ỦY BAN NHÂN DÂN TP BIÊN HỊA
TRƯỜNG THCS AN BÌNH
Cộng hòa xã hội chủ nghĩa Việt Nam
Độc lập – Tự do – Hạnh phúc
ĐỀ THI HỌC KỲ I
Năm học: 2016 - 2017
Thời gian: 90 phút (không kể thời gian giao đề)
I/MA TRẬN ĐỀ
Nhận biết
Cấp độ
Chủ đề
TN
Thông hiểu
TL
1.Phép nhân
và phép chia
các đa thức
Số câu Sốđiểm
Tỷ lệ %
2. Phân thức
đại số
Số câu Sốđiểm
Tỷ lệ %
3. Tứ giác
TN
TL
- Biết áp dụng các hằng đẳng
thức đáng nhớ để khai triển
một biểu thức.Biết quy tắc
nhân chia đa thức cho đơn
thức để thực hiện phép tính
2
Áp dụng các phương pháp phân
tích đã học để phân tích đa thức
thành nhân tử
1
3
1
0.5
- Vận dụng được cách
biến đổi một biểu thức
về các hằng đẳng thức
đáng nhớ giải một số
dạng toán
1
5 2,5
25%
1
Thực hiện phép cộng, trừ, nhân
chia các phân thức đại số.
0.5
0.5
Cộng
TL
2
- Nhận biết một tứ
- Biết áp dụng tính chất của tứ
giác là hình thang,
giác đặc biệt để tính độ dài
hình bình hành, hình các cạnh đường chéo của nó
chữ nhật, hình thoi
hoặc hìnhvng
Vẽ hình, ghi giả
thiết , kết luận
Số câu Sốđiểm
1
Tỷ lệ %
4. Đa giác.
Diện tích đa
giác
Số câu Số điểm
Tỷ lệ %
Ts câu Ts điểm 3
TN
0,5
Nhận biết được một
phân thức bằng với
phân thức đã cho .
1
Vận dụng
cao
Vận dụng
1
4 2.5
25%
2
- Chứng minh một tứ giác là
hình thang, hình bình hành, hình
chữ nhật hoặc hình thoi.Tìm
thêm điều kiện để một tứ giác
đặc biệt là hình chữ nhật, hình
thoi hoặc hình vng
0,25
2
5 3,75
37,5%
2,5
Biết cơng thức tính diện tích
tam giác, các tứ giác đã học
để giải bài tập
1
1,5
0,25
5
1
1
2
7
5,5
1
1
2 1,25
12,5%
16 10
Tỷ lệ %
15%
20%
55%
10%
100%
II/BẢNG MÔ TẢ
NỘI DUNG
NHẬN BIẾT
Những
hằng
đẳng thức đáng
nhớ
THÔNG HIỂU
- Biết áp dụng các
hằng đẳng thức
đáng nhớ để khai
triển một biểu thức
Câu hỏi: 2.TN
1.Phép
nhân
và
phép
Phân tích đa
chia
thức
thành
các đa
nhân tử
thức
Nhân, Chia đa
thức cho đơn
thức
2.
Phân
thức
đại số
3.
Tứ
giác
4. Đa
giác.
Diện
tích đa
giác
- Nhận biết một tứ
giác là hình thang,
hìnhbìnhhành,hình
chữ nhật, hình
Các loại tứ giác thoihoặchìnhvng
đặc biệt
Vẽ hình, ghi giả
thiết,kếtluận
Câuhỏi:5TNCâuhỏi:
3TL
- Biết quy tắc nhân,
chia đa thức cho
đơn thức để thực
hiện
phép
tính
Câu hỏi: 1TN
Thực hiện được
phépcộng trừ các
phân thức đại số.
Câu hỏi: 2a,b,TL
- Thực hiện được
phép nhân hoặc
phép chia các phân
thức đại số.Câu hỏi:
2cTL
- Nhận biết tính chất
của tứ giác đặc biệt
để tính độ dài các
cạnh đường chéo
của nó
Câu hỏi: 4TN
Biết cơng thức tính
diện tích tam giác,
các tứ giác đã học
để giải bài tập
Câu hỏi: 6TN ;Câu
hỏi:3cTL
VẬN DỤNG
CAO
-Vận dụng được
cách biến đổi
một biểu thức
về các hằng
đẳng thức đáng
nhớ giải một số
dạng toán Câu
hỏi: 4TL
Áp dụng các phương
pháp phân tích đã
học để phân tích đa
thức thành nhân tử
Câu hỏi: 1a,bTL
Nhận biết được một
Phép cộng trừ
phân thức bằng với
các phân thức
phân thức đã cho .
đại số
Câu hỏi: 3TN
Phép nhân,
chia các phân
thức đại số
VẬN DỤNG
Chứng minh một tứ
giác là hình thang,
hình bình hành, hình
chữ nhật hoặc hình
thoi.Tìm thêm điều
kiện để một tứ giác
đặc biệt là hình chữ
nhật, hình thoi hoặc
hình VngCâu hỏi: 3a,bTL
ỦY BAN NHÂN DÂN TP BIÊN HỊA
TRƯỜNG THCS AN BÌNH
Cộng hòa xã hội chủ nghĩa Việt Nam
Độc lập – Tự do – Hạnh phúc
ĐỀ THI HỌC KỲ I
Năm học: 2016 - 2017
Thời gian: 90 phút (không kể thời gian giao đề)
ĐỀ 1 :
I.Trắc nghiệm: (2 điểm)
Chọn đáp án đúng trong các đáp án sau:
6
3 3
:
Câu 1 : 4 4
3
a. 4
3
3
=
3
b. 4
2
c. 2
Câu 2 : : Điền vào chỗ (……) đa thức thích hợp
d. 33
( 27x3 + 9x2 + 3x + 1 ) : ( 3x + 1) = .........................
A. ( 3x + 1)2
B. ( 3x - 1)2
Câu 3: Phân phức đối của phân thức
3x
a. x 1
3x
b. x 1
C. ( x + 3)2
3x
x 1 là :
3x
c. 1 x
D. 9x2 + 6x +1
3x
d. x 1
Câu 4. Độ dài đường chéo của một hình thoi bằng 2cm và 4cm. Độ dài cạnh của hình
thoi là:
A. 6cm
B. 20 cm
C. 5 cm
D. 5cm
Câu 5 : Một tứ giác là hình chữ nhật nếu nó là :
a. Tứ giác có 2 đường chéo bằng nhau .
b. Hình bình hành có một góc vng .
c. Hình thang có một góc vng .
d. Hình thang có hai góc đối bằng 900 .
Câu 6.Tam giác cân là hình :
a. Khơng có trục đối xứng .
b. Có một trục đối xứng .
c. Có hai trục đối xứng .
d. Có ba trục đối xứng .
ĐỀ 2 :
I.Trắc nghiệm: (2 điểm)
Chọn đáp án đúng trong các đáp án sau:
Caâu 1 : Kết quả của phép nhân (1 + 3x)(-2xy) là
A. - 6x2
B. -2xy + 6x2y;
C. 1 – 6x2y;
D. -2xy – 6x2y
Câu 2: Đa thức 16x3y2 - 24x2y3 + 20x4y3 chia hết cho đơn thức nào:
A. 5x2y2
B. 16x2
C.- 4x3y
D. -2x3y2
3x 2 y
2
Câu 3: 9xy có kết quả rút gọn là:
x
A.
y
x
B.
3y
x2
D.
3xy
3x
C.
y
Câu 4: Điền vào chỗ (……) đa thức thích hợp
a) (2x + y)(................) = 8x3 + y3
A. 4x2+y2
B. 4x2-2xy - y2
C. 4x2 - 2xy +y2
D. 4x2+2xy +y2
Câu 5: : Khẳng định nào sai trong các khẳng định sau:
A. Hình thang có 2 cạnh bên song song là hình bình hành.
B. Tứ giác có hai cạnh đối bằng nhau là hình bình hành.
C. Hình thang có 2 cạnh đáy bằng nhau là hình bình hành.
D. Hình thang có 2 đường chéo bằng nhau là hình bình hành.
Câu 6. Hình thoi có hai đường chéo bằng 6cm và 8cm thì chu vi hình thoi bằng
A. 20cm
B. 48cm
C. 28cm
D. 24cm
II-/ Tự luận(8 đ)
Bài 1: (1điểm) Phân tích đa thức thành nhân tử
3
2
2
a) x x 4 x 4
b) x 3x 2
Bài 2: (2 đ) Thực hiện phép tính:
a)
x +1
2 x +6
3 x 11
+ 2x 6
3
b) 2 x +6
−
x −6
2 x 2 +6 x
c) (4 x 2 16) :
3x 6
7x 2
Bài 3: (4 điểm)
ˆ 1200
Cho hình bình hành MNPQ có MN = 2MQ và M
. Gọi I; K lần lượt là trung điểm
của MN và PQ và A là điểm đối xứng của Q qua M.
a/ Tứ giác MIKQ là hình gì ? Vì sao?
b/ Chứng minh tứ giác AMPN là hình chữ nhât.
c/ Cho AI = 4cm. Tính diện tích của hình chữ nhật AMPN.
Bài 4: (1điểm)
1 1
4
Cho a,b > 0, CMR: a + b a b
ỦY BAN NHÂN DÂN TP BIÊN HỊA
TRƯỜNG THCS AN BÌNH
Cộng hịa xã hội chủ nghĩa Việt Nam
Độc lập – Tự do – Hạnh phúc
ĐÁP ÁN THI HỌC KỲ I
Năm học: 2016 - 2017
Thời gian: 90 phút (không kể thời gian giao đề)
I.Trắc nghiệm: (2 điểm)
Câu
Đề 1
Đề 2
Điểm
II-/ Tự luận(8 đ)
Câu 1
A
D
0,25
Câu 2
A,D
A.B
0,25
Câu 3
D
B
0,5
Câu 4
C
C
0,25
Câu 5
B,D
B,D
0,5
Câu 6
B
A
0,25
BÀI
1
(1
điểm)
ĐÁP ÁN
3
2
3
2
2
x x 4 x 4 ( x x ) (4 x 4) x ( x 1) 4( x 1)
a) ( x 1)( x 2)( x 2)
BIỂU ĐIỂM
(0,25 điểm)
(0,25 điểm)
x 2 3x 2 ( x 2 2 x) ( x 2) x( x 2) ( x 2)
b) ( x 2)( x 1)
2
3 x 11 x 1 3 x 11 4 x 12 2(2 x 6)
x +1
2
(2 điểm) a) 2 x +6 + 2 x 6 =
2x 6
2x 6
2x 6
3
x 6
3
x 6
3x x 6
2
2 x 6 2 x 6 x 2( x 3) 2 x ( x 3) 2 x( x 3)
2x 6
2( x 3) 1
2
x
(
x
3)
2
x
(
x
3)
x
b)
4x 8
7x 2
(2 x 4)(2 x 4).
7x 2
4x 8
7x 2
4( x 2)(x 2).
( x 2)(7 x 2)
4( x 2)
c) (4 x 2 16) :
(0,25 điểm)
(0,25 điểm)
(0,25 điểm)
(0,25 điểm)
(0,25 điểm)
(0,25 điểm)
(0,25 điểm)
(0,25 điểm)
(0,25 điểm
(0,25 điểm)
GT-KL- Hình vẽ
3
(4điểm)
(0,5 điểm)
MN
2 ( I là trung điểm của MN)
a/ Tacó:
QP
QK
2 (K là trung điểm của QP)
MI
Mà MN//QP và MN = QP ( MNPQ là hình bình hành)
Suy ra: MI//QK vàMI = QK
Do đó tứ giác MIKQ là hình bình hành.(1)
MN
2 (theo GT) (2)
Mặt khác: MI = QM
Từ (1) và (2) Tứ giác MIKQ là hình thoi.
b/ Ta có PN // MA và PN = MA ( Vì PN // QM và QM =
AM)
Nên tứ giác AMPN là hình bình hành.
( 3)
( 1 điểm)
(0,5 điểm)
( 1 điểm)
MAN cóAI là đường trung tuyến và AI =
Do đó: MAN vng tại A
(4)
MI
MN
2
(0,5 điểm)
Từ (3) và (4): Tứ giác AMPN là hình chữ nhât.
c/ MAN vng tại A có AM = AI =4 cm ;
MN = 2.AI = 8cm
2
2
2
2
Nên: AN MN AM = 8 4 48 (cm)
Vậy SAMPN AM.AN 4. 48 (cm2)
4
(1 điểm)
1 1
4
Cho a ≥ 0 ; b ≥ 0 ta có : a + b a b
a b
4
(a b) 2 4ab
ab
a b
a 2 2ab b 2 0 (a b) 2 0
với a ≥ 0 ; b ≥ 0
(0,25 điểm)
(0,25 điểm)
(0,5 điểm)
(0,25 điểm)
(0,25 điểm)
1 1
4
Vậy : a + b a b
GVBM
Kiều Thanh Bình