Tải bản đầy đủ (.pdf) (11 trang)

33 methods for ring contraction

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1003.66 KB, 11 trang )

Myers

Chem 115

Methods for Ring Contraction

• Chiral-pool starting materials have been much used as substrates for the Favorskii reaction,
affording functionalized, optically active cyclopentanes.

Recent Reviews:
Song, Z.-L.; Fan, C.-A.; Tu, Y.-Q. Chem. Rev. 2011, 111, 7523–7556.

O

Silva, Jr. L. F. Tetrahedron 2002, 58, 9137–9161.

O
H2O2

CH3

• Ring contraction reactions can be grouped into three general categories based on mechanism:

O

O

X

NaOH


Nu:

O

O

Nu

CO3CH3

CH3

Carbenoid

O

R

CH3

THPO

Lee, E.; Yoon, C. H. J. Chem. Soc., Chem. Commun. 1994, 479–481.
• For example, the ring contraction of a (+)-pulegone derivative has been used in the synthesis of
several terpenoid natural products.

CH3

CH3


CH3

Br2

Anionic Ring Contractions
Favorskii Rearrangement

O

• The Favorskii reaction leads to the rearrangement of an !-halo cycloalkanone upon treatment
with base. This reaction proceeds through a cyclopropanone intermediate that is opened by
nucleophilic attack.

O

O
Cl

80%

R

Cationic

O

H

CH3


CH3

THPO

O

CH3
NaOCH3
CH3OH

Nu:

M

THPO

81% (2 steps)

CH3

(–)-Carvone

Anionic

O

2. DHP, p-TsOH

90%


CH3

Nu

O

Cl
CH3

1. TMSCl

CH3
O

CH3

Br
Br

O

CO2CH3

CH3OH
CH3

CH3
CH3

CH3


60–67% (2 steps)

(+)-Pulegone

OCH3

OCH3

NaOCH3

CH3

Et2O

NaOCH3

Et2O, 35 °C, 2 h
56–61%
Organic syntheses; Wiley & Sons: New York, 1963; Coll. Vol. No. 4, pp. 594.

AgNO3

Br

H2O, t-BuOH

OH
H


Cope, A. C.; Graham, E. S. J. Am. Chem. Soc. 1951, 73, 4702–4706.
Loftfield, R. B. J. Am. Chem. Soc. 1951, 73, 4707–4714.

H

O

H
71%

CH3

CH3 H

H
CH3
CH3

(+)-Epoxydictymene
CO2H

OH

O
H

Ag+

CH3
CH3


• In some cases, enolization is not possible, precluding cyclopropanone formation. An alternate
mechanism involves formation of a tetrahedral intermediate that promotes alkyl migration.

Br

CH3

O
H

H
O

CH3

CH3

CH3

(–)-Iridomyrmecin

(+)-Acoradiene

Common intermediate: Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel's
Textbook of Practical Organic Chemistry. 5th ed. Longman: London, 1989.
(+)-Epoxydictymene: Jamison, T. F.; Shambayati, S.; Crowe, W. E.; Schreiber, S. L. J. Am. Chem.
Soc. 1997, 119, 4353–4363.
(–)-Iridomyrmecin: Wolinsky, J.; Gibson, T.; Chan, D.; Wolf, H. Tetrahedron 1965, 21, 1247–1261.
(+)-Acoradiene: Kurosawa, S.; Bando, M.; Mori, K. Eur. J. Org. Chem. 2001, 4395–4399.

Matt Mitcheltree

1


Myers

Chem 115

Methods for Ring Contraction

Quasi-Favorskii Rearrangement
• Also referred to as the negative-ion pinacol rearrangement, the quasi-Favorskii rearrangement
involves an alkyl shift with concomitant nucleophilic displacement of an aligned leaving group.

• A common application of the quasi-Favorskii rearrangement is in the rearrangement of fused
polycycles.

OH

HO

• These fragmentations are generally accelerated by oxyanion formation.

OMs

1. MsCl (1 equiv), pyr
CH3

2. KOt-Bu

HO CH3
OTs

KOt-Bu

CH3

THF

O

CH3

H

CH3

CH3

O

60% (2 steps)

CH3

+

OTs

O


O

O
90%, 89 : 11

Hamon, D. P. G.; Tuck, K. L. Chem. Commun. 1997, 941–942.
OH
Br

LAH

O

H

CH3
CH3 H

CHO

Br
O

H

CH3

HO


H

(±)-Hinesol

Marshall, J. A.; Brady, S. F. J. Org. Chem. 1970, 35, 4068–4077.

H

CH3

98%
Harmata, M.; Bohnert, G.; Kürti, L.; Barnes, C. L. Tetrahedron Lett. 2002, 43, 2347–2349.
CH3

OH
LiOH

• A quasi-Favorskii ring contraction was employed by Harding in the synthesis of (±)-sirenin. The
stereochemical outcome of this rearrangement suggests formation of a tetrahedral intermediate
that undergoes alkyl shift with halide displacement, rather than cyclopropanone formation as in
the classic Favorskii rearrangement.

O

H
AgNO3

Cl
CH3 H


CH3OH
OBn

CH3O
Cl
Ag+

OH

O
O

HO

t-BuOH, 65 °C
OTs

CH3 OH

CH3

O

O
O H

O

O


O

O

OTs

H

87%

H
CH3

CH3 H

CH3O2C

OBn

H

OBn
53%

CH3 O

O
O

H

CH3

O

(±)-Confertin

H
CH3
CH3

H

OBn

Heathcock, C. H.; DelMar, E. G.; Graham, S. L. J. Am. Chem. Soc. 1982, 104, 1907–1917.

CH3
HO

H

OH

(±)-Sirenin
Harding, K. E.; Strickland, J. B.; Pommerville, J. J. Org. Chem. 1988, 53, 4877–4883.

Matt Mitcheltree

2



Myers

Chem 115

Methods for Ring Contraction

Quasi-Favorskii Rearrangement

Carbenoid Ring Contractions

• Harmata has showcased the power of the quasi-Favorskii rearrangement in the synthesis of
several terpenoid natural products.

Wolff Rearrangement
Reviews:
Kirmse, W. Eur. J. Org. Chem. 2002, 2193–2256.

1. LAH
2. KH

Meier, H.; Zeller, K.-P. Angew. Chem. Int. Ed. 1975, 14, 32–43.
H

Cl O

CHO

Cl O


• The Wolff rearrangement involves the transformation of an !-diazo ketone via carbene or
carbenoid to a ketene, which undergoes further transformation to form a stable adduct.

76% (2 steps)

Stereochemistry
established by X-ray

• The Wolff rearrangement may be induced by heat, Ag(I) salts, or light.

O
R2

R1

h", #,
or AgI

H
H

R1

H
CH3

CH3

O


Nu

R2

R1

R2

Nu = -OCH3, -OBn, -OH, -NR2, SR, etc.

OH
O

Nu-H

R2

R1

N2

CH3

O

O

• In the prototypical case depicted below, the Wolff rearrangement proceeds in higher yield relative
to the analogous Favorskii system.


O
CH3

O

O
N2

(±)-Spatol

h", CH3OH

OCH3

> 99%
Harmata, M.; Rashatasakhon, P. Org. Lett. 2001, 3, 2533–2535.

Tomioka, H.; Okuno, H.; Izawa, Y. J. Org. Chem. 1980, 45, 5278–5283.

• The stereochemistry of the ! position can be kinetically controlled, determined by the relative
rates of protonation of the enol or enolate intermediate.

H
CH3
CH3

1. LAH
2. KH

O

3. LAH

CH3

H
CH3
CH3

H+

CH3
CH3

Br

OH
91% (3 steps)

CH3
(±)-Sterpurene

O

h", CH3OH

OH
OCH3

N2
H+


H

+

CO2CH3

CO2CH3
H

92%, 88 : 12
Harmata, M.; Bohnert, G. J. Org. Lett. 2003, 5, 59–61.

Kirmse, W.; Wroblowsky, H.-J. Chem. Ber. 1983, 116, 1118–1131.

Matt Mitcheltree

3


Myers

Chem 115

Methods for Ring Contraction

Wolff Rearrangement

Synthesis of diazo ketones


• Ketene intermediates produced in the Wolff rearrangement can also be trapped in [2+2]
cycloaddition reactions.
R
CH3 CH3
O
N2
O R
O
O
O
O h!, THF
R' R'

Review

O

O

O

O

O

[2+2]

CH3 CH3

CH3 CH3


Stevens, R. V.; Bisacchi, G. S.; Goldsmith, L.; Strouse,
C. E. J. Org. Chem. 1980, 45, 2708–2709.
Livinghouse, T.; Stevens, R. V. J. Am. Chem. Soc.
1978, 100, 6479–6482.

O

Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo
Compounds. Wiley-Interscience, New York, 1998, pp. 1–60.
See course handout "C–O Bond-Forming Reactions" for further discussion of the synthesis of diazo
compounds.
Direct Diazotization

R' R'

• Compounds such as 1,3-dicarbonyls can be diazotized directly using arenesulfonyl azide reagents.

R

R'

Yield

H

H

84%


CH3

CH3

64%

CH3

H

76%

Ph

H

54%

O

R'

R

O

N3SO2Ar

O


O

R

Et3N

R'
N2

• In the absence of a " activating group, #-diazo ketones can be formed by formylation-diazotizationdeformylation, in a procedure known as Regitz diazo transfer.

• Danheiser and Helgason used such a strategy in the synthesis of salvilenone. The [2+2]
cycloadduct in this case underwent retro-[2+2] ring opening followed by electrocyclization.

N2
Br

i-Pr
O

i-Pr

h!, DCE

O

+
CH3

H


OTIPS

80 °C

CH3
CH3

O

HO

CH3
Salvilenone

N2
R

R3N

NaH

OTIPS

OTIPS
Br

Br

O

N3SO2Ar

Regitz, M.; Maas, G. Diazo Compounds, Academic Press, New York, 1986, pp. 199–543.
Regitz, M. in: The Chemistry of Diazonium and Diazo Groups, Part 2 (Ed.: Patai, S.), WileyInterscience, Chichester, 1978, pp. 751–820.

i-Pr

i-Pr
O

OH
H

R

retro
[2+2]
CH3

i-Pr

O
OR

R

Br
OTIPS

O


O

• Similarly, in the Danheiser procedure, reversible #$trifluoroacetylation activates the substrate toward
diazotization.

O

CH3

CH3

Danheiser, R. L.; Helgason, A. L. J. Am. Chem. Soc. 1994, 116, 9471–9479.

CF3

O
O

61–71%

CF3

O

OH

O

R


R
LiHMDS

CF3

O
N3SO2Ar

N2
R

R3N

Danheiser, R. L.; Miller, R. F.; Brisbois, R. B.; Org. Synth. 1996, 73, 134–143.
Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org. Chem. 1990, 55, 1959–1964.
Matt Mitcheltree

4


Myers

Chem 115

Methods for Ring Contraction

Synthesis of diazo ketones

Wolff Rearrangement – Applications in target-oriented synthesis


• In the Mandler procedure, enolized ketones are diazotized without the assistance of an activating
group. These reactions are generally run under phase-transfer conditions, and are therefore not
ideal for substrates sensitive to aqueous base (e.g., esters).

• Sequential Regitz diazotization–Wolff rearrangement was applied by Eaton and Nyi in their
synthesis of [3.2.2]propellane. Thermolytic decarboxylation of a tert-butyl perester provides the
final product after ring contraction.

O

N3SO2Mes
(n-Bu)4NBr, KOH, 18-cr-6

R

N3Tf
Et2NH

NaH
HCO2Et

O
N2
R

1:1 H2O–C6H6

O


O

H

O

HO

85%

Lombardo, L.; Mandler, L. N. Synthesis 1980, 368–369.

h!
CH3OH
N2

95%

NH2
TBSO
O

N

N
N

Eaton, P. E.; Nyi, K. J. Am. Chem. Soc. 1971, 93, 2786–2788.

N(CH3)2

CH3O
CH3O

H

TBSO
O
(CH3)2N

B

N3Tf

TBSO
O

O

O

O

72%

80%

h!

O


+

1. NaHMDS, HCO2Et
2. N3Ts, Et3N

1. h!, CH3OH
2. LiOH

N
N

NH2

HO
OH

N

Oxetanocin
Norbeck, D. W.; Kramer, J. B. J. Am. Chem. Soc. 1988, 110, 7217–7218.

O
N2
62% (2 steps)

78%

O

45%


• Similarly, Corey and Mascitti use two Regitz diazotization–Wolff rearrangement reactions in
sequence in their enantioselective synthesis of pentacycloannamoxic acid methyl ester.

B

N2

O

60%
t-BuOOH
160 °C

• Mild conditions to activate cyclic ketones using dimethylformamide dimethyl acetal have been
developed. The resulting enamine intermediates undergo diazotization with electron-poor diazo
transfer reagents such as triflyl azide (N3SO2CF3). This approach was used in the synthesis of
oxetanocin, a bacterial isolate with anti-HIV activity.

N

CO2CH3

1. Regitz
2. h!, CH3OH

N
CHO
H
43% (4 steps)


O

3. DIBAL-H
4. Swern

(CH2)7CO2CH3

CO2H
86% (2 steps)

Pentacycloannamoxic acid methyl ester

H
Mascitti, V.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 3118–3119.

Matt Mitcheltree

5


Myers

Chem 115

Methods for Ring Contraction

Wolff Rearrangement – Applications in target-oriented synthesis

Cation-type rearrangements


• The Wolff rearrangement has been employed in the construction of the fused 5,5,5-tricyclic cores
of sesquiterpenes.

Pinacol Rearrangement

CH3 CH

3

H
CH3

O

CH3 CH

3
H CO2CH3

CH3

3. h", CH3OH

H

HO

CH3 CH


1. NaH, HCO2Et
2. N3Ts, Et3N

HO

Reviews
Song, Z.-L.; Fan, C.-A.; Tu, Y.-Q. Chem. Rev. 2011, 111, 7523–7556.
Overman, L. E.; Pennington, L. D. J. Org. Chem. 2003, 68, 7143–7157.
Overman, L. E. Acc. Chem. Res. 1992, 25, 352–359.

3

H
CH3

H

• Vicinal diols, when treated with acid, generate a transient cation that may undergo alkyl shift
coupled with carbonyl formation.

H

HO

!9(12)-Capnellene

48%

Ihara, M.; Suzuki, T.; Katogi, M.; Taniguchi, N.; Fukumoto, K. J. Chem. Soc. Perkin Trans. 1
1992, 865–873.


CH3
CH3
CH3

O

H

1. NaH, HCO2Et
2. N3Ts, Et3N

CH3O2C

OH
OH
CH3

H+

CH3

OH

O

H

CH3
CH3


CH3
–H+

–H2O

CH3

68–72%

CH3

3. h", CH3OH

CH3

CH3

CH3
CH3

Pentalenene

83%

Pavlik, C.; Morton, M. D.; Smith, M. B. Synlett 2011, 2191–2194.

CH3
CH3


H

• Cationic rearrangements can proceed through concerted mechanisms as well, particularly when
the migrating bond is aligned with the leaving group.

Ihara, M.; Katogi, M.; Fukumoto, K. J. Chem. Soc. Perkin Trans. 1 1988, 2963–2970.
• Where other methods failed, the Mandler procedure enabled Overman and co-workers to
diazotize a ketone en route to (±)-meloscine.

N3SO2Ar
(n-Bu)4NBr, 18-cr-6, KOH

N

BocHN

BocHN

1:1 C6H6–H2O
35 °C, 1h

OBn

N2
98%

N

H


CH3 CH3

• Halogens and sulfonate esters can also be used, as demonstrated below.

OBn
H

HO

CO2CH3

CH3

O

OTs

Ph3P CH2
H

CH3

H

H

H

Al2O3


H

N

BocHN

(±)-Meloscine

H

O

OBn

h", CH3OH

O

H2O

Hariprakasha, H. K.; SubbaRao, G. S. R. Tetradron Lett. 1997, 38, 5343–5346.

O

Ar = 2,4,6-triisopropylphenyl

HN

C6H6, reflux


CH3O CH3
HO
CH3
H
F3B

90%
H

H
O

N

BF3•OEt2

CH3O CH3
HO
CH3
H

CH3

H

CH3 CH

3

100%


CH3

H
CH3 CH

H

CH3

3

53%
(–)-Aromadendrene

95%
Büchi, G.; Hofheinz, W.; Paukstelis, J. V. J. Am. Chem. Soc. 1969, 91, 6473–6478.

Overman, L. E.; Robertson, G. M.; Robichaud, A. J. J. Am. Chem. Soc. 1991, 113, 2598–2610.
Overman, L. E.; Robertson, G. M.; Robichaud, A. J. J. Org. Chem. 1989, 54, 1236–1238.

Matt Mitcheltree

6


Myers

Chem 115


Methods for Ring Contraction

PInacol Rearrangement
• Schreiber's synthesis of the bicyclic core of calicheamicin relied on a pinacol rearrangement.
Tautomerization of the resulting !-hydroxy ketone gave the enone product shown.

MsO
TBSO

LA

H

H
OH
OH

H

H

O

OH
O

H

Et2AlCl
TBSO


• The reaction of epoxides with Lewis acids can provide ring-contracted products by a pinacol-type
mechanism.
n
Yield
CHO
LiBr, Al2O3
1
77%
O
2
42%
PhCH3
n
n
3
30%

TBSO

OH

CH2Cl2

Suga, H.; Miyake, H. Synthesis 1988, 394–395.

O

O


65%

BF3•OEt2

Schoenen, F. J.; Porco, J. A.; Schreiber, S. L. Tetrahedron Lett. 1989, 30, 3765–3768.

CH3
CH3

CHO

O
CH3

CH3

CH3
CH3
93%

CH3S
CH3 O
I
O
CH3
O
HO
CH3O
OH


CH3
S

OCH3 OH
OCH3

HN
O HO

O

CH3

S
S
O

H

O

H

Kunisch, F.; Hobert, K.; Weizel, P. Tetrahedron Lett. 1985, 26, 6039–6042.

OH
O
HN

O


OCH3

• Yamamoto and co-workers have described an epoxide-opening ring contraction utilizing a
methylaluminum diphenoxide Lewis acid that outperforms boron trifluoride in difficult ring
contractions.

O

EtHN
CH3O

CH3

Calicheamicin "1

CH3 CHO

O

MABR
OTBS

• Similarly, Paquette employed a pinacol rearrangement to produce the (+)-taxusin skeleton.

O
CH3

CH3
CH3

HO

OMs O

Et2AlCl
CH2Cl2–Hexane
–78 # –15 °C

AcO

CH3
CH3
CH3

CH3
H

O

O

96%

AcO

CH3

OAc
CH3
CH3


i-Pr

MABR = CH3Al(OAr)2

82%
OHC

O

CH2Cl2, –78 °C

t-Bu

CH3

MABR
OTBS

i-Pr
H

CH2Cl2, –78 °C

i-Pr

CH3
O

OTBS


Ar =

OTBS

Br
t-Bu

i-Pr
88%

O
(+)-Taxusin
Maruoka, K.; Ooi, T.; Yamamoto, H. J. Am. Chem. Soc. 1989, 111, 6431–6432.

Paquette, L. A.; Zhao, M. J. Am. Chem. Soc. 1998, 120, 5203–5212.
Matt Mitcheltree

7


Myers

• After cationic rearrangement, the resulting cation may be intercepted by elimination of an
adjacent proton:

Pinacol Rearrangement
• Kuwajima and Baran both used pinacol-type rearrangements in their syntheses of ingenol.

TsO


Kuwajima
CH3
CH3

CH3
O

CH3
CH3

H
Al(CH3)3

OH

CH2Cl2

CH3 H

OTIPS

OCH3

OCH3
OTIPS

O OH

HO

CH3

CH3
CH3

O

CH3O

Baran
CH3

CH3

CH3

CH3

TMS
OTBS

O
O

O

O

CH3


BF3•OEt2 CH3

CH3
CH3

O

CH3

CH3

O
80%

CH3

FeBr3
H

LA

CH3

CH3

O
CH3

CH3


CH3

OH

Ingenol

CH3

O

CH3
CrO2Cl2

CH3

• A tandem pinacol–Schmidt rearrangement was used to synthesize the core of (±)-stemonamine.

(–)-Solavetivone 71%

TiCl4

TMSO
N3

O

OH

O


O

N3

N3

CH2Cl2
–78 ! 0 °C

CH3

CH3

CH3

O

N

O

Cl2
Ti O

N2
N

CH3
O


OH

CH3
CH3

(±)-Stemonamine

MgI2
HN(TMS)2

OMs

CH3

O
OCH3

CH3

H

CH3
54%

• Or by attack with an endogenous nucleophile.

TMSO

N


t-BuOH

H

CH3

Hwu, J. R.; Wetzel, J. M. J. Org. Chem. 1992, 57, 922–928.

Cl2
Ti
O

H

CH3

Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I. J.
Am. Chem. Soc. 2003, 125, 1498–1500.
Jørgensen, L.; McKerall, S. J.; Kuttruff, C. A.; Ungeheuer, F.; Felding, J.; Baran, P. S. Science
2013, 341, 878–882.

CH3

CH3

TMS

OH
CH3


HO HO
HO

CH3

H

76%
"-bulnesene

OTBS

O
O

H

CH
TMS 3

–60 °C

CH3

CH2Cl2

CH3

CH3


Heathcock, C. H.; Ratcliffe, R. J. Am. Chem. Soc. 1971, 93, 1746–1757.

TMS

CH3

H

• By elimination of a #-silyl group:

CH3
CH3

O

CH3

CH3

AcOH, AcOK
80 °C, 8 h

OTIPS

Al(CH3)3

CH3

CH3


H
CH3

76%

HO

Chem 115

Methods for Ring Contraction

H

CH3
CH3
CH3

H

CH3
CH3

TMSO

H

CH3
OHC

CH3

CH3

H
OHC

CH3

H
(+)-Isovelleral

CH3
CH3

H
O

H
82%

68%

Zhao, Y. M.; Gu, P. M.; Tu, Y. Q.; Fan, C. A.; Zhang, Q. W. Org. Lett. 2008, 10, 1763–1766.

Bell, R. P. L.; Wjnberg, J. B. P. A.; de Groot, A. J. Org. Chem. 2001, 66, 2350–2357.

Matt Mitcheltree

8



Myers

Chem 115

Methods for Ring Contraction
Lead-promoted ring contractions

• An example of a pinacol rearrangement initiated by an endogenous electrophile was
demonstrated by Oltra:

O
HO

CH3

O
CH3 O

TMSCl,
NaI

H

HO CH3

O

• This reaction is believed to involve Pb–C bond formation followed by pinacol-type rearrangement.

CH3


CH3
O

CH3

• Lead(IV) salts have been shown to promote ring contractions of ketones and enol ethers.
However, these reactions sometimes provide significant amounts of !-acetoxy ketone sideproducts.

O
O
TMS

O

H CH
3

O

CH3
CH3

O

OH

O
O


O

Pb(OAc)4

OAc

OAc
O

O

OAc
O

H


Pb(OAc)3 –Pb(OAc)3

OAc

> 72%
Rosales, A.; Estévez, R. E.; Cuerva, J. M.; Oltra, J. E. Angew. Chem., Int. Ed. 2005, 44, 319–322.

• The Imamura synthesis of (–)-hyrtiosal employed an epoxide-opening rearrangement that is
proposed to mimic the biosynthetic route to the natural product.

O
CH3 CH3
RO

CH3 CH3

R = (S)-mandeloyl

• Lead(IV)-promoted ring contractions have been employed to modify !-santonin. Improved yields
were achieved by first converting the substrate to the corresponding ethyl-enol ether.

CHO
CH3

CH3

H

Norman, R. O. C.; Thomas, T. B. J. Chem. Soc. B. 1967, 604–611.

BF3•OEt2
O

C6H6

H
RO

Pb(OAc)4
BF3•OEt2

CH3

CH3 CH3


H
O

O
CH3

CH3 CH3

O
O

CH3OH
CH2Cl2

CH3O

CH3 H O

CH3

H

CH3
O

O

Pb(OAc)4
BF3•OEt2, EtOH


CH3

CH3 CH3

O
30%

CH3

O

H

H
HO

H
O

HC(OEt)3
NH4Cl
EtOH

CHO
CH3

H

CH3


+
CH3

67%

!-Santonin

96%

AcO
H

CH3

H

CH3

O

O

CH3 CH3
(–)-Hyrtiosal
Lunardi, I.; Santiago, G. M. P.; Imamura, P. M. Tetrahedron Lett. 2002, 43, 3609–3611.

EtO
CH3


H

CH3
O

C6H6

EtO

O

O
100%

CH3

CH3 H O
80%

Miura, H.; Fujimoto, Y.; Tatsuno, T. Synthesis 1979, 898–899.

Matt Mitcheltree

9


Myers

Chem 115


Methods for Ring Contraction

Ring contractions of silyl-enol ethers
• Cyclic silyl-enol ethers undergo ring contraction upon treatment with electron-deficient sulfonyl
azides to give trialkylsilyl imidates, which are readily hydrolyzed to N-acyl sulfonamides.

• Because alkyl migration is stereospecific, the stereochemistry of the product is determined by
the facial selectivity of sulfonyl-azide addition. Lesser facial differentiation leads to lower
diastereomeric ratios, as the following series demonstrates.

• While both triflyl azide (N3Tf) and nonaflyl azide (N3Nf; N3SO2n-C4F9) may be used in the ring
contraction of silyl-enol ethers, the latter has the advantage of being a bench-stable, non-volatile
liquid that does not detonate spontaneously upon concentration.

N3Nf

CH3

OSiR3

R3SiO

N3SO2C4F9
R

R3SiO

Nf
N


H

R

CH3CN
–N2

O

N
Nf

H2O

H
N
H

• Alkyl, vinyl, and aryl migrations are all possible. While 6!5 and 7!6 ring contractions are
possible, this method does not permit cyclobutane synthesis.

Product

OTMS

CH3
CH3
O

N3Nf


single
diastereomer

NHNf
d.r. = 67 : 33

Yield
OTMS

O
N3Nf

O

NHNf

CH3

CH3
OTMS

Substrate

CH3

O
NNf

–N2


Nf

R

R

TMSO

OTMS

NHNf
d.r. = 55 : 45

NHNf
97%

CH3

CH3

• The resulting N-acyl sulfonamide can be converted to alcohol, ester, or carboxamide products.

OTMS

O
NHNf

67%


OH
LAH
85%

O

OTMS

NHNf

O
78%

SO2C4F9
NH

Et2O, 0!23 °C, 20 min
O

OCH3

HCl (0.3 M)
75%
O

OTMS

20% CH3OH–PhCH3
110 °C, 3 h


NHNf
87%

O

NH2

SmI2
OTIPS

96%

THF, 23 °C, 30 min

O

NHNf

H
CH3
CH3

CH3

O
O
CH3

65%
O


Mitcheltree, M. J.; Konst, Z. A.; Herzon, S. B. Tetrahedron 2013, 69, 5634–5639.

O

CH3 CH
3

Mitcheltree, M. J.; Konst, Z. A.; Herzon, S. B. Tetrahedron 2013, 69, 5634–5639.

Matt Mitcheltree

10


Myers

Chem 115

Methods for Ring Contraction

Synthesis of regiodefined silyl-enol ethers
• Silyl-enol ethers are appealing substrates for ring contractions because they can be synthesized
regioselectively.

O

OTMS
CH3


Conditions

CH3

• Silyl-enol ethers can be formed by enantioselective, catalytic Diels–Alder reactions.

H Ph
O

OTMS
CH3

Br

+
TIPSO
A
Conditions

Yield

A:B

LDA, TMSCl

74

99 : 1

Et3N, TMSCl, NaI


92

10 : 90

CH3

H

N B
o-Tol

CH3
O

B

Ph

O

TIPSO
HNTf2
–78 °C

CH3

O
Br
CH3

O

96%, 97% e.e.
Ryu, D. H.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 4800–4802.

Negishi, E.-I.; Chatterjee, S. Tetrahedron Lett. 1983, 24, 1341–1344.
House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. J. Org. Chem. 1969, 34, 2324–2336.
• Silyl-enol ethers can also be formed by 1,4-addition to !,"-unsaturated carbonyls.

CH3

O
CH3
CH3
OTBS

OTMS

MgBr

CH3

CuBr•S(CH3)2
TMEDA, TMSCl

TBSO

CH3

CH3

100%

Nozawa, D.; Takikawa, H.; Mori, K. J. Chem. Soc. Perkin Trans. 1, 2000, 2043–2046.
• Birch reduction of substituted silyloxy aryl ethers gives regiodefined substrates for ring
contraction.

OTES

OTES
Li, NH3
i-Pr

t-BuOH, THF

i-Pr
90%

Macdonald, T. L. J. Org. Chem. 1978, 18, 3621–3624.

Matt Mitcheltree

11



×