Tải bản đầy đủ (.docx) (15 trang)

chuyen de tich phan

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (208.82 KB, 15 trang )

(1)CHUYÊN ĐỀ NGUYÊN HÀM TÍCH PHÂN. A.. KIẾN THỨC CẦN NHỚ.. I. NGUYÊN HÀM 1. Khái niệm. Định nghĩa. Cho hàm số f ( x) xác định trên K (K là đoạn, khoảng, nửa khoảng). Hàm số F ( x) được gọi là nguyên hàm của hàm số f ( x) trên K, nếu F '( x)  f ( x) , với mọi x  K . Định lý. Giả sử F ( x) là một nguyên hàm của hàm số f ( x) trên khoảng K. Khi đó a. Với mỗi hằng số C, hàm số G ( x) F ( x)  C cũng là một nguyên hàm của f ( x) . b. Ngược lại, nếu G(x) là một nguyên hàm của f ( x) thì tồn tại hằng số C sao cho G(x) = F(x) + C. f ( x )dx F ( x )  C. c. Họ tất cả các nguyên hàm của f ( x ) là  nguyên hàm của f ( x ) , C là hằng số bất kỳ.. , trong đó F ( x) là một. d. Bảng các nguyên hàm cơ bản. Nguyên hàm của một số hàm số thường gặp Nguyên hàm các hàm số sơ cấp thường gặp. Nguyên hàm của hàm số hợp u u ( x). kdx kx  C , k  R. kdu ku  C, k  R. x. . 1 dx  .x 1  C (  1) 1. dx. x. ln x  C. ( x 0 ). dx 2 x  C x x. x a dx . x. . 1 du  .u  1  C (  1) 1. du. . e dx e. u. C. ax  C (0  a 1). ln a. u. ln u  C. du.  u 2 u. u C. e du e u a du . ( x 0 ). u. C. au  C (0  a 1). ln a. cos xdx sin x  C. cos udu sin u  C. sin xdx  cos x  C. sin udu  cos u  C.

(2) dx. cos. 2. x. tan x  C. dx.  ; sin. 2. x.  cot x  C. du. cos. .. 2. u. tan u  C. du.  ; sin. 2. u.  cot u  C. Ngoài ra còn một số công thức thường gặp là. k (ax  b) dx . 1 (ax  b)k 1  C , ( a 0, k  1); a k 1. 1. 1 dx  e ax b  C ; a 1 sin(ax  b)dx  a cos(ax  b)  C. e. 1. cos(ax  b)dx  a sin(ax  b)  C. ax b. 2.. 1. ax  b dx  a ln ax  b  C, a 0.. Một số tính chất cơ bản của nguyên hàm Định lý. Nếu F ( x), G( x) tương ứng là một nguyên hàm của f ( x), g ( x) thì. 3.. a.. f '( x)dx  f ( x)  C. b.. [ f ( x) g ( x)]dx f ( x)dx g ( x)dx F ( x) G( x)  C ;. c.. a.f(x)dx. a f ( x)dx aF( x)  C (a 0). .. Một số phương pháp tìm nguyên hàm a. Phương pháp đổi biến số Cơ sở của phương pháp đổi biến số là định lý sau: Cho hàm số u u ( x) có đạo hàm liên tục trên K và hàm số y  f (u) liên tục sao cho f [u ( x )] xác định trên K. Khi đó nếu. F. là. một. nguyên. hàm. của. f,. tức. là. f (u )du F (u)  C. f [u ( x)]dx=F[u(x)]+C . b. Phương pháp tích phân từng phần Một số dạng thường gặp: P( x).e Dạng 1. . ax b. dx , P( x) sin(ax  b)dx , P( x)cos(ax  b) dx. ax b Cách giải: Đặt u P( x) , dv e dx ( hoặc dv sin(ax  b)dx, dv cos(ax  b)dx). Dạng 2.. P( x) ln(ax  b)dx. Cách giải: Đặt u ln(ax  b), dv  P( x) dx.. I.. TÍCH PHÂN.. thì.

(3) 1. Định nghĩa. Cho hàm f ( x) liên tục trên khoảng K và a, b là hai số bất kỳ thuộc K. Nếu F ( x) là một nguyên hàm của f ( x ) thì hiệu số F (b)  F (a) được gọi là tích phân b. của f ( x ) từ a đến b và ký hiệu là  a; b  tích phân của f trên. f ( x)dx a. b. . Trong trường hợp a  b thì. f ( x)dx a. là. .. 2. Tính chất của tích phân . Cho các hàm số f ( x), g ( x) liên tục trên K và a, b, c là ba số thuộc K. a. b.  f ( x)dx 0. . a b. b. a. b.  k . f ( x)dx k f ( x )dx. c. b. b. b.  f ( x)dx f ( x)dx  f ( x)dx b. f ( x)dx  f ( x)dx a. c. a. a. a. a. b.  [ f ( x) g ( x)]dx f ( x) dx g ( x) dx a. a. a. 3. Một số phương pháp tính tích phân b. u (b). f [u( x)]u '( x)dx .  f (u )du. u(a)  Phương pháp đổi biến số: Công thức đổi biến số a . Trong f ( x ) u ( x ) đó là hàm số liên tục và có đạo hàm liên tục trên khoảng J sao cho hàm hợp f [u ( x )] xác định trên J; a, b  J .. Phương pháp đổi biến số thường áp dụng theo hai cách Cách 1. Đặt ẩn phụ u u ( x) ( u là một hàm của x) Cách 2. Đặt ẩn phụ x  x(t ) ( x là một hàm số của t).  Phương pháp tích phân từng phần. Định lý. Nếu u ( x), v( x) là hai hàm số có đạo hàm liên tục trên khoảng K và a, b là hai số b. thuộc K thì. b. b u ( x)v '( x)dx u ( x)v( x) a  v( x)u '( x)dx a. a. 4. Ứng dụng của tích phân  Tính diện tích hình phẳng . a; b  Nếu hàm số y  f ( x) liên tục trên  thì diện tích S của hình phẳng giới hạn bởi đồ b. thị hàm số y  f ( x) , trục hoành và hai đường thẳng x a, x b là . S  f ( x) dx a. .. Diện tích hình phẳng giới hạn bởi các đồ thị hàm số y  f ( x) , y  g ( x) và hai đường thẳng x a, x b là.

(4) b. S  f ( x)  g ( x ) dx a.  Tính thể tích vật thể. Thể tích vật thể B giới hạn bởi hai mặt phẳng vuông góc với b. trục Ox tại các điểm a, b là. V S ( x) dx. . Trong đó S(x) là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x   a; b . a. và S(x) là một hàm liên tục..  Tính thể tích khối tròn xoay. a; b.  Hàm số y  f ( x) liên tục và không âm trên   . Hình phẳng giới hạn bởi đồ thị hàm số y  f ( x) , trục hoành và hai đường thẳng x a, x b quay quanh trục hoành tạo nên b. một khối tròn xoay. Thể tích V được tính bởi công thức. V  f 2 ( x)dx a. .. Hình phẳng giới hạn bởi đồ thị hàm số x g ( y ) , trục tung và hai đường thẳng y c, y d quay quanh trục tung tạo nên một khối tròn xoay. Thể tích V được tính bởi d. công thức. V  g 2 ( y) dy c. .. CÁC DẠNG TOÁN THƯỜNG GẶP Phần 1. Tìm nguyên hàm Dạng 1: Tìm nguyên hàm dựa vào bảng nguyên hàm . Bài 1. Tìm nguyên hàm của các hàm số a.. 2 ( x  2)( x  2 x  4)dx. d.. sin. 4. xdx. b.. (. 1 3  x )dx x. tan e. . 4. xdx. sin. 2. c.. xdx. 4. f.. cot. xdx. ( x 2  1)( x 2  3). sin 2 x.cos xdx. h.. 2x x x 10 .3 .5 dx. x3  2 x  1 dx  x5 k.. l.. sin(2 x  1)dx. g.. 1  ln x dx x.  n.. i.. o.. 3. m.. (1  2 x. p.. (1 . 2. x xe dx. . x. 2. ) xdx. 2 10. dx 2 x )4. dx.

(5) Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến. Tính tích phân. I f ( x)dx. Phương pháp 1. Đổi biến t  ( x) , rút x theo t. +) Xác định vi phân: dx  '(t )dt I g (t )dt +) Biểu thị f(x)dx theo t và dt. Giả sử f ( x)dx g (t )dt . Khi đó. Lưu ý: Một số dấu hiệu dẫn tới việc lựa chọn ẩn phụ: Dấu hiệu. Có thể chọn. Hàm số có mẫu. Đặt t là mẫu. Hàm f ( x,  ( x)). Đặt t  ( x). n m Hàm f ( x,  ( x ),  ( x)). mn Đặt t   ( x). Hàm. f ( x) . a sin x  b cos x c sin x  d cos x  e. Đặt. t tan. x 2. Hàm lẻ với sinx. Đặt t cos x. Hàm lẻ với cosx. Đặt t s inx. Hàm chẵn với sinx và cosx. t =tanx. Phương pháp 2. Đổi biến x  (t ) +) Lấy vi phân dx  '(t )dt +) Biểu thị f(x) theo t và dt, Giả sử: f(x)dx= g(t)dt. Khi đó. I g (t ) dt. Lưu ý: Một số dấu hiệu dẫn tới việc chọn ẩn phụ: Dấu hiệu a2  x2. Có thể chọn    x  | a | sin t ,   t   2 2  x  | a | c os t , 0  t   .

(6) x2  a2. |a|     x  sin t ,  2 t  2 ; t 0   x  | a | , 0 t  ; t   cost 2. x2  a2.     x | a | tan t ,  2  t  2   x | a | cott , 0  t  . ax a  x hoặc. Đặt x a cos 2t. a x ax. 2 Đặt x a  (b  a) sin t. ( x  a )(b  x). Bài 2. Tìm nguyên hàm của các hàm số 3. (2 x  1) dx a. . b.. 2z. . 3. z2  5 2. d.. e.. g.. 2012 sin x.cos xdx.  h. 1  e. l. o.. cos (5 x  2) dx. r.. cos (3x 1) dx. 3. 1. dx.  1 x. c.. m.. 1. 1. sin(3 x  1).  s. x. 2. dx. k.. 4 2 x 1  x dx.  p. x. 2. x. 2. 4. 2 x( x.  f. x. 1 x xe dx. sin(7 x  6)dx. 9x2. dz. n.. 2. . q.. xdx  2 x2  2.  t. x. 2x dx  4x  3 2x  1. 1 dx x (1  x ) 2. sin 2. 4. x.cos xdx. xdx  4x  5. x2 (1  x)39 dx v.. x 3 dx 4 2 u. x  x  2. Dạng 3. Tìm nguyên hàm bằng phương pháp từng phần. Bài 3. Tìm nguyên hàm của các hàm số. x. xe dx a. . x b. . 2. cos xdx. x ln( x  x 2  1). d.. x. 2. ln xdx. e.. . x2 1. c.. ( x 1).ln xdx. f.. e .cos. dx. x. 2.  1)dx. x 2  x  2012. . 1 1 sin .cos dx x x. 2. xdx. dx.

(7) x. dx.  dx g. cos x.  h. sin. 2. 3. x. Dạng 4. Nguyên hàm của một số hàm phân thức hữu tỷ. Bài 4. Tìm nguyên hàm dx. dx. 4x  3.  a. 2 x  3. dx  b. 2 x  1. 2 x 2  3x  5  x  3 dx d..  e. x. x 2  3x  1 dx  2 x  5 x  6 g.. 4x  2 dx  2 x  x  1 h.. 3 x 3  14 x 2  13x  7 dx  2 x  5 x  6 h.. x3  2 x  1  x 2  9 dx i.. x2  x  1  ( x  1)3 dx k..  l. x. 2. c.. 2x  1 dx  5x  6. (2 x  1). 2.  f. x. 2. 4x  6 dx  3x  4. 2 xdx 2 3. Dạng 5. Nguyên hàm của một số hàm số lượng giác. Các bài toán cơ bản: a) Nguyên hàm của các hàm số có dạng:  f ( x) cos ax.cos bx.  f ( x) sin ax.sin bx.  f ( x) sin ax.cos bx.  f ( x) sin 2 ax; cos2bx. Phương pháp chung: Dùng các công thức biến đổi, công thức hạ bậc để đưa về tổng các nguyên hàm cơ bản. Bài 5. Tìm các nguyên hàm: cos3x.cos 2 xdx. a. . b.. s inx.cos. 2. 2 xdx. cos 2 x.sin 2 xdx 3. c.. n m b) Nguyên hàm của các hàm số có dạng: f ( x) sin x.cos x. Phương pháp chung: Dựa vào tính chẵn lẻ của m, n để biến đổi hoặc đặt ẩn phụ cho phù hợp. Bài 6. Tìm nguyên hàm a.. (sin. 3. x  cos 2 x)dx 3. b.. (sin. 5. x  cos x)dx 5. cos3 x  4 dx c. sin x.

(8) dx.  d. sin. 3. x. e.. sin 2 x  6 dx g. cos x. 4 sin 2xdx. dx.  f. sin. 4. x. 2.  a 2 dx. tan 6 x dx  h. cos2 x. Dạng 6. Tìm nguyên hàm bằng phương pháp đổi biến lượng giác. Bài 7. Tìm nguyên hàm a. d.. a . 2.  x 2 dx. b.. 2.  a 2 dx. c.. x. f..  ( x  a)( x  b) dx. 1. ax dx a x. e.. dx 2 2  g. x  a. h.. dx. l.. x. ( x  a) ( x  b) 2.  ( x  a)(b  x)dx  (a. dx 2.  x 2 ) 2 k 1. (a1 x 2  b1 x  c1 )dx 2  k. ( x  d )(ax  bx  c). 4sin x  3cos x. 2. với ( a b ). dx  m. s inx  2 cos x. n.. 2 . 8cos xdx 3 sin 2 x  cos2 x. Bài 8. Tìm nguyên hàm dx. a..  (1  x ). 2 3. b.. g.. . x2  1. dx. dx. c.. dx. cos2 x  8 dx d. sin x. e..  ( x  2)( x 1). h..  3 s inx  cos x dx. xdx. . x2. 2. x  1. 1  1  x. f..  (1  x ). 2 3. x . 2x x2  1. dx. 2. 2. Dạng 7. Nguyên hàm của một số hàm số mũ và lôgarit Bài 9. Tìm nguyên hàm dx. a. d.. e (3  e x. x. ). 2 x.ln xdx. b.. x..  e. e. 2x. ln x dx 2  ln x. ( x  1).e c. . dx  ex  2.  f.. Phần 2. Tính tích phân  Dạng 1. Dùng định nghĩa và các tính chất của tích phân.. x 1. dx. 1  ln x dx x.

(9) Bài 10. Tính các tích phân 2. a.. 1 ( x  )2 dx  x b. 1. 2. 16. 3. d.. x. 2.  4 x  3 dx. e.. 1.  4. 5. 2. g.. h.. 4. x x (sin  cos4 )dx  2 2 0 4. l..  2.  4. x. dx. f.. tan.  4. o.. 0. 2. xdx. 0. i..  1  cos2 xdx 0.  3. cos x  s inx.cos x dx  2  s inx 0. 2 s inx.cos ( x . x  1) dx. 2. x2  x 1 dx  x  1 0.  2. cos5x.sin3xdx. n.. 0. 1 x 9 . 2. 0.  4. . k.. . ( x. c.. 1.  ( cos x  4sin x  cos x)dx. . 2. 3. 3 2 ( x  3x  1)dx.   sin. m.. p.. dx (5 x  6). 6. 2.  )dx 4. 2. ( x  1)dx 2  x ln x. x 1.  Dạng 2. Tính tích phân bằng phương pháp phân tích Bài 11. Tính tích phân 1. a.. 1. xdx. ( x 1). 2. b.. 0.  4. d.. g..  2. 7. x dx 2 1. x 0. c..  2. dx  cos4 x 0. e.. sin xdx  cos x  s inx 0.  3. 4. 0. x ( x 1). 3 2 cos x.sin xdx. h.. cos xdx 0. . f.. 3. s inx  cos x  1. s inx  2 cos x  3 dx 0. dx. 2. 1.  Dạng 3. Tính tích phân bằng phương pháp đổi biến. Bài 12. Tính các tích phân sau 2 2. a.. 25. ( x  1) xdx 1. b.. 1. 1. 5 6 x x 1dx. x. 0. c.. 0. 2. x2 dx  4x  7.

(10) 3. d.. 2 x 1. . x2  x 1. 0.  2. g.. dx. e.. e. 5. sin xdx 0. h.. 3 s inx (sin x  e ).cos xdx 0. cos2 x. s inx.cos xdx. f.. 0.  2.  3. k..  3.  2.  1  cos x .s inx.cos xdx 6. 3. 0. 5. cos3 x  2 dx  sin x 6. e. 1  ln 3 x dx  x 1 i.. ln 2. l.. x 5 x (3  e ) e dx 0. 9. x. e. . m.. x. 4. dx. Bài 13. Tính các tích phân. a.. dx  1  x2 0 3 2. d.. b.. 1 x. 1 2. 2. e..  3. 9  3x 2 dx x2.  1. g.. 8. x. h.. 3. x2  1. 2. 0. f.. dx. x. c.. 0.  6. sin 2 xdx  2sin 2 x  cos2 x 0. 2. 2  x dx. dx. . 2. 2. 1. . a. ax dx , (a  0) a x. dx x2 1. Bài 14. Tính các tích phân 1. a.. x. 2012. x. d.. sin xdx. b.. 1 1 2. 1 2.  2. 2.  1 x  ln   dx  1 x . sin 2 xdx  3x  1 . e.. k.. cos xdx x c.  1  1. e. x sin xdx  4  cos2 x 0. 1. f..  4. h..  2. 1  s inx ln( )dx  1  cos x 0. 1. . . g.. cos4 x dx  sin 4 x  cos4 x 0. ln(1  t anx)dx 0. ln( x . 1 2. x.cos xdx 3. i.. 0. 1. l.. dx 2x  e 3 0. 1. m..  Dạng 4. Tính tích phân bằng phương pháp tích phân từng phần. Bài 15. Tính các tích phân. x 2  1)dx. e 0. dx  ex. 2x. ..

(11) 1. a.. ( x 1)e. 2x. dx. 2 2x. b.. 0. 5. d..  6. 2. x e. dx. c.. 1. x. ln( x  1)dx. e.. 3. e. x. cos xdx. f.. 0. 2.  2. . cos x.ln(1  cos x)dx. ln(1  x) dx 2 g. 1 x. h.. 0. e.  2. (1  x)sin 3xdx. cos(ln x)dx 0. 0.  Dạng 5. Liên kết phương pháp đổi biến số và tích phân từng phần Bài 16. Tính tích phân 2. a..  2. e5. 1. x (e. 2x.  x 3  1)dx. b.. 0. ln x.ln(ln x)dx 2 x e. c.. ( x  sin. 3. x  es inx ).cos xdx. 0.  Dạng 6. Lập công thức tích phân truy hồi Bài 17. Lập công thức tích phân truy hồi cho các tích phân sau.  2. a.. 1. I n sin n xdx 0. b.. I n x n 1  xdx 0. với n là số nguyên dương.. • Dạng 7. Ứng dụng của tích phân Bài 18. Tính diện tích hình phẳng được giới hạn bởi đồ thị của các hàm số sau. 2 4 a. y 2 x  x và trục hoành 3 2 b. y  x  3 x  4 và đường thẳng x  y 1 0.  x 0; x  2 c. y sin x cos x ; y 0 và 2. 3. 2 d. y  x  2 x ; y  3 x. e. f.. y x 2 ; y . x2 8 ;y 8 x. y  x 2  4 x  3 ; y 3  x. Bài 19. Tính thể tích khối tròn xoay khi quay quanh trục mỗi hình phẳng giới hạn bởi. a. y ln x ; trục hoành và hai đường thẳng x 1, x 2 ..

(12) x b. y  xe , trục hoành và đường thẳng x 1. 2 c. y  cos x  x sin x , y 0, x 0, x 2.. d.. y. x2 , y 2, y 4 2 .. Phần 3. Bài tập tổng hợp Bài 20. Tính các tích phân. 1. e. (ln x  2013) 2 dx  x 1 a.. 3x dx 2  ( x  3)2 0. b..  2. 3. d.. x. 5.  0. cos x  2sin x 2. 2. s inx. o. dx  (s inx  3cos x) 2 0. dx. h..  2. k.. c.. f.. s inx (e  cos x) cos xdx 0. 1. i.. dx. 4sin x  3cos x  5 0. l.. cos x  cos3 xdx. cos x 0.  2. cos xdx 2  sin x  4sin x  3 0. dx. x4 1.  2.  4. sin 2 x. . x3.  2. 2  cos x dx. e.. 0.  2. g.. 1  x 2 dx. 2. 1. x. m.. 4. 0. x dx  3x 2  2. Bài 21. Tính các tích phân.  2. e. ln x dx 2  x a. 1. b.. d.. 0. e.. g.. 1. c.. h.. x. 0. f.. dx  x ln x ln(ln x) e.  0. ln 2. i.. 3. ln( x 2  1)dx. 0. ln 3. 2 x.tan xdx. e3. 1. 2 x3  4 x2  x  3 dx 2  x  2 x  3 0. 0. 3x x .cos dx 2 2.  3. 1 2 x ln( x  x  1)dx. x.cos.  1. xe x e x 1 e2 x ex  2. dx. dx. . e4. 2. 2(2 x  1) dx 2  ( x  2)( x  1) 1 k.. l.. n.. . e2. 2. x2  1 dx 4  x  1 1 m.  4. 3. x. dx 2 (ln x). x sin. 2. 3.  4 dx. 3. Bài 22. Tính tích phân.. o.. x. 2. 3. 2.  2 x  x  2 dx. p..   sin 6. 2. dx x . 4 cot x.

(13) ln 3. a.. . x. ln(t anx).   sin 2 x. 3. 2(e. g.. 0. 1 2. 1. 2. dx. l.. 0. 2 3.  2. sin 2 x  s inx dx  1  3cos x 0 q. (A-05). o.. t.. 2.  x)dx. u.. 2. 2. x. (B-08). p..  0. sin 2 x cos x  4sin 2 x 2. dx. x  e  2x e dx 1  2e x. 1  2sin 2 x dx  1  sin 2 x 0. e. s..  1. v.. 1  3ln x ln x dx x.  ) 4 dx  sin 2 x  2(1  s inx  cos x) 0.  4. 2 x.  0. dx.  4. ln x dx 2  x (2  ln x ) r. 1 1. 2. 0. m.. 0. e. 3. ln( x. i..  2x  x. dx. tan 4 x dx  c os 2 x 0. 2. 1.  2 8. dx. 6. 1.  6. x2  4. 5. x. dx  2e  x  3. x (1  x ). 3. 1  x. dx. x. n.. ln 3. f.. x2  (1  x 2 ) 2 0. h.. x. 3. 1.  1) e  1. 1 x. c.. x4 1 dx  x6 1 0. e. x.  1 x. e. 1. dx. e x dx x. ln 5. e x  e x dx  e x  e x 0. b.. 4 ln 3. k.. 1. (e  1). ln 2.  3. d.. e x dx. sin( x . Bài 23. Tính diện tích hình phẳng giới hạn bởi các đường sau. 2 a. y  2 y  x 0, x  y 0 2 b. y 3  x  x , y 2 x  1 .  3. c. d. e.. y 0, y s inx, x  , x  2 2 . y  x 2  4 x  3 , x 2, y x  3. y. 1 e.  2x. , y 2 x , x 1.. 2 2 f. y x , y 2 x  x , x 2. x g. y (e  1) x, y (1  e ) x.. h. i.. y  4. x2 x2 , y . 4 4 2. y  x 2  4 x  3 , y  x  3.. Bài 24. Tính thể tích vật thể tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh trục Ox.

(14) 2 a. y 4 x, y  x. b. y  x ln x, y 0, x e.  y 0, y  cos 2 x  x s in x , x 0, x  . 2 c.. Bài 25. Tính thể tích vật thể tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh 2 trục Oy: y 0, y 2 x  x .. Bài 26. Tính các tích phân.  2. a.. sin 2012 x dx.  sin 2012 x  cos2012 x 0. 1. b.. d.. x sin x  ( x  1) cos x dx  x sin x  cos x 0  2. cot x. sin x. e.. . c.. h.. cos2 x  1  e x dx. 4. 1  x sin x dx  cos2 x 0 x ln( x  2). .  8. k.. 1. 1. 1  cos 2 xdx.  4. g.. 2 ln( x  1  x )dx.  3.  4. sin 2 x 1  2012 x dx  . 2. 0. 4  x2. f..  0. 1. dx. i.. 4x  1 dx 2 x 1  2. 4 x3  6 x 2  2 x.  0. x2  x 1. dx.  6. l.. 8. ( x  1)(1  2sin 2 x)  cos2 x x cos 2 x  cos2 x 0. . .. Bài 27. Tính các tích phân.  4. 1. a.. x3 dx 4 2  x  3 x  2 0. b.. 3. 1  ln(1  x) dx x2 c. 1. x(1  sin 2 x)dx. . 0. Bài 28. Tính các tích phân 1. 2. x2  1  2 ln xdx a. 1 x. b.. 1. 2 x 2  x dx. c.. 0. ( x  1) 2 dx 2  x  1 0. TÍCH PHÂN TRONG ĐỀ THI ĐẠI HỌC TỪ NĂM 2009-2013  2. Bài 1: Tính I =. 3 2 (cos x  1) cos xdx 0. - ĐHKA-2009. KQ:. 3. Bài 2: Tính I =. x dx  3+ln ( )2. x+ 1 1 Bài 3: Tính I =  x dx 1 e −1. - ĐHKB-2009. 1 3. - ĐHKD-2009. KQ:. 8 π − 5 4 1 27 (3+ ln ) 4 16. KQ: ln(e2+e+1) – 2.

(15) 1. Bài 4: Tính I =. x 2  e x  2 x 2e x dx  1  2e x 0 e. Bài 5: Tính I =. - ĐHKA-2010. 1 1  1  2e   ln   3 2  3  KQ:. ln xdx. x(2  ln x). 2. - ĐHKB-2010. 1. KQ:. e. 3  I  2 x   ln xdx x 1 Bài 6: Tính I = - ĐHKD-2010. Bài 7: Tính I =. - ĐHKA-2011. 1 3  ln 3 2. e2 1 KQ: 2.  4. x sin x  ( x  1) cos x dx  x sin x  cos x 0. . KQ:.  2     ln   1   4  2  4 .  3. Bài 8: Tính I =. 1  x sin x dx cos 2 x 0.  4. Bài 9: Tính I =.  0. 4x  1 dx 2 x 1  2. KQ:. - ĐHKD-2011. 34 3  10 ln 5 KQ: 3. 1  ln( x  1) I  dx 2 x 1. - KA-2012. 1. Bài 11: Tính tích phân. x3 I  4 dx. x  3x 2  2 0 I  x(1  sin 2x)dx 0. 2. 1  2ln 3  3ln 2  2 - ĐHKB-2012 KQ: - ĐHKD-2012 KQ:. 2. x 1 I  2 ln xdx x 1 Bài 13: Tính tích phân - ĐHKA-2013 1. Bài 14: Tính tích phân. I x 2  x 2 dx 0. 1. Bài 15: Tính tích phân. - ĐHKB-2013. 2 1  32 4. 5 3 ln 2  2 KQ: 2 2 21 3 KQ:. 2. ( x  1) I  2 dx x 1 0. - ĐHKD-2013. 3). 2 2  ln 2  ln 3 3 3 KQ:. /4. Bài 12: Tính tích phân. 2  ln(2  3. - ĐHKB-2011. 3. Bài 10: Tính tích phân. 3. KQ: 1  ln 2.

(16)

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×