Tải bản đầy đủ (.pdf) (16 trang)

14 asymmetric allylation reactions

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.37 MB, 16 trang )

Myers

Chem 115

Asymmetric Allylation Reactions

Brown Allylation and Crotylation Reactions

Enantioselective Allylboration
Et2O
–78 A 23 °C;

O

Reviews:

H + (–)-Ipc2B

R

R
NaOH, H2O2

Srebnik, M.; Ramachandran, P. V. Aldrichimica Acta 1987, 20, 9.
R
Roush, W. R. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon
Press: New York, 1991, Vol. 2, pp. 1-53.
Synthesis of B-Allyldiisopinocampheylborane

H 3C


CH3
CH3

CH3

CH3
=

(1R)-(+)-_-Pinene
91.3% ee

H3B•S(CH3)2
THF, 0 °C
h,72%
72 h,
72%

BH
BH

(–)-Ipc2BH

CH3OH, 1 h
0 °C, 100%

yield (%)

ee (%)a

ee (%)b


CH3

74

93

•99

n-C3H7

71

86

-

n-C4H9

72

87

96

t-C4H9

88

83


•99

C 6H 5

81

96

96

aAllylboration carried out without filtration of
Mg salts. bAllylboration carried out at –100 °C
under Mg-salt free conditions.

2

98.9% ee

OH

• The reaction is quite general; the stereochemistry of the addition is the same in all cases
examined.
• Lower reaction temperatures (0 A –78 A –100 °C) lead to increased enantioselectivity.

CH3

BB

CH3

MgBr

2

98.9% ee

BOCH33
BOCH
2

–78 A 25 °C
25 °C, 1 h

98.9% ee

• Only Mg-salt free reagent can be used at –100 °C because the reactive borane is
sequestered by ate complex formation with CH3OMgBr at this temperature.
• Allylboration of aldehydes is essentially instantaneous at –78 or –100 °C in the absence of
Mg salts.

• Prolonged incubation at 0 °C affords enantiomerically enriched Ipc2BH. This is due to
equilibration of tetraisopinocampheyldiborane with _-pinene and triisopinocampheyldiborane; the symmetrical dimer crystallizes preferentially.

H 3C
H 3C

• Both enantiomers of _-pinene are commercially available and inexpensive.(Aldrich:
(1R)-(+)-_-pinene, 91% ee, $100/500mL; (1S)-(–)-_-pinene, 87% ee, $42/100mL).
• B-Allyldiisopinocampheylborane can be prepared and used in situ after filtration of
the magnesium salts produced during its formation.


Brown, H. C.; Desai, M. C.; Jadhav, P. K. J. Org. Chem. 1982, 47, 5065-5069.
Brown, H. C.; Singaram, B. J. Org. Chem. 1984, 49, 945-947.
Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432-439.

H

H
H
H

H
CH3 H
B

O H3C
H

CH3
CH3

• Allylation of aldehydes proceeds through a
chair-like TS where R occupies an equatorial
position and the aldehyde facial selectivity
derives from minimization of steric interactions
between the axial Ipc ligand and the allyl group.

R
H


Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092-2093.
Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919-5923.
Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401-404.
M. Movassaghi

1


Diastereoselective Allylboration of Chiral, _-Substituted Aldehydes

Asymmetric Isoprenylation of Aldehydes

(+)-Ipc2BH

+



CH3

THF

CH3

–25 °C, 6 h

(+)-Ipc2B

• The diastereofacial selectivity of the B-allyldiisopinocampheylborane reagent typically overrides
any facial preference of the aldehyde for nucleophilic attack.


CH3
CH3

• Hydroboration of allenes is an efficient method for preparing B-prenyldiisopinocamphenylboranes.
B-allyldiisopinocamphenylboranes

O

allylboration

H3C
(+)-Ipc2B

CH3
CH3

RCHO, Et2O
–78 °C, 12 h;
NaOH, H2O2

R

yield (%)

ee (%)

CH3

73


91

n-C4H9

79

92

CH2=CH

70

95

(CH3)2C=CH

85

OH

H

OH
H 3C

+

Et2O, –78 °C


H3C

81%

R
H3C CH3

O
H 3C

H3C

(–)-Ipc2BCH2CH=CH2
(+)-Ipc2BCH2CH=CH2

MATCHED:
MISMATCHED:

96

OH
H3C

allylboration
H

:
:

96

5

4
95

OH
H 3C

Et2O, –78 °C

OBz

H3C

(92% de)
(90% de)

OH
H3C

+
OBz

OBz

80%
Brown, H. C.; Jadhav, P. K. Tetrahedron Lett. 1984, 25, 1215-1218.
Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432-439.

MISMATCHED:


Methallylation of Aldehydes

CH3
(+)-Ipc2BOCH3 +

Li

(–)-Ipc2BCH2CH=CH2
(+)-Ipc2BCH2CH=CH2

MATCHED:

Et2O

CH3
(+)-Ipc2B

–78 °C, 1 h

R
CH3

RCHO, Et2O
–78 °C, 12 h;
NaOH, H2O2

yield (%)
56


OH

CH3

R

n-C3H7

54

90

n-C4H9

56

91

t-C4H9

55

90

CH2=CH

57

92


6
96

(88% de)
(92% de)

• Although the stereochemical outcome of the allylboration of aldehydes using B-allyldiisopinocampheylborane is typically reagent controlled, this selectivity may be challenged with certain
substrates:

ee (%)
90

:
:

94
4

O
H 3C

H
Ph

OH

allylboration
Et2O, –78 °C

OH

+

H 3C

H 3C

Ph

Ph

72%
MISMATCHED:
MATCHED:

(–)-Ipc2BCH2CH=CH2
(+)-Ipc2BCH2CH=CH2

67
2

:
:

33
98

(34% de)
(96% de)

• The yields for methallylation of aldehydes are generally lower than in simple allylation reactions.

Brown, H. C.; Jadhav, P. K.; Perumal, P. T. Tetrahedron Lett. 1984, 25, 5111-5114.
Jadhav, P. K.; Bhat, K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432-439.

Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1987, 52, 319-320.
Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. 1989, 54, 1570-1576.
M. Movassaghi

2


Chair TS's Produce syn Adducts from (Z)-Crotylboranes and anti Adducts from (E)Crotylboranes.

(Z)-Crotylboranes

CH3

H3C

(–)-Ipc2BOCH3

n-BuLi, KOt-Bu

H3C

K CH
3

THF
–45 °C


CH3 OCH3

B
2

K

–78 °C

+

CH3

BF3•OEt2
–78 °C
H3C
H

H

H
H

B

H

Ipc

"(Z)-crotylborane"


H3C

H
H3C

H

H
CH3 H
B
O H3C

H

B
2

CH3
B

aldehyde

NaOH, H2O2

yield (%) A:B

CH3

ee (%)


"syn adduct"

H3C

H

CH3

R

CH3
A

CH3

CH3

O H3C
R
CH3

R

RCHO
–78 °C;

OH
+


R

CH3

CH3 H

H

OH

OH

OH
CH3



CH3CHO

75

+

CH3CHO

72



C2H5CHO


70

+

C2H5CHO

78



CH2=CHCHO

63

95:5

90



C6H5CHO

72

94:6

88

R

CH3

CH3

95:5
4:96
95:5
4:96

90
92
90
92

R
H
"(E)-crotylborane"

"anti adduct"

• The crotylboranes are used immediately after decomplexation of methoxide from the ate
complex by BF3•OEt2 at –78 °C to avoid crotyl isomerization.
"Superbases" for Organic Synthesis

• These adducts can be viewed as protected aldol products; "deprotection" is brought about by
dihydroxylation/periodate cleavage or by ozonolysis.

Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293-294.
Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919-5923.
Roush, W. R. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon

Press: New York, 1991, Vol. 2, pp. 1-53.

• The "superbase" prepared by mixing n-butyllithium and potassium t-butoxide (1:1) can metalate
hydrocarbons of low acidity, in particular olefins.
• Allylic methyl groups are much more readily metalated than allylic methylene or methine
centers.
• cis-2-alkenes generally react faster than their trans-isomers.
K
R2
• The large atomic radius of potassium favors !3-bonding
in allyl, crotyl and prenyl derivatives:

R1

R1, R2 = H, CH3
Schlosser, M. Pure & Appl. Chem. 1988, 60, 1627-1634.
Schlosser, M.; Stahle, M. Angew. Chem., Int. Ed. Engl. 1980, 19, 487-489.
M. Movassaghi

3


(E)-Crotylboranes

H3C

CH3

Diastereo- and Enantioselective vic-Diol Synthesis


n-BuLi, KOt-Bu

CH3

THF
–45 °C

CH3 OCH3

B

(–)-Ipc2BOCH3

2

K

–78 °C

K

CH3

(–)-Ipc2BOCH3

s-BuLi

OCH3

+


THF, –78 °C

Li

OCH3

CH3 OCH3 Li +

B
2

BF3•OEt2
–78 °C
OH
+

R

B

R

CH3
C

2

CH3
D


Ipc

aldehyde

yield (%)



CH3CHO

78

+

CH3CHO

76



C2H5CHO

70

+

C2H5CHO

69




CH2=CHCHO

65



C6H5CHO

79

NaOH, H2O2

C:D
95:5

BF3•OEt2
–78 °C

CH3

RCHO
–78 °C;

OH

ee (%)


CH3

CH3 O
B
2

OH
NH2

B

RCHO, –78 °C;

+ R

+ R
OCH3
E

(crystalline)

CH3

OH

2

OCH3
F


• Treatment of the crude product mixture with ethanolamine allows for easy removal of the
reagent by-product as a crystalline adduct; this is an alternative to oxidative work-up.

90
Ipc

aldehyde

yield (%)

E:F

ee (%)

90



CH3CHO

57

95:5

90

92

+


CH3CHO

59

95:5

90



C2H5CHO

65

94:6

88

+

C2H5CHO

68



CH2=CHCHO

63


94:6

88



C6H5CHO

72

95:5

90

95:5
4:96

OCH3

HOCH2CH2NH2

92

4:96

OCH3

–78 °C

• The crotylboranes are used immediately after decomplexation of methoxide from the ate

complex by BF3•OEt2 at –78 °C to avoid crotyl isomerization.

4:96
96:4
5:95

92
92
90

• Other vinyl ethers may be used, such as methoxymethyl vinyl ether (affording the
MOM-protected vic-diol).
Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293-294.
Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919-5923.
Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110, 1535-1538.

M. Movassaghi

4


Preparation of (E)- and (Z)-Crotylboronate Reagents

Roush Allylation and Crotylation Reactions
Roush, W. R. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon
Press: New York, 1991, Vol. 2, pp. 1-53.
Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc. 1990, 112, 6348-6359.
Roush, W. R.; Halterman, R. L. J. Am. Chem. Soc. 1986, 108, 294-296.

O

B

• The stability of allylboronate reagents permits their purification by distillation. Allyl
diisopinocamphenyl reagents cannot be distilled.

+

O

THF
–78 A –25 °C
45 min

toluene

CO2i-Pr

yield (%)

ee (%)

n-C9H19CHO

86

79

c-C6H11CHO

77


78

C6H5CHO

78

71

HR

FAVORED

R

CH3

O

CO2i-Pr

3 •99% Z

70-75 %

H

O

R


OR
H
H

O
B O
O

H

OH

OR

DISFAVORED

OH
+ R

R
–78 °C, 4Å-MS

CH3

R

reagent

yield (%)


n-C9H19

2

90

n-C9H19

3

70

c-C6H11

2

94

c-C6H11

3

90

TBSOCH2CH2

2

71


TBSOCH2CH2

3

68

aee

CH3
anti:syn
95:5
1:>99
>99:1
2:98
•98:2
2:•98

ee (%)a
86
77
86
83
85
72

of major diastereomer.

OH


OH
R

2. 1N HCl, Et2O
3. DIPT, MgSO4

(R,R)-2 or (R,R)-3
toluene

O

H

OR
H

H

H 3C K

O
B

• Essentially identical results are obtained with a range of commercially available tartrate esters
(CH3, Et, i-Pr).

O

O
O B O O


1. B(Oi-Pr)3
–78 °C

• Competition experiments have shown that (E)-crotylboronates react faster with aldehydes
than the corresponding (Z)-isomers.

Proposed Origin of Selectivity in Tartarate
DerivedAllylboronate
AllylboronateAdditions
Additions
Tartrate Derived

H

70-75 %

• Tartrate
modified (E)- and (Z)-Crotylboronates can be stored for several months at –20 °C in
Tartrate-modified
neat form or in solution with little noticeable deterioration.

R

–78 °C, 4Å-MS

aldehyde

OR
H

H

2 •98% E

OH

• Enantioselectivities are typically moderate.
• 4Å-MS are necessary to achieve the highest levels of selectivity.

O

Pr
CO2i-Pr

O

• Crotylboronates are configurationally stable at or slightly above room temperature.

CO2i-Pr
H

H3C

2. 1N HCl, Et2O
3. DIPT, MgSO4

n-BuLi, KOt-Bu
CH3
CH3


R

THF
–78 A –50 °C
15 min

H 3C

O
B

CO2i-Pr

77%

O
B

n-BuLi, KOt-Bu

CO2i-Pr

1. B(Oi-Pr)3
–78 °C

CO2i-Pr

O

2. 2N HCl, Et2O

3. (+)-DIPT, MgSO4

O

CH3

CO2i-Pr

1. B(OCH3)3
Et2O, –78 °C

MgBr

H 3C

K

R

• The favored transition state is believed to minimize unfavorable lone-pair
lone-pair
lone pair-lone
pair
interactions.
Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186-8190.

Roush, W. R.; Ando, K.; Powers, D. B.; Palkowitz, A. D.; Halterman, R. L. J. Am. Chem. Soc. 1990,
112, 6339-6348.
Roush, W. R.; Palkowitz, A. D.; Palmer, M. A. J. J. Org. Chem. 1987, 52, 316-318.
M. Movassaghi


5


(–)-Bafilomycin A1:

Reaction of Tartrate-Derived Allyl- or Crotylboronates with Chiral Aldehydes

MATCHED:

CO2i-Pr

CO2i-Pr

CH3
OTBS

OHC

O
B

+

CH3
CO2i-Pr

O

OTBS

OH
71%, 78% de

MISMATCHED:

CO2i-Pr

CH3

O
B

OTBDPS +

OHC

O

MATCHED:

+

H 3C

CH3

OTBS

OHC


+

O
B

H 3C

O

CO2i-Pr

MATCHED

H 3C

OTBDPS +

O
B

H 3C

O

CO2i-Pr

+

OHC


(R,R)-2

OPMB
CH3

1. (S,S)-2
(S,S)-1, Toluene
–78 °C
2. TBSOTf
MISMATCHED

85%, •96% de

(R,R)-1, Toluene
(R,R)-2
–78 °C, 8 h
92%, 70% de

OTBS
DMPO

OTBS

OH

H 3C

OPMB
CH3 CH3


CO2i-Pr

CH3

O
B

CH3 CH3
OH
80%, 94% de

MISMATCHED:

CO2i-Pr

DMP = 3,4-dimethoxyphenyl

CO2i-Pr

CH3

CO2i-Pr

O

(S,S)-2

OTBDPS
OH
72%, 74% de


OHC

CHO

H 3C

CH3
CO2i-Pr

O
B

DMPO

CH3 CH3

CH3 CH3
O

CO2i-Pr

OTBDPS
OH
85%, 76% de

MATCHED:

CO2i-Pr


CH3
OHC

OTBS

O
B

+

CH3 CH3
O

CO2i-Pr

OH
71%, 90% de

CH3
MISMATCHED:

TESOTBSO

OH

OH
B(OH)2

H3C
CH3


O
B

OTBDPS +

CO2i-Pr

CH3

1. Pd(PPh3)4, TlOH
THF, 23 °C, 30 min
65%
2. KOH, 1,4-dioxane;
2,4,6-trichlorobenzoyl chloride,
i-Pr2NEt, THF;
DMAP, toluene, reflux
52%

OTBS
OH
28% de

• All reactions were performed in toluene at –78 °C in the presence of 4Å-MS.
CH3O
O
O TBSO

Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186-8190.
Roush, W. R.; Palkowitz, A. D.; Palmer, M. A. J. J. Org. Chem. 1987, 52, 316-318.


CH3 CH3 CH3 CH3 OCH3

CH3 OCH3

CH3 CH3
O

CO2CH3

I

+

CO2i-Pr

CH3
OHC

OTBS

CH3 CH3
OTES

O

H 3C

H 3C
CH3


CH3 OCH3

CH3
M. Movassaghi

6


CH3O

TBSO
H 3C

OTES

O
O TBSO

O
+

H

CH3 CH3

O

OH
OH


Catalytic, Enantioselective Addition of Allylsilanes to Aldehydes

H 3C

H 3C
CH3 OCH3

CH3

CH3 CH3

(S)-(–)-BINOL

CH3

1
O
1. TMSCl, Et3N, LHMDS
CH2Cl2, –78 °C, 30 min
2. 1, BF3•OEt2, –78 °C, 30 min

R

H

+

Si(CH3)3


1. (S)-(–)-BINOL (20 mol%)
TiF4 (10 mol%)
CH2Cl2, CH3CN, 0 °C

OH
R

2. Bu4NF, THF
aldehyde

time (h)

yield (%) ee (%)

85%
CHO

4

90

94

20

93

84

4


91

94

20

92

93

20

81a

74

PhCHO

4

85

80

c-C6H11CHO

4

72


60

PhCH2CH2CHO

4

69

61

H3C CH3
CH3O

TBSO
H 3C

O
OH OTBSO

CH3 CH3
OTES

O

H 3C

CH3 CH3 OCH3

CH3 CH3


(CH3)3CCHO
CHO
Ph

CH3

TASF, DMF, H2O
23 °C, 4 h

TASF = [(CH3)2N]3S[(CH3)3SiF2]

CHO
TIPSO
H3C CH3

O
O

93%

H 3C
H 3C
HO

CH3
O

CH3O
O

OH O

CH3 CH3
OH
H 3C

aBased

HO

CHO
CH3

CH3 CH3 OCH3

CH3

on 25% recovered aldehyde.

• Allyltrimethylsilane initially reacts with the HF produced during catalyst preparation to give
propene and (CH3)3SiF.

(–)-Bafilomycin A1
• It is important that the reaction be conducted in the presence of small amounts of CH3CN
to solubilize the polymeric TiF4.
Scheidt, K. A.; Tasaka, A.; Bannister, T. D.; Wendt, M. D.; Roush, W. R. Angew. Chem., Int. Ed.
Engl. 1999, 38, 1652-1655.
Roush, W. R.; Bannister, T. D. Tetrahedron Lett. 1992, 33, 3587-3590.

• _,_-Disubstituted aldehydes afford the highest enantioselectivities.

Gauthier, D. R. Jr.; Carreira, E. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2363-2365.
M. Movassaghi

7


Enantioselective Allylation Using a Stoichiometric Chiral Controller Group

Catalytic, Enantioselective Addition of Allyltin Reagents to Aldehydes

O
R1

R2
Sn(n-Bu)3

H +

CF33
CF

(S)-(–)-BINOL (10 mol%)
Ti(Oi-Pr)4 (10 mol%)
4Å-MS

F3C
F

Ph


OH R2

FF33CC

R1
CH2Cl2, –20 °C

Ph
CF
CF33

S N B N S
O O
O
Br O
1

R1
C 6H 5

R2

time (h)

H

70

yield (%) ee (%)
88


95

R2
Sn(n-Bu)3

C 6H 5

CH3

60

75

91

c-C6H11

H

70

66

94

c-C6H11

CH3


48

50

84

(E)-C6H5CH=CH

H

70

42

89

(E)-C6H5CH=CH

CH3

12

68

87

PhCHO

C6H5CH2CH2


H

70

93

96

C6H5CH2CH2

CH3

40

97

98

i-C3H7

H

70

89

96

furyl


H

70

73

96

furyl

CH3

12

99

99

p-CH3OC6H4

CH3

48

61

93

p-CH3OC6H4CH2OCH2


H

70

81

96

BnOCH2

H

60

84

95

• Addition occurs to the re face of the aldehyde with the catalyst prepared from (R)-(+)-BINOL.

1. 1, PhCH3
23 °C

HO H R2
R1

2. R1CHO
–78 °C

aldehyde


yield (%)

ee (%)

H

92

96

PhCHO

Cl

80

90

c-C6H11CHO

H

84

92

c-C6H11CHO

Cl


76

88

R2

• Reagent 1 is produced from the corresponding (R,R)-bis-sulfonamide by reaction
with BBr3 in CH2Cl2.
• Transmetallation of allyltin reagents with the chiral B-bromoboron
B-Bromoboron reagent 1 in toluene
is complete in 3-20 h.

• This procedure allows for the efficient asymmetric methallylation of aldehydes, typically a
difficult transformation.

• The (R,R)-bis-sulfonamide can be recovered from the reaction mixture.

Keck, G. E.; Krishnamurthy, D. Org. Syn. 1998, 75, 12-18.

Corey, E. J.; Kim, S. S. Tetrahedron Lett. 1990, 31, 3715-3718.

Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467-8468.
Keck, G. E.; Krishnamurthy, D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543-6544.
M. Movassaghi

8


Diastereoselective Allyltitanation of Chiral Aldehydes


Enantioselective Allyltitanation of Aldehydes
Ph Ph
O

HO
HO

CH3
+
Ti Cl
CH3
Cl
Cl

O

Ph Ph
(R,R)-TADDOL

Et3N, Et2O
23 °C

Ph
Cl

or
cyclohexane,
reflux


Ti O
O

Ph

Ph

O
Ph

Ph
O

O

Ph

Ph

Ph

Ph

R

O
O

Ph


M

Ti O
O

R

M = Li, MgX

CH3
CH3

Ph

Cl

Ti O
O

Ph

Ph

O
O

M

1. R1


Ph
Ti O
O

R1
Et2O, 0 °C
CH3
CH3

Ph

Ph

R1

R2

ee (%)

H
H
H
CH3
Ph
(CH3)3Si
EtO
CH3
(CH3)3Si

Ph

(CH3)2CH
CH2=CH
Ph
Ph
Ph
Ph
CH3(CH2)8
CH3(CH2)8

95
97
95
98
97
•98
95
•98
•98

H3C

H3C
:

95

5

• Exceptionally high reagent selectivity is observed in the mismatched allylation of (R)-2-phenylbutyraldehyde (90% de) (cf., (–)-Ipc2BCH2CH=CH2: 34% de).
Ph


O

2. R2CHO, –74 °C

CHO
O
H3C

yield (%)

97
•98
•98
75
•98
•98

93
88
79
89
54
68
77
86
69

• (E)-Crotyltitanation of aldehydes affords anti products, presumably by a chair-like TS.


+

O
N

H3C

Boc

CH3

R2

O 3. NH4F, H2O
CH3
O
CH3
de (%)

OH

OH
CH3
CH3

OH
Ph

OH
Ph


+

O

Ph
Ph

0.5

OH
Ph

MISMATCHED

reagent

Ph

H3C
:

99.5

H

H3C

• (E)-Crotyltitanium reagents are produced from (E)- or (Z)-crotyl anion precursors.


Ph

H3C

TiCpL(R,R)
91-94%
91–94%

Ph

+

MATCHED

• The chiral diol is readily available in both enantiomeric forms from the corresponding
tartrate esters.
• Complex formation is driven to completion by neutralization of HCl with Et3N, or by
removal of HCl by heating.
• The complex may be used in crude form, as prepared in solution, or the complex may
be crystallized and isolated.

Ti O
Cl O

91–94%
91-94%

OH

Ph


H

H3C

CH3
CH3

O

OH

TiCpL(R,R)

R1

N
CH3

O

H3C

Boc

N
Boc

CH3


yield

TiCpL(R,R)

93

98.1

1.9

TiCpL(S,S)

95

0.5

99.5

TiCp(Oi-Pr)2

89

37.3

62.7

MgCl

86


55.1

44.9

OH
CHO
O
H 3C

H 3C

TiCpL(R,R)

N
CH3

Boc

93%

O
N
CH3
CH3 Boc
a single diastereomer

H3 C

Hafner, A.; Duthaler, R. O; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. J. Am. Chem.
Soc. 1992, 114, 2321-2336.

Duthaler, R. O.; Hafner, A.; Riediker, M. Pure & Appl. Chem. 1990, 62, 631-642.
M. Movassaghi

9


Myers

Chem 115

Asymmetric Allylation Reactions
Proposed Catalytic Cycle:

Krische Allylation and Crotylation Reactions:
Hassan, A.; Krische, M. J. Org. Proc. Res. Devel. 2011, 15, 1236.
Han, S. B.; Kim, I. S.; Krische, M. J. Chem. Commun. 2009, 7278.

OAc

General Allylation Reaction:

OAc

[Ir(cod)Cl]2 (2.5 mol %)
(R)-BINAP (5 mol %)

OH

+


R
R = aryl, alkyl

m-NO2BzOH (10 mol %)
Cs2CO3 (20 mol %)
THF, 100 °C

NO2

O
P
P

IrIr O

R

OAc

+

R

H

R = aryl, alkyl

m-NO2BzOH (10 mol %)
Cs2CO3 (20 mol %)
i-PrOH (200 mol %)

THF, 100 °C

OH

III

P
P

NO2

Ir

CH3

+

R = aryl, alkyl

4-CN-3-NO2BzOH (10 mol %)
Cs2CO3 (20 mol %)
THF, 90 °C

O
O

OH
R
CH3
65-73% yield

86-97% ee
4:1 to 8:1 dr

OAc
CH3

[Ir(cod)Cl2] (2.5 mol %)
(S)-SEGPHOS (5 mol %)

O
+
H

R

R = aryl, alkyl

OH

O

O
O

O

I

NO2


Ir

Base

P
P
6

H
H

P
P

NO2

III

Ir

O
R

5

III

NO2

Ir


O
H

H

R

• The Ir catalyst 1 (generated in situ) undergoes addition to aldehyde 2 via a 6-membered chair-like
transition state to generate the IrIII alkoxide 3. This does not undergo further dehydrogenation as the
olefin is thought to occupy a coordination site, blocking !-hydride elimination.
• Ligand exchange with the reactant alcohol (or isopropanol) generates the homoallylic alcohol 4.
• The Ir alkoxide 5 undergoes !-hydride elimination to produce the IrIII hydride 6. Dissociation of the
aldehyde 2 produces an IrIII hydride which undergoes deprotonation by the base to provide the IrI
anion 7.
• Oxidative addition of allyl acetate to 7 regenerates "-allyl IrIII catalyst 1.

(S)-SEGPHOS

O

R

4

O
P
P

PPh2

PPh2

O

OH

R

R

O

7

R

NO2
O

2

General Crotylation Reaction:
[Ir(cod)Cl2] (2.5 mol %)
(S)-SEGPHOS (5 mol %)

H

OAc

III


Ir

R
3
Hexa-Coordinate
18 Electron Complex

R
O

55-80% yield
90-93% ee

P
P

O

H

R

• Couplings of primary alcohols or aldehydes with allyl acetate utilizing Ir catalysts generate
allylation products without the use of stoichiometric allyl-metal(oid) reagents.

OH

NO2


III

Ir

AcO–

TMBTP = 2,2',5,5'-Tetramethyl-4,4'-bis(diphenylphoshino)-3,3'-bithiophene

OAc

O

O

O
P
P

O

O

O

55-80% yield
90-93% ee

[Ir(cod)Cl2] (2.5 mol %)
(–)-TMBTP (5 mol %)


[Ir(cod)Cl]2

AcOH

OH

1 (X-Ray)
O

m-NO2BzOH

III

4-CN-3-NO2BzOH (10 mol %)
Cs2CO3 (20 mol %)
i-PrOH (200 mol %)
THF, 90 °C

OH
R

• To use aldehydes as substrates in lieu of an alcohol, the use of a terminal reductant (isopropanol) is
necessary for the catalytic cycle to proceed.
• Enantioselectivites are high for both alcohol and aldehyde reactants.

CH3
66-82% yield
96-98% ee
6:1 to 13:1 dr


Kim, I. S.; Ngai, M, -Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340-6341.
Kim, I. S.; Nagi, M. -Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891-14899.

Anne-Marie Schmitt, Fan Liu

10


Myers

Chem 115

Asymmetric Allylation Reactions

Stereochemical Model in Asymmetric Crotolation Reactions:
• Couplings of aldehydes display higher diastereoselectivities than with alcohols, as higher
concentrations of aldehyde promote rapid capture of the kinetically formed trans-crotyl iridium
complex.
H
R'
R'
R

[Ir] O

[Ir] O

H

R


Bis Allylation and Crotylation of Glycols

OAc

[Ir(cod)Cl]2 (5 mol %)
(S)-Cl,MeO-BIPHEP
(10 mol %)

OH OH

Cs2CO3 (40 mol %)
4-Cl-3-NO2-BzOH (20 mol %)
Dioxane (0.2 M)
90 °C

H

H

• Kinetically formed trans-crotyl
iridium complex generates the anti
diastereomer.

• Equilibration to the cis-crotyl iridium
complex causes erosion in
diastereoselectivity.

OH OH


70%, >30:1 dr
>99% ee

• Equivalent bis aldehyde counterparts are unstable or unknown.

Kim, I. S.; Han, S. B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2514–2520.
O

Other allyl donors have been used with alcohols and aldehydes as reactants:

Ph2
Ir P
P
Ph2

O
O

O
Allyl Donor

Products Generated
OH

OBz

R

OBz


OH
OH

O

R = aryl, alkyl
58-74% Yield
93-99% ee

R

O
O

OH
OH

OBz

R = aryl, alkyl
57-80% Yield
87-99% ee

R

CF3

CF3

OH OH


CN

OH OH
R = aryl, alkyl
62-77% Yield
96-99% ee

O
O

OAc

NO2

CH3

CH3

CH3 CH3 CH3

THF:H2O (4:1, 1.6 M)
K3PO4 (100 mol %)
70 °C

pseudo-C2 symmetric
62%, >6:1 dr
>99% ee

• Predominantly 1 of 16 possible stereoisomers was formed.

• Chromatographic isolation of the pre-formed iridium catalyst allows crotylations to be run at lower
temperatures.
Application to the Total Synthesis of Roxaticin
• Catalyst Generation:
OH

OH

OBz

R = aryl, alkyl
58-78% Yield
90-99% ee

R
SiMe3

SiMe3

[Ir(cod)Cl]2

O

(R)-Cl,MeO-BIPHEP

O
Cl

OAc


NO2

Cs2CO3
Dioxane, 110 °C

Cl
OCH3

Ph2
Ir P
P
Ph2

OCH3
Cl

O
Cl
NO2

(R)-I
Generated in situ

O

O

EtO
OBoc


EtO

OH
R

R = aryl, alkyl
58-79% Yield
92-99% ee

Han, S. B.; Han, H. Krische, M. J. J. Am. Chem Soc. 2010, 132, 1760–1761.
Zhang, Y. J.; Yang, J. H.; Kim, S. H.; Krische, M. J. J. Am. Chem Soc. 2010, 132, 4562–4563.
Gao, X.; Zhang, Y. J.; Krische, M. J. Angew. Chem. Int. Ed. 2011, 50, 4173–4175.
Han, S. B.; Gao, X.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 9153–9156.
Hassan, A.; Zbieg, J. R.; Krische, M. J. Angew. Chem. Int. Ed. 2011, 50, 3493–3496.

O
O

OH
[Ir(cod)Cl]2

OAc

O

(S)-SEGPHOS
Cs2CO3
CN
THF, 80 °C
NO2

92%
(isolated via precipitation)

Ph2
P Ir
P
Ph2

O
O

O
O

(S)-II

NC
NO2

Anne-Marie Schmitt, Fan Liu

11


Myers

Chem 115

Asymmetric Allylation Reactions


Application to the Synthesis of Roxaticin, continued.
OH OH

OAc

Allylation of Epimerizable Aldehydes from the Alcohol Oxidation Level:
• Allylation of !-chiral aldehydes and "-chiral alcohols: the transiently generated aldehyde is prone to
epimerization under the reaction conditions:

OH OH

(R)-I

1.

Dioxane, 110 °C

OH OTBDPS

PPTS , (MeO)2CMe2
CH2Cl2 , 25 °C, 91%

70% Yield, >30:1 dr
>99% ee
2.

OH OTBDPS

O3, CH2Cl2:MeOH
–78 °C; NaBH4, 86%


OAc

Cs2CO3 (20 mol%)
3-NO2-BzOH (10 mol%)
THF, 100 °C

CH3

H3C CH3 H3C CH3 H3C CH3
O

OH O

O

O

O

O

OH

"Second Iteration"
1. (S)-I, Allyl Acetate, 71%
2. TBSCl, imidazole, 85%
3. O3; NaBH4, 85%
"Third Iteration"
1. (S)-I, Allyl Acetate, 78%

2. PPTS, (MeO)2CMe2, 93%
3. O3; NaBH4, 78%

3 steps

OH O

O

O

O

O

• Optimized Reaction Conditions:
"First Iteration"

OH OTBDPS
OH OTBDPS

HO

OAc

+

CH3
PMBO


OAc

K3PO4, H2O
THF, 70 ºC
85%, dr = 14 : 1

CH3

CH3

(S)-II (10 mol%)

CH3

H3C CH3 H3C CH3 H3C CH3
O

O

O

O

O

O
CH3

7 steps


HO

PMBO
CH3

OH OH OH OH OH
CH3
OH
HO

CH3

O
O

CH3

CH3
Roxaticin
20 Steps Longest Linear Sequence
29 Total Steps

Han, S. B.; Hassan, A.; Kim, I. S.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 15559–15561.

CH3
CH3

OH OTBDPS

CH3

Catalyst (5 mol%)

CH3

O

CH3
epimerized diastereomer

OH

H3C CH3 H3C CH3 H3C CH3
O

OH OTBDPS

H3C CH3

Three interations, 9 total steps

O

CH3
desired diastereomer
dr < 2 : 1

[Ir(cod)Cl]2 (2.5 mol%)
(S)-Cl-MeO-BIPHEP (5 mol%)

Cs2CO3 (1 equiv),

3,4-(NO2)2-BzOH (10 mol%)
H2O (10 equiv)
THF (0.4 M), 100 °C, 24 h
Catalyst

Yield (A : B : C : D)

III
ent-III

79% (97 : 2 : 1 : 0)
80% (4 : 94 : 0 : 2)

CH3

A

B

OH OTBDPS

OH OTBDPS

CH3

CH3
D

C


Cl
H3CO
H3CO
Cl

Ph2
P Ir
P
Ph2

O
O

O2N
• Increased loadings of base improve the yield of A while suppressing
III
epimerization of the transient !-chiral aldehyde.
• Water improves the yield of A, possibly by facilitating the exchange between
product and reactant alkoxide and by increasing the amount of Cs2CO3 in solution.

NO2

• The enhanced Lewis acidity at iridium may strengthen the agostic interaction between the iridium
center and the carbinol C-H bond, facilitating alcohol dehydrogenation. It may also accelerate
carbonyl addition with respect to aldehyde epimerization.
• Inductive electron withdrawal by the 3,4-dinitro benzoate ligand may facilitate deprotonation of the
Ir(III) hydride intermediate, allowing for faster catalyst turnover.
Schmitt, D. C.; Dechert-Schmitt, A.-M. R.; Krische, M. J. Org. Lett. 2012, 14, 6302–6305.
Anne-Marie Schmitt, Fan Liu


12


Myers

Chem 115

Asymmetric Allylation Reactions
Enantioselective Addition to Acylhydrazones:

Leighton Silicon Allylation Chemistry:
Leighton, J. L. Aldrichimica Acta 2010, 43, 3–14.

Ph

Background:
• In 2000, Leighton reported an allylation reaction where a Lewis acidic silicon atom is embedded in
a strained five-membered ring:

H3C
H3C

N
Ph

Ac
N

H


O
Si
N Cl
CH3

H3C

CH2Cl2, 10 °C, 16h

H
(5 g)

1. PhCHO (6 equiv)
sealed tube, 130 °C

O
Si

Ph

N

1. PhCHO
PhCH3, 23 °C

N

H

Ph


80%, 98% ee

Bz
H N
H3C N H

CHCl3, 23 °C

OH
1. Ph

Ph

1. t-BuCHO
PhCH3, –10 °C
2. HCl
80%, 96% ee

H

H3C

O
Si
N Cl
CH3

78%, 94% ee


Bz
N

N

H3C

Bz
N

CH3

2. HCl, 52%

O
Si
N Cl
CH3

Ph

Recrystallization

Ac
N

Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 9596–9597.

• By incorporating another electronegative element bound to silicon, the reaction takes place at
room temperature. With a chiral ligand, the reaction becomes enantioselective:


Ph

H

H

88% ee

Zacuto, M. J.; Leighton, J. L. J. Am. Chem. Soc. 2000, 122, 8587–8588.

H3C
O
H3C
Si
H3C
O Cl
H3C

N

Ac
N

Ph

2. HCl, 87%

CH3


OH

H

Ph

OH

H

CH3

(5 g)
t-Bu

H3C

O
Si
N Cl
CH3

CHCl3, 40 °C
2. HCl, Et2O
3. Recrystallize

Bz
H N •HCl
H3C N H


SmI2, THF

Ph

H3C NH2
Ph

86%

74%, 98% ee

Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686–5687.
Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124,
7920–7921.

Mechanism:

Preparation of Allylsilane

Ph

• Two diastereomers are generated upon complexation with pseudoephedrine, which converge on
a common complex prior to allyl transfer:

Ph

OH
+

H3C


NH
CH3

Et3N, CH2Cl2
Cl3Si

0–15 °C, 12h
(150-g scale)

Ph
Me

Ph
Me

O
Si
N Cl
CH3

92%, dr = 2 : 1

Ph
O
O Ph
Si
N
+
N

H
N Cl
Me
Ph
H

1. CH2Cl2, 23 ºC, 15min
2. PhCH3, 23 ºC, 12h
90%

H
N N
Ph Si O
O
N H
Ph
H
CH3
H CH3

Ph

Cl–

• A 5-coordinate trigonal bipyramidal silicon species is proposed.
• The strained silacyclopentane increases the Lewis acidity of silicon.
• Aldehydes and acylhydrazones react, but not ketones, aldimines, or ketimines.

Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 9596–9597.


Angela Puchlopek-Dermenci, Fan Liu

13


Myers

Chem 115

Asymmetric Allylation Reactions

A C2-symmetric Chiral Controller for Aldehyde Allylation and Crotylation:

Allylation and Crotylation of !-Diketones:

• The C2-symmetric N,N'-dialkylcyclohexanediamine silane shown below shows improved
selectivites in the allylation and crotylation of aldehydes:

• The first example of enantioselective nucleophilic addition to !-diketones was achieved
using the C2-symmetric N,N'-dialkylcyclohexanediamine silane reagent:

4-BrC6H4

4-BrC6H4

N
Si
N Cl

+

Ph

OH

CH2Cl2, –10 °C

O
H

90%, 98% ee

N
Si
N Cl

Ph

4-BrC6H4

Br

O

O

OCH3

+

Br


CHCl3, 23 °C

O HO

OCH3

89%, 92% ee
regioselectivity > 20 : 1

4-BrC6H4

4-BrC6H4
4-BrC6H4
N
Si
N Cl

CH3

+

CH2Cl2, 0 °C

O
BnO

H

83%, 99% ee


CH3
+

N
Si
N Cl

OH
BnO

O

O

Ph

CH3

75%, 97% ee
dr > 20 : 1
regioselectivity > 20 : 1

4-BrC6H4
CH3

4-BrC6H4

O HO CH3


CHCl3, 23 °C
Ph

CH3

Allylation and Crotylation of !-Diketones:

OH
4-BrC6H4
N
Si
N Cl

O
CH3 +

Ph

CH2Cl2, 0 °C
H

O

Si

Ph
4-BrC6H4

R2


R1

O

Si
R2

R2

Fast

NH

O

O
O

(2.09 g)

O

R1

CH3
+
79%, 97% ee

4-BrC6H4


O

NH
90% recovered

Si

4-BrC6H4

O

R1

Si

R1

O
R2

R1

Fast

O
R2

Fast

O


O

Si

R1

R2

Kubota, K.; Leighton, J. L. Angew. Chem., Int. Ed. 2003, 42, 946–948.
Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2004, 6, 4375–4377.
R2

• Using 2-hydroxybenzene as an activating group, imines can be allylated or crotylated
with high selectivity:

O
HO
Ph
Me

O
Si
N Cl
Me

CH3
+

R1


HO
CH2Cl2, 23 °C

N
H

74%, 99% ee
dr = 96 : 4

Rabbat, P. M. A.; Valdez, S. C.; Leighton, J. L. Org. Lett. 2006, 8, 6119–6121.

HN

CH3

R1
O HO R2

Ar
O Si N H
Cl–
N
Ar H
H

O

R1
R2

HO R1 O
R2

Ar
O Si N H
N
Ar H
H

• Four possible diastereomers undergo fast interconversion.
• Regioselectivity is determined by Curtin-Hammett kinetics. Steric interactions are minimized and
conjugation is maximized in the lower energy transition state.

Chalifoux, W. A.; Reznik, S. K.; Leighton, J. L. Nature 2012, 487, 86–89.
Angela Puchlopek-Dermenci, Fan Liu

14


Myers

Chem 115

Asymmetric Allylation Reactions
Mechanism:

Hoveyda Boron Allylation Chemistry:
• The Hoveyda group demonstrated that Cu-complexed C1-symmetric ligands I and II, can effect
enantioselective allylation of phosphinoylimines:


Ph

Ph

Mes N

Ph
Me

N

BF4

O

H

+

Br

N

Ar1 N

N Ar
2

H3C


P Ph
N
Ph

+

H

H3C

O
P Ph
N
Ph
Ph

H

+

N

P

O

Ph Ph

iPr Mes
H3CO B(pin)


II

H3C CH3
O
H3C
B
H3C O

MeOH, THF, –50 °C
92%, 97% ee

Ph
Mes
N

O

I (5.0 mol%)
CuCl (5 mol% )
NaOt-Bu (12 mol%)

HN

P Ph
Ph

Ar1 N

N Ar

2
Cu

O

OCH3

Br

I (2.5 mol%)
CuCl (2.5 mol% )
NaOt-Bu (6 mol%)

H3C CH3
O
H3C
B
H3C O

H3C CH3
O
H3C
B
H3C O

MeOH, THF, –50 °C
61%, 92% ee

II (5 mol%)
CuCl (5 mol% )

NaOt-Bu (12 mol%)
CH3
MeOH, THF, –50 °C
96%, 90% ee

CH3OH
R

O
H3C

P Ph
HN
Ph

H3C

O
Ph P NH
Ph

R

H
N

P

O


Ph
R2
N
Cu H3C
R
N

R1

Ph P
Ph
Ar1 N

O

R

Cu
I

P Ph
Ph

B(pin)

N

BF4 Mes

N


Ph

N

N Ar
2
Cu
O

P
Ph Ph

Ph Ph

• Allylation is driven by the formation of an energetically favorable B–O bond.
CH3

Ph

• Methanol releases the product alkoxide from the NHC–Cu complex. <5% conversion was observed
in the absence of methanol.

• The product phosphinoylamides can be convered to free amines under aqueous acidic conditions.
• High selectivity is observed with aromatic, heteroaromatic, conjugated, and some aliphatic
phosphinoylimines. Crotylation reactions proceed with modest yield and enantioselectivity but low
diastereoselectivity.

Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 3332–3335.


Angela Puchlopek-Dermenci, Fan Liu

15


Myers

• Simple amino alcohol catalysts III and IV were found to promote stereoselective boron allylation of
phospinoyl imines and isatins:

i-Pr

t-Bu

N
H
OH

O
t-Bu

III

O
P Ph
Ph

+

N

O

O

N(CH3)2

N
B

HO

HN

P Ph
Ph

t-Bu

P Ph
N
Ph

III (6.0 mol%)
NaOt-Bu (8.5 mol%)

H3C CH3
O
H3C
B
H3C O


+

H

P Ph
HN
Ph

N(CH3)2

N
H
OH
t-Bu

O

III

H3C
(H3C)2N

CH3
O

t-Bu

O


N

O

OH

O Bpin
H3C

P Ph
Ph

N
O

i-Pr

H3C CH3
O
H3C
B
H3C O

H

O

CH3
CH3


O

t-Bu

IV

MeOH, PhCH3, 22 °C
75%, 96% ee

N

H3C
H3C

i-Pr

III (3.0 mol%)
NaOt-Bu (2.5 mol%)

H3C CH3
O
H3C
B
H3C O

H

Mechanism:

i-Pr

N(CH3)2

N
H
OH

N

Chem 115

Asymmetric Allylation Reactions

O

R

N B

O

H

H3C
(H3C)2N

H

CH3
O


R

N B N
H O

H

P

Ph
Ph

MeOH, PhCH3, 22 °C
71%, 95% ee
t-Bu

O

O

P Ph
N
Ph
S

H
N

CH3


+

H3C CH3
O
H3C
B
H3C O
D D

H3C

IV (3 mol%)
NaOt-Bu (20 mol%)
MeOH, PhCH3, 22 °C
S
86%, 91% ee
dr = 39 : 1
H3C

P Ph
Ph

HN

N H3C

D D

O
H3C

(H3C)2N

CH3
O

N B
O
H
H3C

t-Bu

B
pin

MeOH
O

t-Bu
O

O
N
Ph

P Ph
Ph

+


H

H3C CH3
O
H3C
B
H3C O
Cy CH3

III (6.0 mol%)
Zn(Ot-Bu)2 (8.5 mol%)
MeOH, PhCH3, 22 °C
70%, 90% ee
dr = 8 : 1

O

P Ph
HN
Ph

O

P Ph
HN
Ph
Bpin

Ph
H3C Cy


H3C
(H3C)2N

CH3
O

R

N B
H

H3C
(H3C)2N

CH3
O

R

N B N
H O

H

P

Ph
Ph


OCH3

• <2% conversion was observed in the absence of methanol.
O
O
N
TBS
( an "isatin")

+

H3C CH3
O
H3C
B
H3C O

1.



III (0.25 mol%)
NaOt-Bu (0.4 mol%)

MeOH, PhCH3, 22 °C
2. aq. HCl, MeOH, 22 ºC

90%, >99% ee

HO


• The internal hydrogen bond between the protonated amine and the amide carbonyl rigidifies the
complex and increases the Lewis acidity of the boron center to facilitate substrate binding.

O

N
H

• Substrate release is accelerated by intramolecular protonation.
Silverio, D. L.; Torker, S.; Pilyugina, T.; Vieira, E.; Snapper, M. L.; Haeffner, F.; Hoveyda, A. H.
Nature 2013, 494, 216–221.
Angela Puchlopek-Dermenci, Fan Liu

16



×