Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (70.28 KB, 4 trang )
<span class='text_page_counter'>(1)</span>Tuaàn 24 Tieát 47. Ngày soạn : Ngaøy daïy :. Luyeän taäp. A. Muïc ñích yeâu caàu : Nắm được quĩ tích cung chứa góc, cách vẽ cung chứa góc, cách giải bài toán quĩ tích Biết giải bài toán quĩ tích, vẽ được cung chứa góc B. Chuaån bò : Sgk, giáo án, phấn, thước, bảng phụ, phiếu học tập, compa, thước đo góc, êke C. Noäi dung : TG Hoạt động Giáo viên Hoạt động Học sinh Noäi dung 1p 1. Ổn định lớp : 10p 2. Kieåm tra baøi cuõ : Với đoạn thẳng AB và góc Là hai cung chứa góc α α (0o< α <180o) cho dựng trên đoạn AB trước. Hãy cho biết quĩ tích các điểm M thoả mãn AMB= α ? Là đường tròn đường kính AB Haõy cho bieát quó tích caùc điểm M nhìn đoạn thẳng AB cho trước dưới một góc 30p vuoâng? 5p 3. Luyeän taäp : Dựng AB=3cm Dựng xAB=55o Dựng yếu tố nào trước ? Tiếp đến ta cần dựng những Dựng tia Ay Ax yeáu toá naøo ? Dựng đường trung trực d của đoạn thẳng AB 46. Dựng AB=3cm Goïi O laø giao ñieåm cuûa d vaø Dựng xAB=55o Ay Dựng tia Ay Ax Dựng (O;OA) Dựng đường trung trực d của đoạn thẳng AB Goïi O laø giao ñieåm cuûa d vaø Ay Dựng (O;OA). 5p. AT là tiếp tuyến của đường. Nhận xét góc T, đoạn thẳng tròn tâm B nên AT AB ? T=1v vaø AB coá ñònh. BT hay. AmB là cung chứa góc 55 dựng trên đoạn thẳng AB o.
<span class='text_page_counter'>(2)</span> 48. Vì AT laø tieáp tuyeán cuûa đường tròn tâm B nên AT BT hay T=1v Điểm T nhìn đoạn thẳng AB cố định dưới một góc vuông nên quĩ tích AB là đường tròn đường kính AB. 10p. Nhaän xeùt. Δ IMB ?. Tính goùc AIB ?. Nhaän xeùt goùc I vaø AB ?. Neáu M naøo ?. chaén IMB 1 2. Trường hợp đường tròn tâm B bán kính BA AIB=26o34 không đổi và AB thì quĩ tích là điểm A coá ñònh. A thì I nằm ở vị trí. Với I’. Nếu M A thì I A1 hoặc A2 ( AA1, AA2 laø tieáp tuyeán cuûa A1mB hoặc đường tròn đường kính AB ). A2m’B, AI’B=26o34’ haõy chứng minh M’I’=2M’B ?. 10p. AMB=90o ( goùc noäi tieáp nửa đường tròn ) nên Δ vuoâng taïi M MB tgAIB= = MI ⇒ AIB 26o34. Haõy tính goùc BOC ?. Xeùt. Δ vuoâng I’M’B : tgAI’B M' B 50a. Vì AMB=90o ⇒ tg26o34’= = M ' I' ( góc nội tiếp chắn nửa đường M' B 1 M' B troøn ) neân Δ IMB vuoâng taïi = ⇒ M ' I' 2 M ' I' M ⇒ M’I’=2M’B Xeùt Δ vuoâng IMB : MB 1 ⇒ tgAIB= = MI 2 AIB 26o34’ Vậy AIB không đổi 50b. Phaàn thuaän : Ñieåm I nhìn AB cố định dưới góc 26o34’ không đổi. Vậy quĩ tích điểm I là hai cung chứa góc 26 o34’ dựng trên đoạn AB.
<span class='text_page_counter'>(3)</span> Haõy tính goùc BHC ? BOC=2A=2.60o=120o Xeùt AB’HC’ : Haõy tính goùc BIC ?. Nếu M A thì I A1 hoặc A2 ( AA1, AA2 laø tieáp tuyeán cuûa đường tròn đường kính AB ) Vaäy I A1mB vaø A2m’B. A+B’+B’HC’+C’=360o o o ⇒ 60 +90 +B’HC’ +90o=360o ⇒ B’HC’=360o-60o-90o-90o ⇒ BHC=B’HC’. Phaàn =120o đảo : Lấy I’ bất kì A1mB AÙp duïng tính chaát cuûa goùc hoặc A2m’B, I’A cắt đường ngoài tam giác tròn đường kính AB tại M’. Xét Δ vuoâng I’M’B:tgAI’B = M' B ⇒ tg26o34’= M ' I' Cùng nhìn BC cố định dưới góc 4. Cuûng coá : M' B 1 M' B = ⇒ Nhắc lại quĩ tích các 120o không đổi M ' I' 2 M ' I' điểm M thoả mãn AMB= α ⇒ M’I’=2M’B 5. Daën doø : Laøm caùc baøi taäp coøn laïi Nhaän xeùt ba ñieåm O, I, H ?. 3p. 1p. 51. Vì A laø goùc noäi tieáp của đường tròn (O) nên : BOC=2A=2.60o=120o Xeùt AB’HC’ : A+B’+B’HC’+C’=360o o o ⇒ 60 +90 +B’HC’ +90o=360o ⇒ B’HC’=360o-60o-90o-90o ⇒ BHC=B’HC’. =120o Theo tính chất của góc ngoài : BIC=A+ o B+C 180 − A =A+ =60o+ 2 2 180o −60 o =60o+60o=120o 2 Vaäy ba ñieåm O, I, H cuøng nhìn BC cố định dưới góc 120 o không đổi nên nó nằm trên.
<span class='text_page_counter'>(4)</span> cung chứa góc 120o dựng trên đoạn BC hay B, C, O, H, I cùng thuộc một đường tròn.
<span class='text_page_counter'>(5)</span>