b) T10 = (x1 + x2 − x3 )(x2 + x3 − x1 )(x3 + x1 − x2 ) = a3 − 4ab + 8c;
✭✶✳✹✳✹❜✮
c) T11 = (x1 + x2 )(x2 + x3 )(x3 + x1 ) = −ab + c;
✭✶✳✹✳✹❝✮
d)
❱ỵ✐ ♠å✐ sè t❤ü❝ k, l, t❛ ❝â
T12 = (k + lx1 )(k + lx2 )(k + lx3 ) = k 3 − k 2 la − kl2 b − l3 c.
❈❤ù♥❣ ♠✐♥❤✳
✭✶✳✹✳✹❞✮
❛✮ ❚❛ ❝â
(x1 + x2 + x3 )3 = (x1 + x2 )3 + 3(x1 + x2 )2 x3 + 3(x1 + x2 )x23 + x33
= (x1 + x2 )3 + 2(x1 + x2 )x3 (x1 + x2 + x3 ) + x33
= x31 + 3x1 x2 (x1 + x2 ) + x32 + 3T1 (x1 x3 + x2 x3 ) + x33
= x31 + x32 + x33 + 3T1 (x1 x3 + x2 x3 ) + 3x1 x2 (T1 − x3 )
= x31 + x32 + x33 + 3T1 (x1 x2 + x2 x3 + x3 x1 ) − 3x1 x2 x3
= x31 + x32 + x33 + 3T1 T2 − 3T3 .
❑❤✐ ✤â
T9 = x31 + x32 + x33 = (x1 + x2 + x3 )3 − 3T1 T2 + 3T3
= T13 − 3T1 T2 + 3T3 = −a3 + 3ab − 3c.
❜✮ ❚❛ ❝â
T10 = (x1 + x2 − x3 )(x2 + x3 − x1 )(x3 + x1 − x2 )
= (T1 − 2x1 )(T1 − 2x2 )(T1 − 2x3 )
= T13 − 2T12 (x1 + x2 + x3 ) + 4T1 (x1 x2 + x2 x3 + x3 x1 ) − 8x1 x2 x3
= −T13 + 4T1 T2 − 8T3 = a3 − 4ab + 8c.
❝✮ ❚❛ ❝â
T11 = (x1 + x2 )(x2 + x3 )(x3 + x1 ) = (T1 − x1 )(T1 − x2 )(T1 − x3 )
= T13 − T12 (x1 + x2 + x3 ) + T1 (x1 x2 + x2 x3 + x3 x1 ) − x1 x2 x3
= T1 T2 − T3 = −ab + c.
❞✮ ❚❛ ❝â
T12 = (k + lx1 )(k + lx2 )(k + lx3 ) = k 3 + k 2 l(x1 + x2 + x3 ) + kl2 (x1 x2 + x2 x3 + x3 x1 ) + l3 x1 x2 x3
= k 3 − k 2 la + kl2 b − l3 c.
✽
❍➺ q✉↔ ✶✳✹✳ ❚ø ✭✶✳✹✳✹❞✮ t❛ s✉② r❛ ❤➺ q✉↔ q✉❛♥ trå♥❣ t❤÷í♥❣ ✤÷đ❝ sû ❞ư♥❣ ✤➸ t➻♠ r❛ ❝→❝
tự ợ tr t ữ s
(1 x1 )(1 − x2 )(1 − x3 ) = 1 + a + b + c;
(1 + x1 )(1 + x2 )(1 + x3 ) = 1 − a + b − c.
▼➺♥❤ ✤➲ ✶✳✺✳ ❚❛ ❝â
❈❤ù♥❣ ♠✐♥❤✳
a) T13 = x21 x22 + x22 x23 + x23 x21 = b2 − 2ac;
✭✶✳✹✳✺❛✮
b) T14 = x41 + x42 + x43 = a4 − 4a2 b + 2b2 + ac.
✭✶✳✹✳✺❜✮
❚❛ ❝â
❛✮
T13 = x21 x22 + x22 x23 + x23 x21
= (x1 x2 + x2 x3 + x3 x1 )2 − 2(x1 x22 x3 + x1 x2 x23 + x21 x2 x3 )
= (x1 x2 + x2 x3 + x3 x1 )2 − 2x1 x2 x3 (x1 + x2 + x3 )
= T22 − 2T1 T3 = b2 − 2ac.
❜✮
T14 = x41 + x42 + x43
= (x21 + x22 + x23 )2 − 2(x21 x22 + x22 x23 + x23 x21 )
= T52 − 2T13 = (a2 − 2b)2 − 2(b2 − 2ac) = a4 − 4a2 b + 2b2 + 4ac.
▼➺♥❤ ✤➲ ✶✳✻✳ ❚❛ ❝â
x1 + x2 x2 + x3 x3 + x1
ab
+
+
=
− 3.
x3
x1
x2
c
1
1
1
a2 + b
b)T16 =
+
+
=
.
x 1 + x2 x2 + x3 x3 + x1
c − ab
x1
x2
x3
a3 − 2ab + 3c
+
+
=
.
c)T17 =
x2 + x3 x3 + x 1 x1 + x2
ab − c
x1 x2 x2 x3 x3 x1
b2
d)T18 =
+
+
= 2a − .
x3
x1
x2
c
1
1
1
a
+
+
= .
e)T19 =
x1 x2 x2 x3 x3 x1
c
x1
x2
x3
2b − a2
f )T20 =
+
+
=
.
x2 x3 x3 x1 x1 x2
c
1
1
1
b2 2a
g)T21 = 2 + 2 + 2 = 2 − .
x1 x2 x3
c
c
a)T15 =
✾
✭✶✳✹✳✻❛✮
✭✶✳✹✳✻❜✮
✭✶✳✹✳✻❝✮
✭✶✳✹✳✻❞✮
✭✶✳✹✳✻❡✮
✭✶✳✹✳✻❢ ✮
✭✶✳✹✳✻❣✮
❈❤ù♥❣ ♠✐♥❤✳
❚❛ ❝â
❛✮
x1 + x2 x 2 + x3 x3 + x1
+
+
x3
x1
x2
x1 + x2 + x3 x1 + x2 + x3 x1 + x2 + x3
=
+
+
x1
x2
x3
1
1
1
+
+
−3
= (x1 + x2 + x3 )
x1 x2 x3
ab
= T1 T4 − 3 =
− 3;
c
T15 =
❜✮
1
1
1
+
+
x1 + x2 x2 + x3 x3 + x1
x21 + x22 + x23 + 3(x1 x2 + x2 x3 + x3 x1 )
=
(x1 + x2 )(x2 + x3 )(x3 + x1 )
T5 + 3T2
a2 − 2b + 3b
a2 + b
=
=
=
;
T11
−ab + c
c − ab
T16 =
❝✮
x1
x2
x3
+1+
+1+
+1
x2 + x 3
x3 + x1
x1 + x2
x1 + x 2 + x3 x1 + x2 + x3 x 1 + x2 + x3
+
+
=
x2 + x3
x 3 + x1
x1 + x2
1
1
1
= (x1 + x2 + x3 )
+
+
x2 + x3 x3 + x1 x1 + x2
2
a +b
= T1 T16 = (−a)
.
c − ab
T17 + 3 =
❙✉② r❛
T17 =
−a3 − ab
a3 − 2ab + 3c
−3=
.
−ab + c
ab − c
❞✮
x1 x2 x2 x 3 x3 x1
x2 x2 + x22 x23 + x23 x21
+
+
= 1 2
x3
x1
x2
x1 x2 x 3
2
2
T13
b − 2ac
b
=
=
= 2a − .
T3
−c
c
T18 =
❡✮
T19 =
1
1
1
x1 + x2 + x3
T1
a
+
+
=
=
= .
x1 x2 x 2 x3 x3 x1
x1 x2 x3
T3
c
❢✮
T20
x1
x2
x3
x21 + x22 + x23
T5
2b − a2
=
+
+
=
=
=
.
x2 x3 x3 x1 x1 x2
x1 x2 x3
T3
c
✶✵
❣✮
T21 =
T13
1
1
x21 x22 + x22 x23 + x23 x21
b2 2a
1
=
+
+
=
=
− .
x21 x22 x23
x21 x22 x23
T32
c2
c
▼➺♥❤ ✤➲ ✶✳✼✳
T22 = (x1 − x2 )2 (x2 − x3 )2 (x3 − x1 )2 = −4a3 c + a2 b2 + 18abc − 4b3 − 27c3 .
❈❤ù♥❣ ♠✐♥❤✳
✭✶✳✹✳✼✮
✣➦t
T (x1 , x2 , x3 ) = (x1 − x2 )2 (x2 − x3 )2 (x3 − x1 )2
= (x21 − 2x1 x2 + x22 )(x22 − 2x2 x3 + x23 )(x23 − 2x3 x1 + x21 )
T (x1 , x2 , x3 )
❱➻
❧➔ ✤❛ t❤ù❝ ✤è✐ ①ù♥❣ t❤✉➛♥ ♥❤➜t ❜➟❝ ✻ ♥➯♥ t❛ ❝â t❤➸ ♣❤➙♥ t➼❝❤ t❤❡♦ ❝→❝ ✤❛
t❤ù❝ ✤è✐ ①ù♥❣ ❝ì sð
T1 = x1 + x2 + x3 ; T2 = x1 x2 + x2 x3 + x3 x1 ; T3 = x1 x2 x3
♥❤÷ s❛✉
T (x1 , x2 , x3 ) = a1 T16 + a2 T14 T2 + a3 T12 T22 + a4 T23 + a5 T13 T3 + a6 T32 + a7 T1 T2 T3 .
T (x1 , x2 , x3 ) = (x1 − x2 )2 (x2 − x3 )2 (x3 − x1 )2
4 ♥➯♥ a1 = a2 = 0. ❑❤✐ ✤â t❛ ❝â
❉♦
❧➔
❝â ❜➟❝ ❝❛♦ ♥❤➜t ✤è✐ ✈ỵ✐ tø♥❣ ❜✐➳♥
x1 , x2 , x3
T (x1 , x2 , x3 ) = a3 T12 T22 + a4 T23 + a5 T13 T3 + a6 T32 + a7 T1 T2 T3 .
a3 , a4 , a5 , a6 , a7 t❛ ❝❤♦ (x1 , x2 , x3 ) ❧➛♥ ❧÷đt ♥❤➟♥ ❝→❝ ❣✐→ trà (0, 1, −1), (0, 1, 1),
(1, −2, 1), (−1, 1, 1), (1, 1, 1). ❱ỵ✐ (x1 , x2 , x3 ) = ((0, −1, 1) t❤➻ T (0, 1, −1) = (0 − 1)2 (1 +
1)2 (−1 − 0)2 = 4.
❚❛ ❧↕✐ ❝â T1 = 0, T2 = −1, T3 = 0. ❉♦ ✤â
✣➸ t➻♠ ❝→❝ ❤➺ sè
T (0, 1, −1) = a3 .0 + a4 (−1)3 + a5 .0 + a6 .0 + a7 .0 = −a4 .
a4 = −4.
−27, a7 = 18. ❑❤✐
❙✉② r❛
❚÷ì♥❣ tỹ ợ trữớ ủ ỏ t ữủ
a3 = 1, a5 = −4, x6 =
✤â
T (x1 , x2 , x3 ) = (x1 − x2 )2 (x2 − x3 )2 (x3 − x1 )2
= a3 T12 T22 + a4 T23 + a5 T13 T3 + a6 T32 + a7 T1 T2 T3
= (−a)2 b2 − 4b3 − 4(−a)3 (−c) + 18(−a)b(−c) − 27(−c)2
= a2 b2 − 4b3 − 4a3 c + 18abc − 27c2 .
❱➟②
T22 = (x1 − x2 )2 (x2 − x3 )2 (x3 − x1 )2 = −4a3 c + a2 b2 + 18abc − 4b3 − 27c3 .
▼➺♥❤ ✤➲ ✶✳✽✳ ◆➳✉ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ax
♣❤➙♥ ❜✐➺t x1, x2 t❤➻
3
+ bx2 + cx + d = 0(a = 0)
2
4ac − b
x1 x2 ≥
.
4a2
✶✶
❝â ❤❛✐ ♥❣❤✐➺♠ t❤ü❝
❈❤ù♥❣ ♠✐♥❤✳
x1 , x2
●✐↔ sû
❧➔ ❤❛✐ ♥❣❤✐➺♠ t❤ü❝ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ✤➣ ❝❤♦✳ ❑❤✐ ✤â t❛
❝â
ax31 + bx21 + cx1 + d = 0;
ax32 + bx22 + cx2 + d = 0.
❚rø ❤❛✐ ✈➳ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥✱ t❛ ✤÷đ❝
a(x31 − x32 ) + b(x21 − x22 ) + c(x1 − x2 ) = 0.
❱➻
x1 , x2
❧➔ ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t ♥➯♥ ❝❤✐❛ ❤❛✐ ✈➳ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ ❝❤♦
x1 − x2 , t❛ ✤÷đ❝
a(x21 + x1 x2 + x22 ) + b(x1 + x2 ) + c = 0.
❍❛②
a(x1 + x2 )2 + b(x1 + x2 ) + c − ax1 x2 = 0.
❚❤❡♦ ❣✐↔ t❤✐➳t
2
x1 , x2
tỗ t t õ
= b2 4a(c − ax1 x2 ) ≥ 0,
tù❝ ❧➔
x1 x2 ≥
4ac − b
.
4a2
❍➺ q✉↔ ✶✳✾✳ ❛✮ ◆➳✉ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ax
3
♣❤➙♥ ❜✐➺t t❤➻
+ b2 + cx + d = 0(a = 0)
❝â ❜❛ ♥❣❤✐➺♠ t❤ü❝
4a2 b − 12ac + 3b2 ≥ 0.
❜✮ ◆➳✉ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ x3 + ax2 + bx + c = 0 ❝â ❜❛ ♥❣❤✐➺♠ t❤ü❝ ♣❤➙♥ ❜✐➺t t❤➻ x1x2 ≥
4b − a2
✈➔ 3a2 + 4a − 12b ≥ 0.
4
❈❤ù♥❣ ♠✐♥❤✳
❛✮ ❱➻ ❜❛ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ ❧➔ t❤ü❝ ♣❤➙♥ ❜✐➺t ♥➯♥
x1 x2 ≥
4ac − b2
4ac − b2
4ac − b2
;
x
x
≥
;
x
x
≥
.
2
3
3
1
4a2
4a2
4a2
❈ë♥❣ ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ t❛ ✤÷đ❝
x1 x2 + x2 x3 + x3 x1 ≥ 3
4ac − b2
.
4a2
❚❤❡♦ ✭✶✳✹✳✷❜✮ t❛ ❧↕✐ ❝â
T2 = x1 x2 + x2 x3 + x3 x1 = b.
❙✉② r❛
4ac − b2
⇔ 4a2 b − 12ac + 3b2 ≥ 0.
4a2
3
2
♥❣❤✐➺♠ t❤ü❝ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ x + ax + bx + c = 0.
b≥3
❜✮ ●✐↔ sû
x1 , x2 , x3
❧➔ ❤❛✐
✤â
x31 + ax21 + bx1 + c = 0;
x32 + ax22 + bx2 + c = 0.
✶✷
❑❤✐
❚rø t❤❡♦ ✈➳ ❤❛✐ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ t❛ ✤÷đ❝
(x1 − x2 )3 + a(x1 − x2 )2 + b(x1 − x2 ) = 0.
❱➻
x1 , x2
❧➔ ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t ♥➯♥ ❝❤✐❛ ❤❛✐ ✈➳ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ ❝❤♦
x1 − x2 , t❛ ✤÷đ❝
(x21 + x1 x2 + x22 ) + a(x1 + x2 ) + b = 0
⇔(x1 + x2 )2 + a(x1 + x2 ) + b − x1 x2 = 0.
tt
x1 , x2
tỗ t t❛ ❝â
∆ = a2 − 4(b − x1 x2 ) ≥ 0,
x1 x2 ≥
tù❝ ❧➔
4b − a2
.
4
❈❤ù♥❣ ♠✐♥❤ t÷ì♥❣ tü t❛ ❝â
x2 x3 ≥
4b − a2
4b − a2
; x3 x1 ≥
.
4
4
❈ë♥❣ ✸ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ t❛ ✤÷đ❝
x1 x2 + x2 x3 + x3 x1 ≥ 3.
4b − a2
.
4
❚❤❡♦ ✭✶✳✹✳✷❜✮ t❛ s✉② r❛
b ≥ 3.
4b − a2
⇔ 3a2 + 4a 12b 0.
4
ỵ tr ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛✮✳ P❤÷ì♥❣ tr➻♥❤ x
bx + c = 0
✭✈ỵ✐ ❝→❝ ❤➺ sè t❤ü❝ a, b, c✮ ❝â ❜❛ ♥❣❤✐➺♠ t❤ü❝ x1, x2, x3 ❦❤✐ ✈➔ ❝❤➾ ❦❤✐
−4a3 c + a2 b2 + 18abc − 4b3 − 27c2 ≥ 0.
❈❤ù♥❣ ♠✐♥❤✳
x3 + ax2 + bx + c = 0
3
+ ax2 +
✭✶✳✹✳✽✮
a, b, c✮ ❝â ❜❛
2
♥❣❤✐➺♠ t❤ü❝ x1 , x2 , x3 t❤➻ t❤❡♦ ✭✶✳✹✳✼✮ t❛ ❝â ❜➜t ✤➥♥❣ t❤ù❝ (x1 − x2 ) (x2 − x3 ) (x3 − x1 ) =
−4a3 c + a2 b2 + 18abc − 4b3 − 27c3 ≥ 0 ✈ỵ✐ ♠å✐ sè t❤ü❝ a, b, c t❤ä❛ ♠➣♥ ❣✐↔ t❤✐➳t✳
3
2 2
3
2
◆❣÷đ❝ ❧↕✐✱ ❣✐↔ sû −4a c + a b + 18abc − 4b − 27c ≥ 0 ✤ó♥❣ tr♦♥❣ tr÷í♥❣ ❤đ♣ ♣❤÷ì♥❣ tr➻♥❤
x3 + ax2 + bx + c = 0 ✭✈ỵ✐ ❝→❝ ❤➺ sè t❤ü❝ a, b, c✮ ❝â ❜❛ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t✱ ♠ët ♥❣❤✐➺♠ t❤ü❝
x1 ✈➔ ❤❛✐ ♥❣❤✐➺♠ ♣❤ù❝ x2 = A + Bi, x3 = A − Bi, B = 0 õ t õ
ữỡ tr
ợ sè t❤ü❝
2
2
(x1 − x2 )(x2 − x3 )(x3 − x1 ) = 2Bi (x1 − A)2 + B 2 .
❙✉② r❛
(x1 − x2 )2 (x2 − x3 )2 (x3 − x1 )2 = −4B 2 (x1 − A)2 + B 2
♠➙✉ t❤✉➝♥ ❣✐↔ t❤✐➳t
2
< 0,
(x1 − x2 )2 (x2 − x3 )2 (x3 − x1 )2 = −4a3 c + a2 b2 + 18abc − 4b3 − 27c3 ≥ 0.
❉♦ ✤â ♥➳✉✭✶✳✹✳✽✮ ✤ó♥❣ t❤➻ ❝↔ ❜❛ ♥❣❤✐➺♠ ♣❤↔✐ ❧➔ ♥❣❤✐➺♠ t❤ü❝✳
✶✸
ỵ Pữỡ tr x
3
t tự
+ ax2 + bx + c = 0
❝â ❜❛ ♥❣❤✐➺♠ ❞÷ì♥❣ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ t❛ ❝â
a < 0, b > 0, c < 0.
❈❤ù♥❣ ♠✐♥❤✳
◆➳✉ ♣❤÷ì♥❣ tr➻♥❤
✭✶✳✹✳✾✮
x3 + ax2 + bx + c = 0 ❝â ❜❛ ♥❣❤✐➺♠ ❞÷ì♥❣ t❤➻ ❝❤ó♥❣ ♣❤↔✐ ❧➔
♥❤ú♥❣ ♥❣❤✐➺♠ t❤ü❝ ♥➯♥ t❤❡♦ ✣à♥❤ ❧➼ ✶✳✶✵ t❛ ❝â ✤➥♥❣ t❤ù❝ ✭✶✳✹✳✽✮ ✈➔ t❤❡♦ ✭✶✳✹✳✷❛✮✱ ✭✶✳✹✳✷❜✮
✈➔ ✭✶✳✹✳✷❝✮ t❛ ❝â
x1 + x2 + x3 = −a > 0; x1 x2 + x2 x3 + x3 x1 = b > 0; x1 x2 x3 = −c > 0.
❑❤✐ ✤â✱ t❛ ✤÷đ❝ ✭✶✳✹✳✾✮✳
x3 + ax2 +
bx+c = 0 ❝â ❜❛ ♥❣❤✐➺♠ t❤ü❝✳ ●✐↔ sû x1 ≤ 0 ❦➳t ❤đ♣ ✈ỵ✐ ✭✶✳✹✳✾✮✱ t❛ s✉② r❛ x31 +ax21 +bx1 +c < 0.
3
2
❈❤ù♥❣ tä x1 ≤ 0 ❦❤æ♥❣ ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❝õ❛ x + ax + bx + c = 0✱ ♠➙✉ t❤✉➝♥ ✈ỵ✐ ❣✐↔ t❤✐➳t✳
3
2
❱➟② ♥➳✉ ❝â ✭✶✳✹✳✽✮ ✈➔ ✭✶✳✹✳✾✮ t❤➻ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ x + ax + bx + c = 0 ♣❤↔✐ ❧➔ ♥❤ú♥❣ sè
◆❣÷đ❝ ❧↕✐✱ ♥➳✉ t❛ ❝â ❜➜t ✤➥♥❣ t❤ù❝ ✭✶✳✹✳✽✮ t❤➻ t❤❡♦ ✣à♥❤ ❧➼ ✶✳✶✵✱ ♣❤÷ì♥❣ tr➻♥❤
❞÷ì♥❣✳
✣à♥❤ ỵ ừ ữỡ tr x
3
+ ax2 + bx + c = 0
t❛♠ ❣✐→❝ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ t❛ ❝â ✭✶✳✹✳✽✮ ✈➔ ✭✶✳✹✳✾✮ ✈➔
❧➔ ✤ë ❞➔✐ ❜❛ ❝↕♥❤ ❝õ❛
a3 − 4ab + 8c > 0.
❈❤ù♥❣ ♠✐♥❤✳
✭✶✳✹✳✶✵✮
❚❤❡♦ ✭✶✳✸✳✶✶✮ t❛ ❝â
(x1 + x2 − x3 )(x2 + x3 − x1 )(x3 + x1 − x2 ) = a3 − 4ab + 8c.
◆➳✉ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
x3 + ax2 + bx + c = 0
❧➔ ✤ë ❞➔✐ ❜❛ ❝↕♥❤ ❝õ❛ t❛♠ ❣✐→❝ t❤➻
❝❤ó♥❣ ❧➔ ♥❤ú♥❣ sè t❤ü❝ ❞÷ì♥❣ ✈➔ t❤ä❛ ♠➣♥ ❜➜t ✤➥♥❣ t❤ù❝ t❛♠ ❣✐→❝
(x1 + x2 − x3 ) > 0, (x2 + x3 − x1 ) > 0, (x3 + x1 − x2 ) > 0.
❙✉② r❛
(x1 + x2 − x3 )(x2 + x3 − x1 )(x3 + x1 − x2 ) = a3 − 4ab + 8c > 0.
✣✐➲✉ ♥➔② ❝❤ù♥❣ tä
✭✶✳✹✳✽✮✱ ✭✶✳✹✳✾✮ ✈➔ ✭✶✳✹✳✶✵✮ t❤ä❛ ♠➣♥✳
◆❣÷đ❝ ❧↕✐✱ t❛ ❝â ✭✶✳✹✳✽✮ ✈➔ ✭✶✳✹✳✾✮ s✉② r❛ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛
0
x3 +ax2 +bx+c =
❧➔ ♥❤ú♥❣ sè t❤ü❝ ❞÷ì♥❣✳
❚❤❡♦ ✭✶✳✹✳✶✵✮✱ t❛ ❝â
(x1 + x2 − x3 )(x2 + x3 − x1 )(x3 + x1 − x2 ) = a3 − 4ab + 8c > 0.
❚❛ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤
(x1 + x2 − x3 ) > 0, (x2 + x3 − x1 ) > 0, (x3 + x1 − x2 ) > 0.
✶✹
x1 + x2 − x3 ≤ 0 t❤➻
t❤❡♦ ✭✶✳✹✳✶✵✮ ♣❤↔✐ ❝â ♠ët ❜➜t ✤➥♥❣ t❤ù❝ ♥ú❛ ❝â ❞➜✉ ♥❣÷đ❝ ❧↕✐✱ ✈➼ ❞ö✱ x1 + x3 − x2 ≤ 0. ❈ë♥❣
t❤❡♦ ✈➳ ✷ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ t❛ s✉② r❛ x1 ≤ 0✱ ♠➙✉ t❤✉➝♥ ❣✐↔ t❤✐➳t✳ ✣✐➲✉ ♥➔② ❝❤ù♥❣ tä
3
2
❜❛ ♥❣❤✐➺♠ t❤ü❝ ❞÷ì♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ x + ax + bx + c = 0 t❤ä❛ ♠➣♥ ❝→❝ ❜➜t
❚❤➟t ✈➟②✱ ♥➳✉ ♠ët tr♦♥❣ ❜❛ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ ❝â ❞➜✉ ♥❣÷đ❝ ❧↕✐✱ ✈➼ ❞ư
✤➥♥❣ t❤ù❝ t❛♠ ❣✐→❝✳ ❙✉② r❛ ❝❤ó♥❣ ❧➔ ✤ë ❞➔✐ ❜❛ ❝↕♥❤ ❝õ❛ t❛♠ ❣✐→❝✳
✶✳✺ ▼➮■ ▲■➊◆ ❍➏ ●■Ú❆ ❈⑩❈ ◆●❍■➏▼ ❈Õ❆ ▼❐❚
❙➮ P❍×❒◆● ❚❘➐◆❍ ❇❾❈ ❇❆
❚r♦♥❣ ♠ö❝ ♥➔② t❛ ①➙② ❞ü♥❣ ♠è✐ ❧✐➯♥ ❤➺ ❣✐ú❛ ♥❣❤✐➺♠ ❝õ❛ ♠ët sè ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛✳ ❈ư
t❤➸✱ ♥➳✉ ❜✐➳t ❜❛ ♥❣❤✐➺♠ ❝õ❛ ♠ët ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛ t❛ ❝â t❤➸ ①➙② ❞ü♥❣ ♠ët sè ♣❤÷ì♥❣
tr➻♥❤ ❜➟❝ ❜❛ ♥❤➟♥ ❝→❝ ♥❣❤à❝❤ ✤↔♦✱ tê♥❣ ✤ỉ✐ ♠ët✱ ❝→❝ ❜➻♥❤ ♣❤÷ì♥❣✱ ✳ ✳ ✳ ❝õ❛ ❝→❝ ♥❣❤✐➺♠ ♥➔②
❧➔♠ ♥❣❤✐➺♠✳
▼➺♥❤ ✤➲ ✶✳✶✸✳ ◆➳✉ x , x , x ❧➔ ❜❛ ♥❣❤✐➺♠ ❝õ❛ ữỡ tr ợ c = 0 t x1 , x1 , x1
1
2
3
1
❧➔ ❜❛ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
b
a
1
t3 + t2 + t + = 0.
c
c
c
❈❤ù♥❣ ♠✐♥❤✳
c = 0 ♥➯♥ ✭✶✳✹✳✶✮ ❦❤æ♥❣ ❝â
1
1
1
+ a 2 + b + c = 0, tữỡ
3
t
t
t
t ữủ
2
3
x = 0.
x=
1
t
ữỡ tr
ữỡ ợ
ử ❈❤♦ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛
x3 + x2 − 3x − 2 = 0.
❚❛ ❝â t❤➸ ❦✐➸♠ tr❛ ✤÷đ❝ ♣❤÷ì♥❣ tr➻♥❤ ❜➟❝ ❜❛
−1 −
2
√
5 −1 +
,
2
√
5
✈➔
1
t
❚❤❡♦ ❣✐↔ t❤✐➳t✱
❱➟② ♣❤÷ì♥❣ tr➻♥❤ ❜❛♥
−1
.
2
3
+
❚❤❛②
1
t
x=
2
−
1
t
2x3 + 3x2 − x − 1 = 0
✈➔♦ ♣❤÷ì♥❣ tr➻♥❤
❝â ❜❛ ♥❣❤✐➺♠ ❧➔
x3 + x2 − 3x − 2 = 0,
t❛ ✤÷đ❝
3
− 2 = 0 ⇔ 2t3 + 3t2 − t − 1 = 0.
t
√
−1 − 5
1
2
√ ;
t1 =
⇔ x1 =
=
2
t1
−1 − 5
√
−1 + 5
1
2
√ ;
t2 =
⇔ x2 =
=
2
t2
−1 + 5
−1
1
t3 =
⇔ x3 =
= −2.
2
t3
2
2
√ ;
√
✤➛✉ ❝â ❜❛ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t ❧➔
−1 − 5 −1 + 5
✶✺
✈➔
−2.