Tải bản đầy đủ (.pdf) (32 trang)

Tài liệu Chương 8: Các ứng dụng trong y dược ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (465.35 KB, 32 trang )

Nhập môn Công nghệ sinh học
270
Chương 8

Các ứng dụng trong y dược

I. Mở đầu
Cho đến nay, có lẽ thành tựu công nghệ sinh học được thể hiện rõ nét
nhất là ở lĩnh vực y học như liệu pháp protein và liệu pháp gen để chữa trị
một số bệnh hiểm nghèo (ung thư, nhiễm virus và hiện đang thử nghiệm
chữa trị bệnh AIDS...) cũng như để chẩn đoán bệnh (viêm gan, sốt xuất
huyết, sán lá gan...) và phòng bệnh (vaccine). Ngày nay, với những công cụ
của kỹ thuật gen, ngành y không chỉ dựa vào các triệu chứng lâm sàng mà
còn có khả năng tác động thẳng vào các nguyên nhân sâu xa của bệnh đó là
sự bất thường của gen. Công nghệ sinh học đã xâm nhập vào hầu như mọi
lĩnh vực của y học, trong đó đáng kể nhất là lĩnh vực chẩn đoán và phòng
ngừa với việc tạo ra các bộ kit chẩn đoán bệnh bằng phương pháp PCR và
các DNA vaccine có hiệu quả cao. Lĩnh vực sản xuất thuốc chữa bệnh như
interferon, insulin, interleukin, hormone sinh trưởng ở người... ngày càng
phát triển mạnh và trở thành một ngành công nghiệp quan trọng. Đặc biệt,
liệu pháp gen mặc dù thành tựu còn ít nhưng đã mở ra những triển vọng to
lớn trong việc chữa trị những bệnh di truyền và bệnh nan y.

II. Vaccine
Trong sản xuất vaccine, cho đến thời gian gần đây, người ta vẫn sử
dụng vaccine bất hoạt hoặc vaccine sống nhược độc làm kháng nguyên kích
thích tạo kháng thể cần thiết trong cơ thể người và vật nuôi. Nhưng vaccine
được sản xuất theo cách này có một vài hạn chế, chẳng hạn vaccine sống
nhược độc có khả năng quay trở lại dạng độc hoặc hoạt lực của nó giảm khá
nhanh trong cơ thể người và vật nuôi.
Đến nay, nhờ công nghệ DNA tái tổ hợp người ta đã sản xuất được


protein vỏ của một số loại virus như virus bệnh dại và viêm gan B. Sản xuất
vaccine kỹ thuật gen là một lĩnh vực phát triển mạnh hiện nay của công
nghệ DNA tái tổ hợp. Đây là loại vaccine được bào chế từ vi khuẩn đã được
chuyển gen mã hóa tổng hợp một protein kháng nguyên của một loại virus
hay một loại vi khuẩn gây bệnh nào đó. Hiện nay, các loại DNA vaccine tái
Nhập môn Công nghệ sinh học
271
tổ hợp được sử dụng cho người bao gồm vaccine viêm gan B, vaccine dại
kiểu mới, vaccine tả kiểu mới, vaccine sốt rét và vaccine bệnh phong. Virus
viêm gan B có vỏ ngoài lypoprotein. Kháng nguyên bề mặt là protein chính
của vỏ ngoài, được phát hiện trong máu người bị nhiễm. Người ta biến nạp
gen tổng hợp kháng nguyên của virus viêm gan B vào vi khuẩn E. coli sau
đó sản xuất sinh khối ở quy mô lớn các vi khuẩn E. coli mang gen tái tổ hợp
này, biến E. coli thành “nhà máy” sản xuất kháng nguyên để làm vaccine.
Bên cạnh đó, mô hình sản xuất vaccine dựa trên cơ sở thực vật
(vaccine thực phẩm) cũng có tiềm năng ứng dụng rất lớn. Bằng cách chuyển
một loại gen kháng nguyên của virus hoặc vi khuẩn vào tế bào thực vật, gen
này sẽ hoạt động trong cơ thể và biến thực vật thành nơi sinh ra kháng
nguyên. Khi những kháng nguyên này đi vào cơ thể người thì hệ thống miễn
dịch của người sẽ tự động sinh ra kháng thể đặc hiệu tương ứng. Như vậy,
thay vì tiêm chủng theo phương thức thông thường người ta có thể ăn những
hoa quả có kháng nguyên được sử dụng làm vaccine.

1. Các phương thức tiêm chủng vaccine hiện nay
1.1. Các vaccine bất hoạt
Các vaccine bất hoạt được sản xuất từ các virus gây bệnh bằng cách
phá hủy độc tính của chúng bằng -propiolactone hoặc formalin nhưng vẫn
duy trì một khả năng sinh miễn dịch đầy đủ. Các vaccine được sản xuất theo
phương thức này tương đối an toàn và kích thích các kháng thể chống lại
các protein bề mặt của tác nhân gây bệnh. Các vaccine tiểu đơn vị được xem

là một dạng vaccine bất hoạt nhưng có mức độ thấp hơn. Trong trường hợp
này, một phần của tác nhân gây bệnh (như là protein bề mặt) được sử dụng
để gây tạo kháng thể nhằm trung hòa tác nhân gây bệnh.
Sử dụng rộng rãi kháng nguyên bề mặt của virus viêm gan B được
tinh sạch từ máu của người bệnh hoặc gần đây hơn từ nấm men tái tổ hợp là
một phương thức rất hiệu quả để tạo miễn dịch. Kháng nguyên bề mặt của
virus viêm gan B (sản phẩm của gen đơn) kích thích tạo ra sự bảo vệ và gần
như hoàn toàn chống lại sự viêm nhiễm virus viêm gan B.
Một ví dụ khác của loại vaccine tiểu đơn vị là sử dụng biến độc tố của
vi khuẩn. Nhiều loại vi khuẩn sản xuất độc tố đóng vai trò quan trọng trong
sự phát triển của bệnh. Vì vậy, một số tác nhân mang độc tố (ví dụ bệnh uốn
ván và bệnh bạch hầu) đã được bất hoạt bằng formaldehyde liên kết với một
Nhập môn Công nghệ sinh học
272
chất tá dược (adjuvant) để phát triển thành vaccine. Cơ thể tạo miễn dịch
bảo vệ bằng cách kích thích kháng thể trung hòa các ảnh hưởng của độc tố.
Một loại vaccine khác cũng thuộc loại tiểu đơn vị là các vaccine vỏ
polysaccharide. Chẳng hạn, những vaccine chống lại Haemophilus
influenzae và viêm màng não do não mô cầu. Trong trường hợp này dịch
chiết vỏ ngoài polysaccharide của vi khuẩn được sử dụng như là một
vaccine và có khi được liên kết với protein để cải thiện khả năng gây miễn
dịch. Kháng thể bền bỉ trong một vài năm và có thể bảo vệ chống vi khuẩn.

1.2. Các vaccine sống nhược độc
Các vaccine sống có hiệu lực (như một sự viêm nhiễm tự nhiên)
thường tạo ra một sự miễn dịch lâu dài. Hầu hết các vaccine nhược độc hiện
nay được sản xuất một cách khá kinh nghiệm, theo cách quá trình nuôi cấy
được cấy chuyển nhiều lần cho tới khi nhận thấy có sự mất độc lực
(virulence) của tác nhân gây bệnh bố mẹ. Độc lực này được xét nghiệm
trong các hệ thống động vật mô hình trước khi thử nghiệm trên những người

tình nguyện. Chẳng hạn, vaccine dùng để tạo miễn dịch chống lại bệnh lao
được bắt nguồn sau 13 năm cấy chuyển trong môi trường có chứa mật bởi
Calmette và Guerin (vì vậy có tên là BCG-Bacille Calmette-Guerin).
Thực tế cho thấy là có nhiều hướng khác nhau để sản xuất vaccine cho
một loại bệnh, điển hình là vaccine bệnh thương hàn hiện nay. Ở Anh có ba
loại vaccine khác nhau đã được cấp bản quyền. Một là vaccine từ tế bào
hoàn chỉnh bị giết chết, loại thứ hai là dịch chiết vỏ polysaccharide của bệnh
thương hàn, và loại thứ ba là chủng Salmonella typhi sống nhược độc.

2. Vai trò của công nghệ DNA tái tổ hợp trong nhận dạng, phân tích và sản
xuất vaccine
2.1. Nhận dạng và tạo dòng các kháng nguyên có tiềm năng vaccine
Nhiều tác nhân gây bệnh gần như không có khả năng nuôi cấy bên
ngoài vật chủ tự nhiên của chúng và điều này đã gây cản trở cho các cách
tiếp cận truyền thống để phát triển liệu pháp vaccine. Ví dụ: virus viêm gan
B (HBV), tác nhân gây bệnh giang mai ở người (Treponema pallidum) và vi
khuẩn gây bệnh phong (Mycobacterium leprae) không thể sinh trưởng trong
điều kiện in vitro mặc dù chúng có thể sinh sản trong các loại động vật mô
Nhập môn Công nghệ sinh học
273
hình. Bởi vậy, người ta không thể tạo ra các vaccine sống nhược độc hoặc
các vaccine bất hoạt bằng cách nuôi cấy các tác nhân này.
Công nghệ DNA tái tổ hợp cho phép chuyển thông tin di truyền từ
những cơ thể “khó tính” này vào những vật chủ “dễ bảo” hơn như là E. coli,
nấm men hoặc tế bào động vật có vú. Không phải tất cả các gen kháng
nguyên đều dễ nhận dạng, tạo dòng và biểu hiện như gen kháng nguyên bề
mặt của viêm gan. Trình tự nguyên vẹn của genome HBV có kích thước nhỏ
hơn 10 kb. Bởi vậy, tương đối đơn giản khi thiết lập khung đọc mở để biểu
hiện. Tuy nhiên, ở trường hợp bệnh sốt rét thì lại khác. Từ lâu các nhà khoa
học biết rằng các thoa trùng (sporozoite) sốt rét bị chiếu xạ có thể bảo vệ

chống lại bệnh sốt rét. Nhưng giai đoạn thoa trùng trong chu kỳ sống của ký
sinh trùng sốt rét chỉ sinh trưởng với một lượng nhỏ, nên người ta cần phải
ứng dụng công nghệ DNA tái tổ hợp để sản xuất vaccine. Tuy nhiên,
genome của ký sinh trùng sốt rét lại lớn hơn genome của HBV hàng ngàn
lần, vì thế người ta đã gặp rất nhiều khó khăn trong việc thu thập các thông
tin về trình tự gen thích hợp và sản phẩm của nó để tạo ra bảo vệ miễn dịch.
Điểm khởi đầu của công nghệ DNA tái tổ hợp là xây dựng thư viện
DNA của cơ thể được nghiên cứu trong E. coli. Thư viện cDNA hoặc
genomic DNA có thể cung cấp các phương thức cơ bản để nhận dạng và
phân lập các gen quan tâm. Với các thành tựu trong kỹ thuật phân tích trình
tự gen thì thông tin trình tự bắt nguồn từ các genome hoàn chỉnh hoặc các
nhiễm sắc thể riêng biệt đã trở nên càng ngày càng quan trọng.

2.2. Phân tích các kháng nguyên vaccine
2.2.1. Những yếu tố quyết định kháng nguyên tế bào B (B-cell epitopes)
Phân tích cấu trúc của kháng nguyên vaccine có thể thu được các
thông tin giá trị trong việc phát triển vaccine. Chẳng hạn, hiểu biết về những
epitope (yếu tố quyết định kháng nguyên) chống lại các kháng thể trung hòa
có thể cho phép nghiên cứu loại vaccine peptide thích hợp. Các epitope có
thể liên tục hoặc gián đoạn. Các epitope liên tục là các peptide ở dạng xoắn
ngẫu nhiên để các huyết thanh miễn dịch cho epitope phản ứng với phân tử
hoàn chỉnh từ trình tự mà nó được bắt nguồn. Các epitope gián đoạn lắp
ghép các phân tử được nhóm lại do cấu trúc thứ cấp của protein. Một vài
epitope trung hòa ở dạng liên tục trong khi những epitope khác là gián đoạn.

Nhập môn Công nghệ sinh học
274
2.2.2. Những yếu tố quyết định kháng nguyên tế bào T (T-cell epitopes)
Các T lymphocyte có thể nhận diện các kháng nguyên ngoại lai như
các peptide được tạo thành trong sự phối hợp với phần ngoại bào của phân

tử MHC. Các tế bào T trợ giúp (helper T-cell) CD4+ nhận diện được
kháng nguyên tiếp hợp với MHC loại II, trong khi các tế bào T độc hại tế
bào (cytotoxic T-cell) CD8+ (CTLs) nhận diện kháng nguyên liên kết với
các phân tử MHC loại I. Đa hình di truyền của các phân tử MHC loại I và
II xác định sự đặc hiệu và ái lực của liên kết peptide trong sự nhận diện
của tế bào T.

2.3. Sản xuất các vaccine tiểu đơn vị (subunit vaccine)
Nói chung, nuôi cấy tế bào động vật có vú là phương pháp thích hợp
để sản xuất các vaccine chống lại các tác nhân gây bệnh được sao chép
trong các tế bào eukaryote. Tế bào E. coli không ổn định để tiến hành một
vài biến đổi hậu dịch mã của một số vaccine quan tâm. Bởi vì, các hệ thống
vi khuẩn không thể bổ sung carbohydrate là yếu tố quan trọng trong đặc tính
kháng nguyên và cấu trúc của nhiều kháng nguyên bảo vệ của virus.
Một điều khác cũng rất đáng quan tâm, đó là hiệu suất khá nghèo của
kháng nguyên bề mặt trong vi khuẩn và protein hoàn toàn thiếu khả năng
cuộn xoắn chính xác để lắp ráp trong các tiểu thể có đường kính 22 nm, nấm
men Sac. cerevisiae cũng là một trong những hệ thống thích hợp cho biểu
hiện gen do nó không những cho hiệu suất protein hợp lý mà còn tạo thành
các tiểu thể 22 nm. Điều này, cùng với kinh nghiệm sản xuất ở quy mô lớn
trong công nghệ lên men, đã tạo ra một hệ thống hấp dẫn đặc biệt, ví dụ cho
việc sản xuất các tiểu thể HbsAg để bào chế vaccine trong nấm men với một
hiệu suất cao. Tuy nhiên, vaccine sản xuất theo phương thức này vẫn còn
khoảng 1% không có đáp ứng miễn dịch.
Tiếp theo sự thành công của vaccine viêm gan và do khả năng có sẵn
của các công nghệ đã được thiết lập để cung cấp một lượng lớn kháng
nguyên, thì hướng nghiên cứu tiểu đơn vị là một trong những phương pháp
thích hợp nhất để phát triển các vaccine mới. Quá trình glycosyl hóa protein
là rất quan trọng để gây ra phản ứng miễn dịch của HbsAg, vì thế nuôi cấy
tế bào động vật có vú có thể là thích hợp hơn. Thực tế là một trong những

vaccine viêm gan B đã cấp bản quyền được sản xuất trong tế bào động vật
có vú.
Nhập môn Công nghệ sinh học
275
3. Cải thiện và sản xuất các vaccine sống nhược độc mới
3.1. Cải thiện các vaccine sống nhược độc
Các kỹ thuật sinh học phân tử cho phép phân tích độc tính và đặc tính
kháng nguyên ở mức độ phân tử, như vậy đây là cơ sở thuận lợi để triển
khai một hướng nghiên cứu thích hợp hơn trong việc sản xuất các cơ thể
nhược độc để công nghiệp hóa vaccine sống với các tính chất mong muốn.
Các virus loại DNA và các vi sinh vật khác có thể được chuyển gen trực tiếp
hoặc gián tiếp. Tuy nhiên, các virus loại RNA ở một mức độ nào đó khó giải
quyết hơn, mặc dù đã có một vài thành công với virus bại liệt (poliovirus)
và virus bệnh cúm (influenza), do độ rắn chắc của genome virus.

3.2. Các vector sống tái tổ hợp
3.2.1. Các thể tái tổ hợp của viral vaccine
Các viral vaccine cho bệnh đậu mùa đã được sử dụng hơn 150 năm
dưới dạng vaccine sống nhược độc. Giá thành rẻ, sản xuất đơn giản, bảo
quản không cần lạnh, khả năng ổn định khi tiêm chủng và kích thích đáp
ứng kháng thể trung gian tế bào (cell-mediated) là tất cả ưu điểm của loại
vaccine này.
Tuy nhiên, những ưu điểm này chỉ thật sự hấp dẫn bởi các thể tái tổ
hợp vaccine biểu hiện gen ngoại lai (Hình 8.1). Hơn 1.000 thể tái tổ hợp
vaccine khác nhau biểu hiện các gen của virus, vi khuẩn và các tác nhân gây
bệnh ký sinh trùng đã được công bố. Đa số trong chúng đã cho thấy khả
năng bảo vệ ở các hệ thống động vật mô hình chống lại các tác nhân gây
bệnh. Thể tái tổ hợp vaccine biểu hiện glycoprotein vỏ gp160 của HIV-1
được thử nghiệm trên người cho thấy đã cảm ứng các đáp ứng miễn dịch đối
với HIV gp160. Tuy nhiên, các biến chứng kết hợp với liệu pháp vaccine và

việc tăng số lượng các cá thể riêng lẽ mang sự thiếu hụt miễn dịch có thể
giới hạn hữu ích của các thể tái tổ hợp đối với liệu pháp vaccine ở người.

3.2.2. Các vaccine tái tổ hợp BCG
Vaccine BCG (Bacillus gây bệnh lao xương của avirulent) là loại
vaccine được sử dụng rộng rãi nhất trên thế giới. Từ 1948 đến nay hơn 5 tỷ
liều vaccine đã được tiêm chủng.

Nhập môn Công nghệ sinh học
276


Hình 8.1. Virus đậu mùa được tái tổ hợp trong tế bào động vật có vú với một
gen ngoại lai. Các virus đậu mùa được sinh sản bao gồm cả hai dạng: hoang dại và
tái tổ hợp. Các virus tái tổ hợp được phân lập và sử dụng để phát triển thành một
loại vaccine an toàn và hiệu quả.
Vaccine BCG tái tổ hợp có một số ưu điểm khác biệt hơn hẳn các
hướng vaccine đa trị khác, trước tiên là nhờ kinh nghiệm thu được với
vaccine BCG gốc (parent). Ưu điểm thực tế đó là chỉ hai vaccine BCG và
vaccine polio uống mới được WHO khuyến cáo dùng cho trẻ em mới sinh
và người trẻ tuổi, những người mà liệu pháp vaccine có thể khởi đầu tốt hơn
cho các cơ hội thành công trong các chương trình tiêm chủng vaccine.
Chủng ngừa riêng rẽ với BCG tạo ra một miễn dịch trung gian tế bào bền
Virus bệnh
đậu mùa
Gen ngoại lai
được chèn
vào plasmid
vector
Tế bào động

vật có vú
Virus sinh
sản: dạng
hoang dại và
thể tái tổ hợp
mang gen
ngoại lai
Vết tan của dạng hoang
dại và thể tái tổ hợp
Các vết tan của thể tái tổ
hợp được chọn lọc để phát
triển vaccine
Nhập môn Công nghệ sinh học
277
vững đối với bệnh lao là rất hiệu quả với ít hơn một biến chứng trên một
triệu liều. Mặc dù, các vector loại phage và plasmid đã được sử dụng có một
vài thành công nhưng những nghiên cứu tiếp theo vẫn còn được tiến hành để
có thể hướng tới các mức độ biểu hiện cao và cho phép hệ thống được thao
tác dễ dàng hơn.

3.2.3. Các chủng Salmonella nhược độc (vaccine vi khuẩn sống)
Công nghệ DNA tái tổ hợp có khả năng đưa toàn bộ các đột biến hoặc
đoạn khuyết vào các chủng vi khuẩn khác nhau để làm yếu độc tính của
chúng. Các vaccine nhược độc được thiết kế hợp lý cũng có thể dùng như là
các chất mang cho các kháng nguyên được tạo dòng từ các cơ thể gây bệnh
khác. Các chủng Salmonella nhược độc được xem là một ứng cử viên tốt
cho hướng này bởi vì chúng có thể được dùng như một vaccine uống để
kích thích các phản ứng miễn dịch nội bào và bài tiết trong vật chủ. Chẳng
hạn, gen của tiểu đơn vị B không ổn nhiệt (heat labile B subunit) ở
enterotoxic E. coli được đưa vào trong chủng Salmonella nhược độc AroA.

Vi khuẩn Salmonella tái tổ hợp này có thể cảm ứng các kháng thể IgG và
IgA đối với tiểu đơn vị B enterotoxic (cũng như Salmonella) trong các động
vật được chủng ngừa vaccine.

3.2.4. Các thể khảm của virus bại liệt (poliovirus)
Poliovirus chủng Sabin type 1 sống nhược độc là một vaccine rất an
toàn và hiệu quả, kích thích các đáp ứng kháng thể tuần hoàn và bài tiết. Sự
hiểu biết về cấu trúc tinh thể của virus cùng với khả năng tạo virus từ các
phân tử cDNA cho phép các vùng kháng nguyên của các tác nhân gây bệnh
khác được hợp nhất chính xác trong tiểu thể virus ở hầu hết các vị trí kháng
nguyên. Ví dụ: DNA mã hóa cho vị trí kháng nguyên chủ yếu của chủng
Sabin type 1 được thay bằng DNA của chuỗi peptide từ HIV-1. Huyết thanh
miễn dịch đối với peptide được xem như là tiểu thể poliovirus tái tổ hợp và
người ta nhận thấy trong các nghiên cứu miễn dịch virus tái tổ hợp có thể
cảm ứng rộng rãi các kháng thể trung hòa anti-HIV.

3.2.5. Các chủng E. coli tái tổ hợp
Chủng enterotoxigenic E. coli (ETEC) gây bệnh đi chảy ở lợn con và
Nhập môn Công nghệ sinh học
278
một vài trường hợp ở người (E. coli type huyết thanh O 157). Các vi khuẩn
này bám chặt vào ruột của vật chủ qua fimbrae liên kết bề mặt để tiết độc tố
ổn nhiệt (ST-toxin) và không ổn nhiệt (LT-toxin). Fimbrae là kháng nguyên
mạnh và các vaccine đầu tiên chống ETEC gồm có các tế bào hoàn chỉnh
hoặc các dịch chiết vô bào được làm giàu để chống lại fimbrae. Các vaccine
được bào chế từ các chủng ETEC đã sinh ra các phản ứng bất lợi đáng kể do
các nồng độ cao của lipopolysaccharide và các kháng nguyên vỏ trên bề mặt
của chủng ETEC hoang dại. Chủng vi khuẩn E. coli K12 gây ra phản ứng
bất lợi ít hơn nhiều và được dùng như là một vật chủ để xây dựng plasmid
vector biểu hiện một hoặc nhiều loại kháng nguyên khác nhau của fimbrae.

Tuy nhiên, để sản xuất một vaccine có phạm vi bảo vệ rộng thì cần đưa vào
các thành phần kháng độc tố. Các plasmid vector được xây dựng bằng cách
sử dụng promoter mạnh của prokaryote biểu hiện cao LT toxin B subunit.

4. Các hướng tiếp cận khác trong sản xuất vaccine
4.1. Các DNA vaccine (miễn dịch di truyền)
Một điều khá ngạc nhiên là các plasmid mang các gen đặc hiệu cho
một hoặc nhiều protein kháng nguyên có thể được dùng để tạo miễn dịch
(chủng ngừa). Các plasmid được phân phối bằng cách tiêm (thường vào cơ)
đưa gen trực tiếp vào trong một số tế bào và được hấp thu bởi các tế bào lân
cận nơi kim tiêm được đưa vào. Ngoài ra, plasmid cũng có thể được phân
phối bằng súng bắn gen (các viên đạn vàng được bọc DNA của plasmid)
bằng cách đẩy các plasmid vào trong các tế bào gần bề mặt cơ thể, đặc trưng
cho loại này là tổ chức da hoặc màng nhầy. Một khi vào bên trong tế bào,
một vài plasmid tái tổ hợp sẽ đi vào nhân và do gen được điều hòa bởi một
promoter mạnh của eukaryote, các tế bào sẽ tổng hợp các kháng nguyên
được mã hóa bởi plasmid.

▪ Tối ưu các đáp ứng miễn dịch
Các đáp ứng đối với DNA vaccine thường cần một lượng nhất định
của plasmid DNA ( 50 g trên một lần tiêm) và hiệu quả miễn dịch không
bằng tiêm chủng tự nhiên với tác nhân gây bệnh hoặc được kích thích bởi
các vaccine sống nhược độc. Tuy nhiên, các đáp ứng miễn dịch có thể được
cải thiện bằng các phương pháp khác, chẳng hạn dùng súng bắn gen để đưa
DNA vào tế bào.
Nhập môn Công nghệ sinh học
279
Phản ứng miễn dịch đối với kháng nguyên bị ảnh hưởng bởi DNA của
plasmid mang gen. Do DNA của plasmid (có nguồn gốc từ vi khuẩn) có tỷ
lệ CG lớn hơn so với DNA trong động vật có xương sống, hơn nữa các đơn

vị CG trong plasmid của vi khuẩn có xu hướng không methyl hóa (không
gắn các nhóm methyl) trong khi ở động vật chúng thường được methyl hóa.
Việc tăng số lượng các chuỗi kích thích miễn dịch trong plasmid có thể sẽ
khuếch đại tốt khả năng sinh miễn dịch của các kháng nguyên được mã hóa
trong DNA vaccine.

4.2. Các peptide vaccine
Trong những năm gần đây, người ta có thể phân lập các tế bào nhánh
(dendritic cells) từ tủy xương hoặc máu ngoại biên của người bệnh và nuôi
cấy chúng trong điều kiện in vitro. Các tế bào này sau đó được nhồi peptide
(hoặc một nguồn kháng nguyên khác) và đưa trở lại vào trong người bệnh.
Các tế bào hiện diện kháng nguyên chuyên nghiệp này sau đó sẽ tạo ra một
đáp ứng miễn dịch hiệu quả mà không thể tạo ra bằng cách khác. Liệu pháp
miễn dịch này được tập trung nghiên cứu để điều trị ung thư và có thể liên
quan với một vài loại tác nhân gây nhiễm. Hạn chế chính của hướng kỹ
thuật cao này là cần phải đặc biệt kiên nhẫn và vì thế rất đắt tiền.

4.3. Kháng các kiểu gen cá thể (anti-idiotypes)
Anti-idiotype (anti-Id) cũng có thể tạo ra các vaccine hiệu quả, vì các
kháng thể tự chúng cũng hoạt động như là các chất kháng nguyên
(immunogens). Một đáp ứng miễn dịch tăng lên chống lại vị trí liên kết
kháng nguyên đơn nhất (unique antigen combining site) của một kháng thể
được gọi là một phản ứng anti-idiotype và có thể tương đồng cấu trúc với
kháng nguyên gốc đầu tiên. Khi hiện tượng này xuất hiện thì kháng thể anti-
idiotype (đơn dòng hoặc đa dòng) có thể gây ra một đáp ứng kháng thể nhận
dạng kháng nguyên gốc và do đó hoạt động như một vaccine. Các anti-
idiotype cho thấy một khả năng bảo vệ trong các hệ thống động vật mô hình
khác nhau. Thí dụ điển hình về tiềm năng của hướng này là việc bảo vệ con
tinh tinh khỏi bệnh phối hợp HBV (HBV-associated disease) bởi miễn dịch
trước đó với anti-Id.


Nhập môn Công nghệ sinh học
280
III. Kháng thể đơn dòng
Công nghệ sản xuất kháng thể đơn dòng dựa trên nguyên lý sử dụng tế
bào lai (giữa tế bào ung thư myeloma với tế bào lympho B của hệ miễn dịch
ở động vật hoặc người) để sản xuất kháng thể. Kháng thể đơn dòng có rất
nhiều ứng dụng quan trọng trong y học: phát hiện kháng nguyên, ức chế
phản ứng đào thải khi ghép cơ quan, chẩn đoán sự hình thành khối u, định
hướng thuốc chữa bệnh bằng kháng thể đơn dòng, sử dụng kháng thể đơn
dòng để tinh sạch protein…

1. Sản xuất hybridoma bằng cách dung hợp tế bào sinh dưỡng
Trước đây, người ta cũng tạo ra kháng thể bằng kỹ thuật nuôi cấy tế
bào, nhưng theo phương pháp này, người ta phải định kỳ làm lại sau mỗi lần
thu được kháng thể, vì ở điều kiện nuôi cấy trong ống nghiệm, các tế bào
thường chỉ tiến hành một số lần phân bào nhất định rồi bị hủy.
Trong công nghệ sinh học, kỹ thuật tế bào lai hybridoma (lai giữa tế
bào myeloma với tế bào lympho B) đã mở ra một phương thức mới trong
miễn dịch học, để sản xuất vaccine hàng loạt. Người ta đã tạo ra một loại tế
bào lai có thể phân bào liên tục trong điều kiện nuôi cấy, đồng thời lại có
khả năng sản sinh ra kháng thể, từ đó kháng thể được sản xuất ra với khối
lượng rất lớn. Tế bào ung thư có đặc điểm rất quan trọng là loại tế bào có
tiềm năng phân chia liên tục (di căn). Khả năng sinh sản lâu dài và phân bào
liên tục của tế bào ung thư nuôi cấy có liên quan với khả năng tăng sinh của
các tế bào ung thư trong cơ thể sống. Người ta chọn một loại tế bào có khả
năng sinh ra kháng thể, hiện nay đang sử dụng tế bào lách của chuột nhắt đã
được miễn dịch chống một loại kháng nguyên nhất định. Tiến hành lai giữa
tế bào lách chuột nhắt với tế bào ung thư của tủy xương. Tế bào lai đem
nuôi cấy, phân chia liên tục, sản sinh ra một lượng rất lớn kháng thể. Kháng

thể này đặc trưng cho một dòng tế bào, nên được gọi là kháng thể đơn dòng.
Quá trình trên chính là hiện tượng lai tế bào, tức là khả năng dung hợp giữa
một loại tế bào có khả năng tái bản, sinh sản phát triển không ngừng với một
loại tế bào có chức năng tạo ra kháng thể (Hình 8.2).

Nhập môn Công nghệ sinh học
281


Hình 8.2. Sơ đồ sản xuất kháng thể đơn dòng

2. Sản xuất kháng thể đơn dòng bằng công nghệ DNA tái tổ hợp
2.1 . Phân lập các gen immunoglobulin
Nhờ kỹ thuật PCR vấn đề trở nên tương đối đơn giản khi phân lập và
tạo dòng các gen immunoglobulin từ các tế bào B (thuần thục hoặc chưa
thuần thục) và các tế bào hybridoma bằng các cặp primer đặc hiệu. Nguyên
liệu khởi đầu thường là mRNA hơn là DNA, vì mRNA chỉ chứa các exon
mã hóa, các intron bị cắt bỏ (spliced out) trong suốt quá trình phiên mã. Hầu
hết sự quan tâm đều tập trung vào việc phân lập và tạo dòng các vùng
immunoglobulin có thể thay đổi (immunoglobulin variable regions) của
chuỗi nặng (V
H
) và chuỗi nhẹ (V
L
) chứa các vùng bổ trợ xác định
(complementarity determining regions-CDRs) cần thiết trong liên kết kháng
nguyên. Bằng cách liên kết các sản phẩm của các gen V
H
và V
L

các đoạn
chuỗi đơn có thể thay đổi (scFV) sẽ được tạo ra, các sản phẩm protein của
chúng có đủ khả năng để liên kết với kháng nguyên. Các cấu trúc scFV này
Sản xuất kháng thể được
cảm ứng trong chuột
bằng gây tạo miễn dịch
Các tế bào giải
phóng kháng thể
được phân lập
Các tế bào khối u
sinh trưởng in vitro
Các tế bào giải phóng kháng thể
và các tế bào khối u được dung
hợp để tạo thành hybridoma
Các hybridoma giải phóng
kháng thể được tạo dòng
Các kháng thể đơn dòng được phân lập

×