Tải bản đầy đủ (.pdf) (28 trang)

5d Semibatch Reactors

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.43 MB, 28 trang )

<span class='text_page_counter'>(1)</span>Lecture 5d Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place..

<span class='text_page_counter'>(2)</span> Lecture 10 – Tuesday 2/12/2013    . 2. Block 1: Block 2: Block 3: Block 4:. Mole Balances Rate Laws Stoichiometry Combine.

<span class='text_page_counter'>(3)</span> Selectivity in Multiple Reactions. Selectivity. 3. Yield. Instantaneous. SD/U = rD/rU. YD = rD / − rA. Overall. ŜD/U = FD/FU. YˆD = FD /( FA0 − FA ). Keep CA high and CB low..

<span class='text_page_counter'>(4)</span> Semibatch Reactors  Semibatch reactors can be very effective in. maximizing selectivity in liquid phase reactions.  The reactant that starts in the reactor is always the limiting reactant.. 4.

<span class='text_page_counter'>(5)</span> Semibatch Reactors Semibatch reactors A+B→C+D. Liquid level and volume increase 5.

<span class='text_page_counter'>(6)</span> Semibatch Reactors 1) Mass Balance:. dm = m dt m = 0  0. dV = 0 dt t = 0 V = V0 6. and. m = V 0.

<span class='text_page_counter'>(7)</span> Semibatch Reactors 1) Mole Balance on Species A: [in] – [out] + [gen] = [acc]. dN 0 − 0 + r AV = dt. dV = 0 dt 7. A.

<span class='text_page_counter'>(8)</span> Semibatch Reactors 1) Mole Balance on Species B:. dN B FB 0 − 0 + rBV = dt. FB 0 = C B 0 0. 8. dV = 0 dt. ( C B 0 − C B ) 0 dC B = rB + dt V.

<span class='text_page_counter'>(9)</span> Semibatch Reactors 1) Mass and Mole Balance Summary. (1) (2) (3) (4) 9. (5).  0C A dC A = rA − dt V 0 (C B 0 − C B ) dC B = rB + dt V dCC 0CC = rC − dt V  0C D dC D = rD − dt V V = V0 + 0t.

<span class='text_page_counter'>(10)</span> Semibatch Reactors 2) Rate Laws 3) Stoichiometry. 10. 4) Parameters. − rA − rB rC rD = = = 1 1 1 1. (8). rC = −rA. (9). rD = −rA. (10). N A0 − N A X= N A0. (12). N A = C AV. C A0 , V0 , 0 , k , C B 0.

<span class='text_page_counter'>(11)</span> Semibatch Reactors. 11.

<span class='text_page_counter'>(12)</span> Semibatch Reactors. 12.

<span class='text_page_counter'>(13)</span> Equilibrium Conversion in Semibatch Reactors with Reversible Reactions Consider the following reaction:. Everything is the same as for the irreversible case, except for the rate law:. 13.

<span class='text_page_counter'>(14)</span> Equilibrium Conversion in Semibatch Reactors with Reversible Reactions Where:. N A0 (1 − X ) V ( FB 0t − N A0 X ) C B= V C A=. At equilibrium, − rA = 0 then. Xe changes with time. 14.

<span class='text_page_counter'>(15)</span> P6-6B - Semibatch Reactors Sodium Bicarbonate + Ethylene Chlorohydrin → Ethylene Glycol + NaCl + CO2↑. 15.

<span class='text_page_counter'>(16)</span> P6-6B - Semibatch Reactors Semibatch Reactors in terms of Moles Mole Balances. A B C D CO2. dN a (1) = rAV dt dN b (2) = FB 0 + rBV dt dN c (3) = rCV dt (4) N D = N C 0 = − FCO2 + rCO2V (5). 16. Stoichiometry. FCO2 = rCO2V − rA = −rB = rC =r D = rCO2.

<span class='text_page_counter'>(17)</span> (6) (7 ) (8) (9). Rate Laws. 17. dV = 0 − CO2 dt FCO2 MWCO2 CO2 = RHO MW = 44 RHO = 1000. (10) Ca = N A V (11) C B = N B V (12) rA = −kC AC B N a0 − N a (13) X = N a0 (14) N a 0 = V0Ca 0.

<span class='text_page_counter'>(18)</span> P6-6 Semibatch: Moles, Na, Nb, etc..

<span class='text_page_counter'>(19)</span> 19.

<span class='text_page_counter'>(20)</span> 20.

<span class='text_page_counter'>(21)</span> 21.

<span class='text_page_counter'>(22)</span> P6-6 Semibatch: Concentrations CA, CB, CC.

<span class='text_page_counter'>(23)</span> 23.

<span class='text_page_counter'>(24)</span> 24.

<span class='text_page_counter'>(25)</span> Semibatch Reactors Three Forms of the Mole Balances applied to Semibatch Reactors:. 1. Molar Basis. 3. Conversion 25. dN A = rAV dt dN B = FB 0 + rBV dt. dX − rAV = dt N A0.

<span class='text_page_counter'>(26)</span> Semibatch Reactors Consider the following elementary reaction: A+B  C+D -rA=kCACB The combined Mole Balance, Rate Law, and Stoichiometry may be written in terms of number of moles, conversion, and/or concentration: Conversion This image cannot currently be displayed.. 26. Concentration. No. of Moles dN A = rAV dt dN B = FA0 + rBV dt.

<span class='text_page_counter'>(27)</span> Polymath Equations. 27.

<span class='text_page_counter'>(28)</span> End of Lecture 5d. 28.

<span class='text_page_counter'>(29)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×