Tải bản đầy đủ (.doc) (73 trang)

Một số vấn đề trong lý thuyết đa thế vị

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (202.21 KB, 73 trang )





E

F
F
F
F



N
R
C

n

Rn
n

n

C
n
B

n

R


n
C

B2n
∂Bn
∂B2n
B(x, r)

n

R
n
C

x
x

(x, r)
B
∂B(x, r)

x

Vn
V

r
r

2n


r
R

n

C

n

σ

∥x∥
A(Ω)
C(Ω)
Ck(Ω)

x



k−
k

C0k(Ω)



k−
k



C∞(Ω)




C0∞(Ω)




E0(Ω), E(Ω), F(Ω), N (Ω)
H(Ω)
USC(Ω)
L∞(Ω)
L∞ (Ω)
Lp(Ω)
Lp (Ω)
SH(Ω)












PSH(Ω)
PSH−(Ω)
MPSH(Ω)

O
X,z

u∗v



z ∈ X.
uv


19



20


R

n

m−

K⊂Ω




µ

K

µ

K

µ

µ

K

K

µ

u
u



B

u(z) = −(− log ∥z∥)1/2
2n

B \{0}

2n

l


α
v = −(− log(|f1|λ1 + ... + |fm|λm ))α
f1, ..., fm

0<α<

1

n

v∈E

f1, ..., fm
F



F

u ∈ F(Ω)
lim sup u(z) = 0,
F(Ω)


z→∂Ω

limz→∂Ω u(z) = 0

F

F















n

R (n ≥ 2)


C2

u : Ω −→ R



∑j

△u =

n

∂2u ≡0 Ω.
=1
∂xj2

H(Ω)


u : Ω −→ [−∞, +∞)
u
−∞
U


u≤φ

¯
φ ∈ H(U) ∩ C(U)

∂U =⇒ u ≤ φ

U


SH(Ω)

u, v ∈ SH(Ω)
max{u, v} ∈ SH(Ω)
αu + βv ∈ SH(Ω)

α, β ≥ 0.

u : Ω −→ [−∞, +∞)
−∞
u ∈ SH(Ω)
B (a, R) ⊂ Ω



u(a) ≤

1

u(x)dσ(x);

σ(∂B(0, 1))Rn−1
∂B(a,R)

B

u

(a, R) ⊂ Ω



1

u(a) ≤ V (B(0, 1))Rn
n

u(x)dVn(x).
B(a,R)




u ∈ L1loc(Ω)

u ∈ SH(Ω)




u ∈ SH(Ω) v ∈ SH(ω)

n

R ω

lim sup v(y) ≤ u(y),
x

y




max{u, v}

y ∈ ∂ω ∩ Ω
w=

ω,
u



\

Ω ω

u, v ∈ SH(Ω)



u=v



∆u
u ∈ SH(Ω)U
u
u(x) =
−1 (
) ∫

∂B(0, 1)
g(|x − w|)dν(w) + φ(x),
max{1, n − 2}σ
U



U

ν = ∆u|U φ ∈ H(U)

g(r) =

− log r

r2−n

g

: (0,+∞) → R

(n = 2)
(n > 2)

u, v ∈ L1(Rn)


(u ∗ v)(x) = u(x − y)v(y)dVn(y).
R


n

.

u∗v

u=v


u ∈ L1 (Rn)

u∗v
χ:R→R

v ∈ L1(Rn)

e−1/t
χ(t) =

(t > 0)
0

(t



0).

ρ(x) = Kχ(1 − ∥x∥2),


ρ : Rn → R

−1
χ(1 − ∥x∥2)dλ(x) ) .



K=

(

B(0,1)



ρ = B(0, 1)
∫n ρ(x)dVn(x) = 1.

n

ρ ∈ C (R )

R

ϵ>0

1
ρϵ(x) =




(x
ϵ

ϵn
R

).

n

u ∈ SH(Ω)

ϵ>0

(x, ∂Ω) > ϵ} = ∅,

Ωϵ := {x ∈ Ω :
u ∗ ρϵ ∈ C∞ ∩ SH(Ωϵ)
ϵ

ρ

u ∗ ρϵ
lim u ∗ρ (x) = u(x)
ϵ→0

ϵ

x∈Ω




u ∈ C2(Ω)

u ∈ SH(Ω)

∆u ≥ 0


∆u ≥ 0
u ∈ SH(Ω)
∫Ω u(x)∆φ(x)dVn(x) ≥ 0
φ ∈ C0∞(Ω)


∆v

v ∈ Lloc1(Ω) ∗
u = lim(v ρ )



0 Ω

ϵ 0



v


X

F

ϵ



F
δ>0

{E }
i i=1,2,...

δ

X = ∪i∞=1Eid(Ei) ≤

⊂ F
E

d(E)
d E

sup x
)=

(


x,y

y ;

E|−

|



δ>0
0<δ≤∞

φ(E) ≤ δd(E) ≤ δ

E∈F
U⊂X





ψδ(U) = inf

{

i

φ(Ei) :


U⊂

}

Ei, d(Ei) ≤ δ, Ei ∈ F ,

i

ψ(U) = lim ψδ(U).
δ↓0

ψ
F

ψ

X
φ(U) = d(U)k
ψ

0≤k<∞

F={U⊂X}

00=1

k−

d(∅)k = 0


U ⊂ Rn
{

Hδk(U) = inf



}


i

d(Ei)k : U ⊂

i

Ei, d(Ei) ≤ δ .


k

Hk(U)

U
Hk(U) = lim Hδk(U).
δ↓0

k = 0 H0






k=m

m
R



1≤mH |U

n

U

m−

m

U
Hn =

k=n

2n
Vn.

Vn(B(0, 1))

n
n
H (B(a, R)) = (2R)
a ∈ Rn0 < R < ∞


k>n

Hk(Rn) = 0 Hk

k

Rn
k
R

n

Hk
R

U ⊂ Rn a ∈ Rn

0<α<∞

Hk(U + a) = Hk(U)

U + a = {x + a : x ∈ U}


Hk(αU) = αkHk(U)

αU = {αx : x ∈ U}.
Hk

0≤kHk(U) < ∞
Hl(U) > 0

U ⊂ Rn

Hl(U) = 0
Hk(U) = ∞

U ⊂ Rn

U

dim U = sup{k : Hk(U) > 0}
=

sup{k : Hk(U) = ∞}

=

inf{k : Hk(U) < ∞}

=

inf{k : Hk(U) = 0}.


n


dim U



k < dim U

Hk(U) = ∞

k > dim U

Hk(U) = 0


dim Rn = n

• dim C = log 2/ log 3

C

0 < Hk(U) < ∞ Hk(U) = ∞

Hk(U) = 0

k = dim U
Hk(U)


k

U Rn
Hk

U

φ(U) = d(U)k

h : [0, +∞) → [0, +∞)
0
h
U

Λh(

)=

lim inf
δ↓0

{

h
0


i

U


U ⊂ Rn


h dE

((

R

U
i))



:

i

E ,dE

( i) ≤

i

δ.

}

n


k

C0>0
C0−1Rk ≤ Hk(U ∩ B(x, R)) ≤ C0Rk, x

∈ U 0 < R < d(U)
0≤k<∞
k
η x ∈ Rn
∗k

Θ (

η, x

)=

lim sup
r↓0

η

R

η B(x, r)

(

(2r)k


k

)

η,
lim inf η B(x, r) .
x )=
)
(
Θ∗(
r↓0

(2r)k

,

n


Θk(η, x) = Θ∗k(η, x) = Θk∗(η, x)
k−

η x
k−

η
n

η


R U ⊂R

Θ∗k(η, x) ≤ α

x∈U

η(U) ≤ 2kαHk(U).

Θ∗k(η, x) ≥ α

x∈U

η(U) ≥ αHk(U).

n

Hk
0<α<∞

{

H=

h : (0, +∞) → (0, +∞) : ∃ M > 0, c > 4


∫0

h(r)


h(ϵ)

dr ≤ M

rn−1

}.



ϵn−2
rk

h1, h2 ∈ H

k>n−2
a
F

h1 + h2 ∈ H

: (0, +∞) → (0, +∞)
1

c> 4


lim sup
+

ϵ→0

h
h(r)/rn−1

(∗)



a · h1 ∈ H

∫cϵ
0

rk| log r|
h

F (r)dr
<∞ .

F(ϵ)

H



F (r) =


µ


f
X





+∞

µ({x ∈ X : f(x) ≥ t})dt.

f dµ =
X

0



Kh ∈ H
A,B>0

u
Ω x0
µ

n

R (n ≥ 2) K


ϵ0>0

(

)

ϵ<ϵ0

µ K ∩ B(x0, ϵ) ≥ Ah(ϵ)

(

)

x∈K

µ K ∩ B(x, ϵ) ≤ Bh(ϵ)
1

lim
ϵ→0µK

ϵ<ϵ0
u(x)dµ(x) = u(x

∩ B(x0 , ϵ)



)


(

).
0

ϵ1 < ϵ0

x0 = 0

K∩B(x0,ϵ)

c


∫0

h(r)

h(ϵ)

rn−1

ϵn−2

γ>1p>1

ϵ≤ϵ1

,


dr ≤ M

c = 2γ(1 + p)

Kϵ = K ∩ B(0, ϵ).
1
lim

ϵ→0

u(0) = −∞
lim sup
ϵ→0

µ(Kϵ)

u(x)dµ(x) = u(0).



1

µ(Kϵ)

u(x)dµ(x)



lim sup sup u(y)



ϵ→0

y∈Kϵ



1
lim

ϵ→0

µ(Kϵ)

u(x)dµ(x) = u(0).



u(0) =


.
−∞


u(0) > −∞


B(0, 1) b Ω


u(x) = max 1, n
B(0, 1)

−1

g( x − w

− 2 } σ ∂B(0, 1)
(

{

)

|

B(0,1)

)dν(w) + φ(x),

|

(

g ν = ∆u|

B(0,1)

lim

ϵ→0

φ
u x dµ x



1

( )

µ(Kϵ)

(

)=




lim
ϵ→0

−1
− 2 σ ∂B(0, 1)

(
}

max 1, n


{

1

fϵ(w) = µ(Kϵ)
x
0
u(0) = max 1, n

f (w)dν(w) + φ(0),
ϵ

)

B(0,1)

g(|x − w|)dµ(x).




−1

g( w

2 σ ∂B(0, 1)

{


)dν(w) + φ(0).

||

(

−}

)

B(0,1)

lim
ϵ→0

∫ g( w

f (w)dν(w) =


)dν(w).

| |

ϵ

B(0,1)

B(0,1)


fϵ(w) → g(|w|), ϵ → 0,
ν

B(0, 1)

ν



g
u(0) ≤
{



(0, 1)
g(w )dν(z) + φ(0)

−1
max 1, n

2 σ ∂B(0, 1)

−} (

)

−1

(


|

|

B(0,δ)

g(δ)ν (0, δ) + φ(0),

)

max{1, n − 2}σ ∂B(0, 1)

(B

)

0<δ<1
ν

)

φ ∈ H B(0, 1)

(B(0, δ)) ≤ max{1, n − 2}σ(∂B(0, 1))

−u(0) + φ(0)

, g(δ)



δ ↘ 0 0<δ<1

δ→0

ν(B(0, δ)) ↘ 0

ν({0}) = 0
fϵ(w) → g(|w|),
w ∈ B(0, 1) {0}
C1,C2 > 0
fϵ(w) ≤ C1g(|w|) + C2,

w ∈ B(0, 1) {0}

ϵ<ϵ1
|w| > pϵ

|w| ≤ pϵ
|w| > pϵ |w|

x

w

| −

w

x


w

ϵ>

w

|≥| |−| |≥| |−

f

p−1

| |− p

1

x ∈ Kϵ
w .

p | |
g

ϵ

(0, 1)

f (w) ≤

=




g(|w| − |x|)dµ(x)
µ(Kϵ)
1 ∫ (p − 1 )
K
µ(K ϵ) g
p |w| dµ(x) ϵ

ϵ





g

=

(

(p − 1
p 1

)

g

p−1


p |

w

)

p |w| .

(p

=

|



gw +g
)

(| |)2

n



(p−1 )
||

(n = 2)

.

p

g( w ) (n > 2)
|w | ≤ pϵ


fϵ(w) =
=
α(ϵ)

0



)

: g(|x − w|) ≥ t} dt

µ {x ∈ Kϵ

µ(Kϵ)
+∞

1 ∫
µ(Kϵ)

(


(

+∞

1

(

(

Kϵ ∩

µ

(

B

))
w, g−1(t) dt.

0

1 ∫
µ(Kϵ)

α(ϵ) = g(|w| + ϵ)

0


fϵ(w) =

α(ϵ)

µ Kϵ∩B

)

)

w, g (t) dt +
−1

1

α(ϵ)



+∞ (

µ

(

Kϵ ∩B w, g−1(t)

)

)


dt.


µ(Kϵ)


(
)
−1(t)
B(0, ϵ) ⊂ B w, g
(

))

µ(Kϵ ∩ B w, g (t) = µ(Kϵ),
−1

0

≤ t ≤ α(ϵ).

(

)
−1

K ∩ B w, γg (t) =

(


) )
−1
µ(Kϵ ∩ B w, g (t) =0.
−1



−1

()()() Kϵ ∩ B w, g (t) ⊂ K ∩ B w, γg (t) ⊂ K ∩ B w0,
2γg−1(t) ,
(

)

w0 ∈ K ∩B w, γg (t)
t ≥ α(ϵ)
−1

ϵ<ϵ1,

2γg−1(t) ≤ 2γg−1(α(ϵ)) = 2γ(|w| + ϵ) ≤ 2γ(1 + p)ϵ < cϵ1 < ϵ0,

(

−1
µ Kϵ ∩ B w, g (t)

(


) ≤ Bh 2γg−1(t) ,
)

(

t ≥ α(ϵ).
)


α(ϵ)

ϵ<ϵ1

+∞

1

B

fϵ(w) ≤ µ(Kϵ) ∫ µ(Kϵ)dt + µ(Kϵ) ∫ h(2γg−1(t))dt
0

α(ϵ)

2γ(|w|+ϵ)

= α(ϵ) + (2γ)

n−2


max{1, n − 2}B

∫0

µ(Kϵ)
||

(



g(|w|) +

(2γ)

ϵ

2γ(p+1)ϵ



Ah(ϵ)

)

0
n−2

max{1, n − 2}BM , Aϵn−2


h
ϵ<ϵ1
f (w) ≤

rn−1

+ (2γ)n−2 max{1, n − 2}B

≤ g w +ϵ

h(r) dr

r := 2γg−1(t)

g( w ) + (2γp)n−2 max{1, n − 2}BM .
||

A|w|n−2

h(r) dr
rn−1


×