Đề thi toán lớp 8
PHẦN I. ĐỀ THI GIỮA HỌC KÌ I LỚP 8
1. Trường THCS ARCHIMEDES ACADEMY năm 2019 – 2020
2. Trường liên cấp TH & THCS Ngôi Sao Hà Nội năm 2019 – 2020
3. Trường THCS & THPT Lương Thế Vinh năm 2019 – 2020
4. Quận Hà Đông năm 2019 – 2020
5. Quận Hà Đông năm 2018 – 2019
6. Trường THCS & THPT Lương Thế Vinh năm 2020 – 2021 (cơ sở Tân Triều)
7. Trường THCS & THPT Lương Thế Vinh năm 2020 – 2021 (cơ sở Nam Trung Yên)
8. Quận Hà Đông năm 2020 – 2021
9. Trường THCS Ngô Sỹ Liên năm 2020 – 2021
10. Trường THCS Trần Đăng Ninh Quận Hà Đông năm 2020 – 2021 (đề 1)
11. Trường THCS Trần Đăng Ninh Quận Hà Đông năm 2020 – 2021 (đề 2)
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
Page 1
Đề thi toán lớp 8
TRƯỜNG ARCHIMEDES ACADEMY
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
Năm học: 2019 – 2020
Thời gian làm bài: 90 phút
Câu 1. (2 điểm) Thu gọn các biểu thức sau:
a) A = ( x − 1) − x ( x − 1) + 1
3
2
b) B = ( − x − 2 ) + ( 2 x − 4 ) ( x 2 + 2 x + 4 ) − x 2 ( x − 6 )
3
Câu 2. (3 điểm) Phân tích các đa thức sau thành nhân tử:
a) x ( y 2 − 1) + 4 (1 − y 2 )
b) 9 ( x − 2 ) − ( y + 3)
c) xy 2 + 2 y 2 + 2 xy + 4 y
d) ( x 2 − 4 x + 6 ) + 4 x ( x 2 − 4 x + 6 ) + 3x 2
2
2
2
Câu 3. (1 điểm)
a) Thực hiện phép chia đa thức 2 x3 + 11x2 − 7 x + 8 cho đa thức ( 2 x + 1) .
b) Tìm m để đa thức x3 − mx2 + 5x − 14 chia hết cho đa thức ( x − 2 ) .
Câu 4. (3,5 điểm) Cho hình chữ nhật ABCD, AB < AD, có hai đường chéo cắt nhau tại O. Gọi E và F lần
lượt là điểm đối xứng của A qua D và B.
a) Chứng minh rằng OD là đường trung bình của tam giác ACE.
b) Chứng minh rằng C là trung điểm của EF.
c) Gọi M là chân đường vng góc hạ từ A đến EF. Đường thẳng qua A và song song với BM cắt BD tại N.
Tứ giác BANM là hình gì? Vì sao?
d) Trên tia đối của tia DC lấy điểm H tùy ý. Gọi K là trung điểm của AH và P là giao điểm của FH với
CK. Chứng minh rằng tam giác PCH cân.
Câu 5. (0,5 điểm) Cho các số a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng:
a 2 ( 2a + b ) + c 2 ( 2c + b ) + b ( b 2 − 4ac ) = 0
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
Page 2
Đề thi toán lớp 8
TRƯỜNG LIÊN CẤP TH & THCS
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
NGƠI SAO HÀ NỘI
Năm học: 2019 – 2020
Thời gian làm bài: 90 phút
Câu 1. (2 điểm) Rút gọn các biểu thức sau:
a) ( x + 2 ) − ( x + 3)( x − 3) + 10
2
b) ( x + 5 ) ( x 2 − 5 x + 25 ) − x ( x − 4 ) + 16
2
c) ( x − 2 y ) − ( x + 2 y ) ( x 2 − 2 xy + 4 y 2 ) + 6 x 2 y
3
Bài 2. (2 điểm) Phân tích đa thức thành nhân tử:
a) 8x2 y − 8xy + 2 x
b) x2 − 6 x − y 2 + 9
c) ( x 2 + 2 x )( x 2 + 4 x + 3) − 24
Bài 3. (2 điểm) Tìm x biết:
a) ( x + 3) − ( x + 2 )( x − 2 ) = 4 x + 17
2
b) ( x − 3) ( x 2 + 3 x + 9 ) − x ( x 2 − 4 ) = 1
c) 3x2 + 7 x = 10
Bài 4. (3 điểm) Cho hình bình hành ABCD. Trên đường chéo BD lấy 2 điểm M và N sao cho
1
BM = DN = BD.
3
a) Chứng minh: AMB = CND.
b) AC cắt BD tại O. Chứng minh tứ giác AMCN là hình bình hành.
c) AM cắt BC tại I. Chứng minh AM = 2MI .
d) CN cắt AD tại K. Chứng minh I và K đối xứng nhau qua O.
Bài 5. (1 điểm)
a) Tìm GTLN của biểu thức: A = 5 + 2 xy + 14 y − x2 − 5 y 2 − 2 x.
b) Tìm tất cả các số nguyên dương n sao cho B = 2n + 3n + 4n là số chính phương.
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
Page 3
Đề thi toán lớp 8
TRƯỜNG THCS & THPT
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
LƯƠNG THẾ VINH
Năm học: 2019 – 2020
Thời gian làm bài: 90 phút
Bài 1. (2 điểm) Phân tích đa thức thành nhân tử:
a) 2 x3 − 8x
b) x ( x − y ) + x 2 − y 2
c) 25 ( x + 5 ) − 9 ( x + 7 )
b) ( 3 x − 5 ) − ( x + 1) = 0
c) 16 ( 2 − 3 x ) + x 2 ( 3 x − 2 ) = 0
2
2
Bài 2. (2 điểm) Tìm x biết:
a) x2 − 4 x + 3 = 0
2
2
Bài 3. (2 điểm)
1. Chứng tỏ biểu sau có giá trị không phụ thuộc vào x :
A = ( x − 3)( x + 2 ) + ( x − 4 )( x + 4 ) − ( 2 x − 1) x
2. Cho x − y = 3 . Tính giá trị của biểu thức B = x2 − 2 xy + y 2 + 5x − 5 y + 10
Bài 4. (3,5 điểm) Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Từ H kẻ HM vng góc với
AB (M thuộc AB), kẻ HN vng góc với AC (N thuộc AC).
1) Chứng minh tứ giác AMHN là hình chữ nhật.
2) Gọi I là trung điểm của HC, K là điểm đối xứng với A qua I. Chứng minh AC // HK.
3) Chứng minh tứ giác MNCK là hình thang cân.
4) MN cắt AH tại O, CO cắt AK tại D. Chứng minh AK = 3AD.
Bài 5. (0,5 điểm) Tìm x, y, z thỏa mãn:
2 x 2 + 2 y 2 + z 2 + 25 − 6 y − 2 xy − 8 x + 2 z ( y − x ) = 0.
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
Page 4
Đề thi tốn lớp 8
PHỊNG GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
QUẬN HÀ ĐƠNG
Năm học: 2019 – 2020
Thời gian làm bài: 60 phút
Bài 1. (2 điểm) Phân tích đa thức thành nhân tử:
a) xy + xz + 3 y + 3z
b) x2 + 2 x − 3
1
Bài 2. (2 điểm) Cho A = ( 3x − 2 )( x + 1) − ( 2 x + 5 ) ( x 2 − 1) : ( x + 1) . Tính giá trị của A khi x = .
2
Bài 3. (2 điểm) Tìm x biết:
a) 6 x 2 − ( 2 x − 3)( 3 x + 2 ) = 1
b) ( x + 1) − ( x − 1) ( x 2 + x + 1) − 2 = 0
3
Bài 4. (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm M thuộc cạnh huyền BC (M không trùng B và
C). Gọi D và E theo thứ tự là chân đường vuông góc kẻ từ M đến AB, AC.
a) Tứ giác AEMD là hình gì? Vì sao?
b) Gọi P là điểm đối xứng của M qua D, K là điểm đối xứng của M qua E và I là trung điểm của DE.
Chứng minh P đối xứng với K qua A.
c) Khi M chuyển động trên đoạn BC thì điểm I chuyển động trên đường nào?
Bài 5. (0,5 điểm) Cho x, y
chứng minh rằng:
N = ( x − y )( x − 2 y )( x − 3 y )( x − 4 y ) + y 4 là số chính phương
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
Page 5
Đề thi tốn lớp 8
PHỊNG GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
QUẬN HÀ ĐƠNG
Năm học: 2018 – 2019
Thời gian làm bài: 60 phút
Bài 1. (2 điểm) Phân tích đa thức thành nhân tử:
a) 11x + 11y + x2 + xy
b) 225 − 4 x2 − 4 xy − y 2
Bài 2. (2 điểm) Cho A = x 2 − y 2 − 4 x + 4
Tính giá trị của A khi x + y = 102 và x − y = 72.
Bài 3. (2 điểm) Tìm x biết:
a) ( x + 1) = x + 1
2
b) ( x − 2 ) − ( x − 3) ( x 2 + 3 x + 9 ) + 6 ( x + 1) = 49
3
2
Bài 4. (3,5 điểm) Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M là điểm xứng với D qua
AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC.
a) Tứ giác AFDE là hình gì? Vì sao?
b) Chứng minh tứ giác ADBM và tứ giác ANCD là hình bình hành.
c) Gọi O là giao điểm của EF và AD. Chứng minh ba điểm M, O, C thẳng hàng.
Bài 5. (0,5 điểm) Cho a, b, c thỏa mãn a2 + b2 + c2 = 27 và a + b + c = 9.
Tính giá trị của biểu thức B = ( a − 4 )
2018
+ (b − 4)
2019
+ ( c − 4)
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
2020
.
Page 6
Đề thi toán lớp 8
TRƯỜNG THCS & THPT
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
LƯƠNG THẾ VINH
Năm học: 2020 – 2021
Thời gian làm bài: 90 phút
Câu 1. (2 điểm) Phân tích đa thức thành nhân tử:
a) 2 x3 + 12 x2 + 18x
b) x2 − 6 x + 6 y − y 2
c) x2 − 4 y 2 + 8x + 16
d) ( x + 4 ) + 8 x ( x + 4 ) + 15 x 2
2
Câu 2. (2 điểm) Tìm x biết:
a) 3 x ( x − 2020 ) − x + 2020 = 0
b) ( 2 x − 3) . ( 3 x + 2 ) − 6 x 2 = 1
c) ( 3 x − 1) − ( x + 5 ) = 0
d) 4 x2 − 4 x − 24 = 0
2
2
Câu 3. (2 điểm)
1. Cho a + b = 2. Tính giá trị của biểu thức sau:
A = a2 + 2ab + 50 −12a −12b + b2
2. Tìm n để đa thức x4 − x3 + 6 x2 − x + n chia hết cho đa thức x2 − x + 5.
Câu 4. (3,5 điểm) Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Gọi D và E là chân đường
vng góc kẻ từ H đến AB, AC. Gọi I và M lần lượt là trung điểm của AC và HC.
a) Tứ giác ADHE là hình gì? Vì sao?
b) AH cắt DE tại O. Chứng minh tứ giác OICM là hình bình hành?
c) Lấy điểm F đối xứng với điểm H qua I. Gọi N là trung điểm của FC. Chứng minh tứ giác AFCH là hình
chữ nhật và ba điểm O; I; N thẳng hàng.
d) AM cắt HF tại G. AN cắt HF tại K. Chứng minh HG = GK = KF.
Câu 5. (0,5 điểm) Cho x, y là hai số thực tùy ý. Tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5 y 2 + 4 xy + 6 x + 6 y + 32.
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
Page 7
Đề thi toán lớp 8
TRƯỜNG THCS & THPT
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
LƯƠNG THẾ VINH
Năm học: 2020 – 2021
Thời gian làm bài: 90 phút
Câu 1. (2 điểm) Phân tích đa thức thành nhân tử:
a) 3x2 − 6 x
b) x2 − 2 x + 1 − y 2
c) 9 x3 − 9 x2 y − 4 x + 4 y
d) x3 − 2 x2 − 8x
Câu 2. (2 điểm) Tìm x biết:
a) x ( x − 1) − x + 2 x = 5
b) 4 x3 − 36 x = 0
c) 2 x 2 − 2 x = ( x − 1)
d) ( x − 7 ) ( x 2 − 9 x + 20 ) ( x − 2 ) = 72
2
Câu 3. (2 điểm)
a) Thực hiện phép chia đa thức f ( x ) = 2 x 4 − 3x 3 + 3x − 2 cho đa thức g ( x ) = x 2 − 1.
b) Cho hai đa thức A ( x ) = 2 x 3 + 3x 2 − x + m và B ( x ) = 2 x + 1. Tìm m để A ( x ) chia hết cho B ( x ) .
Câu 4. (3,5 điểm) Cho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Gọi M, N, P lần lượt là
trung điểm của các cạnh AB, AC, BC; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng
minh B, O, F thẳng hàng.
Câu 5. (0,5 điểm) Cho các số x, y thỏa mãn điều kiện:
x2 − 2 xy + 6 y 2 −12 x + 2 y + 41 = 0
2020 − 2019 ( 9 − x − y )
Tính giá trị của biểu thức: A =
y1010
2019
− ( x − 6y)
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
2018
Page 8
Đề thi tốn lớp 8
PHỊNG GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
QUẬN HÀ ĐƠNG
Năm học: 2020 – 2021
Thời gian làm bài: 60 phút
Bài 1. (2,5 điểm) Phân tích đa thức thành nhân tử:
a) 3xy − 9 x 2
b) x3 + 343
c) 25 − x2 + 2 xy − y 2
Bài 2. (1,5 điểm) Thực hiện phép chia rồi tính giá trị biểu thức:
3 4 2 9 3 2
2 2
2 3
2
x y − x y + 9 x y − 6 xy : xy tại x = 1 và y = 2020
2
4
4
Bài 3. (2 điểm) Tìm x biết:
b) ( x − 2 ) − 4 x + 8 = 0
a) 3 ( x − 1) + ( x + 5 )( 2 − 3 x ) = −25
2
2
Bài 4. (3,5 điểm) Cho tam giác ABC nhọn. Các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm
của BC. Điểm P đối xứng với điểm H qua đường thẳng BC. Điểm Q đối xứng với điểm H qua điểm M.
a) Chứng minh PQ // BC. Khi đó, tứ giác DMQP là hình gì? Vì sao?
b) Chứng minh tứ giác HCQB là hình bình hành. Tính số đó các góc ACQ; ABQ.
c) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng điểm O cách đều 5 điểm
A, B, P, Q, C.
Bài 5. (0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức:
P = ( x 2 + 4 x + 1) − 12 ( x + 2 ) + 2093
2
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
2
Page 9
Đề thi toán lớp 8
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
TRƯỜNG THCS NGƠ SỸ LIÊN
Năm học: 2020 – 2021
Thời gian làm bài: 90 phút
Bài 1. (1,5 điểm) Cho hai biểu thức:
A = x2 − x + 5 và B = ( x − 1)( x + 2 ) − x ( x − 2 ) − 3x
a) Tính giá trị của biểu thức A khi x = 2
b) Chứng tỏ rằng B = −2 với mọi giá trị của biến x
c) Tìm giá trị nhỏ nhất của biểu thức C = A + B
Bài 2. (2 điểm) Phân tích đa thức thành nhân tử:
a) x2 − 8x
b) x2 − xy − 6 x + 6 y
c) x 2 − 6 x + 9 − y 2
d) x3 + y3 + 2 x + 2 y
Bài 3. (1,5 điểm) Tìm các số thực x biết:
a) ( 2 x − 3) − 49 = 0
2
b) 2 x ( x − 5 ) − 7 ( 5 − x ) = 0
c) x2 − 3x − 10 = 0
Bài 4. (1 điểm) (Khơng phải vẽ lại hình)
A
B
Cho hình vẽ bên, biết AB / /CD , biết AB = 5cm; CD = 7cm . Tính EG .
E
G
C
D
Bài 5. (3,5 điểm) Cho ABC có E là trung điểm của AC. Qua E kẻ ED / / AB ( D BC ) ;
EF / / BC ( F AB ) .
a) Chứng minh rằng tứ giác BDEF là hình bình hành và D là trung điểm của đoạn thẳng BC.
b) Gọi H là điểm đối xứng của D qua F. Chứng minh rằng HB / / AD.
c) Gọi I là trung điểm của HB; K là giao điểm của AD và EF. Chứng minh I , K và E thẳng hàng.
d) ABC có thêm điều kiện gì để HF =
AB
.
2
Bài 6. (0,5 điểm) Tìm các cặp số ( x; y ) biết: y 4 + y 2 + x2 − 8 y − 4 x + 2 xy + 7 = 0
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
Page 10
Đề thi tốn lớp 8
UBND QUẬN HÀ ĐƠNG
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
TRƯỜNG THCS TRẦN ĐĂNG NINH
Năm học: 2020 – 2021
ĐỀ 01
Thời gian làm bài: 90 phút
Bài 1. (3 điểm) Phân tích đa thức sau thành nhân tử:
a) 4 x2 y − 6 xy 2
b) x2 + x − 4 y 2 − 2 y
c) x2 + 8x + 7
Bài 2. (2 điểm) Tìm x biết:
a) x2 −1 = x + 1
b) ( x + 3) ( x 2 − 3x + 9 ) − x ( x 2 − 1) + 201 = 0
Bài 3. (1 điểm) Tính giá trị của biểu thức A tại x = 10
A = ( 2 x − 1) + (1 − x ) − 2 ( 2 x − 1)( x − 1)
2
2
Bài 4. (3,5 điểm) Cho ABC cân tại A. Kẻ AH ⊥ BC ( H BC ) . Gọi M, N lần lượt là trung điểm của AB,
AC. Gọi E là điểm đối xứng với H qua M; F là điểm đối xứng với H qua N.
a) Tứ giác AEBH là hình gì? Vì sao?
b) Chứng minh EH / / AC
c) Chứng minh E đối xứng với F qua A
d) Chứng minh rằng: Nếu AH cố định, B và C di động trên đường thẳng vng góc với AH tại H sao cho
ABC cân tại A thì điểm M sẽ di động trên một đường thẳng cố định.
Bài 5. (0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức:
A = 4 x2 + 2 y 2 − 4 xy − 12 x + 4 y + 2020
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
Page 11
Đề thi tốn lớp 8
UBND QUẬN HÀ ĐƠNG
ĐỀ KHẢO SÁT CHẤT LƯỢNG GIỮA HỌC KÌ I
TRƯỜNG THCS TRẦN ĐĂNG NINH
Năm học: 2020 – 2021
ĐỀ 02
Thời gian làm bài: 90 phút
Bài 1. (3 điểm) Phân tích đa thức sau thành nhân tử:
a) 5x − 5 y
b) x2 + 4 y 2 − 4 xy − 4
c) x2 − 5x + 6
Bài 2. (2 điểm) Tìm x biết:
a) ( 2 x + 3)( x − 1) + ( 2 x − 3)( x − 1) = 0
b) ( x − 2 ) ( x 2 + 2 x + 4 ) − x ( x 2 + 1) + 2028 = 0
Bài 3. (1 điểm) Tính giá trị của biểu thức B tại x = −0,5
B = ( x − 1) + ( 2 x − 2 )(1 + x ) + ( x + 1)
2
2
Bài 4. (3,5 điểm) Cho MNP cân tại M. Kẻ MK ⊥ NP ( K NP ) . Gọi E, F lần lượt là trung điểm của
MN, MP. Gọi I là điểm đối xứng với K qua E; Q là điểm đối xứng với K qua F.
a) Tứ giác MINK là hình gì? Vì sao?
b) Chứng minh IK / / MP
c) Chứng minh I đối xứng với Q qua M
d) Chứng minh rằng: Nếu MK cố định, N và P di động trên đường thẳng vuông góc với MK tại K sao cho
MNP cân tại M thì điểm E sẽ di động trên một đường thẳng cố định.
Bài 5. (0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức:
B = 2 x2 + 4 y 2 + 4 xy − 4 x −12 y + 2030
Giáo viên: Nguyễn Thị Thanh Lan (SĐT: 0326.093.112)
Page 12