Giạo trçnh Cåí såí K thût âiãûn II Trang
103
CHỈÅNG 18
QUẠ TRÇNH QUẠ ÂÄÜ ÅÍ MẢCH PHI TUÚN
§1. Âàûc âiãøm ca quạ trçnh quạ âäü trong mảch phi tuún.
- Viãûc âọng ngưn hçnh sin vo mảch tuún tênh cọ chỉïa dung, cm v tråí cọ
thãø tảo dng, ạp quạ âäü cỉûc âải khäng vỉåüt quạ 2 láưn biãn âäü åí trảng thại xạc láûp.
Nhỉng khi âọng vo mảch khạng phi tuún thç cọ thãø xút hiãûn âiãûn ạp hay dng âiãûn
quạ âäü låïn hån trë säú xạc láûp nhiãưu láưn, trảng thại ny ráút dãù âỉa âãún sỉû cäú.
- Quạ trçnh quạ âäü åí mảch phi tuún ngoi sỉû thay âäøi âàûc biãût vãư
lỉåüng nhỉ
trãn nọ cn thay âäøi vãư cháút : QTQÂ trong mảch phi tuún cọ thãø phạt sinh nhỉỵng hiãûn
tỉåüng måïi nhỉ quạ trçnh tỉû dao âäüng cọ táưn säú ω ≠ ω
ngưn
- Quạ trçnh quạ âäü mảch phi tuún âỉåüc miãu t bàòng nhỉỵng phỉång trçnh vi
phán phi tuún viãút theo lût K1, K2. Bi toạn quạ trçnh quạ âäü l bi toạn gii hãû
phỉång trçnh vi phán phi tuún cho tha mn så kiãûn nãn khäng cọ phỉång phạp no
chung m chè cọ nhỉỵng phỉång phạp gáưn âụng dng cho nhỉỵng mảch củ thãø.
Ta xẹt mäüt säú phỉång phạp gáưn âụng gii quạ trçnh quạ âäü mảch phi tuún.
§2. Phỉång phạp tuún tênh họa säú hảng phi tuún nh.
I. Tinh tháưn phỉång phạp :
1. Trong trỉåìng håüp quạ trçnh ca mảch âi âãún äøn âënh thç nãúu cọ thay âäøi êt
no âọ cạc säú hảng hay hãû säú ca phỉång trçnh thç nghiãû
m cng thay âäøi nh tỉång
ỉïng, lục âọ ta cọ thãø coi säú hảng phi tuún l nh trong hãû phỉång trçnh mảch nãn cọ
thãø gáưn âụng cho nọ bàòng 0 m khäng nh hỉåíng nhiãưu âãún nghiãûm ca quạ trçnh.
Vê dủ : Khi phi tuún nh cọ thãø coi gáưn âụng nhỉ sau :
'i.a'i ).i.ba('i).i(LU
i.
R
i )i.
R
(i).i(
R
U
L
00R
≈++==
≈
+α+==
2. Ạp dủng tinh tháưn áúy âãø gii nhỉỵng bi toạn m phỉång trçnh mảch l
phỉång trçnh vi phán cáúp 1 liãn hãû hai biãún, nhỉng giỉỵa hai biãún âọ lải cọ quan hãû hm
phi tuún (âọ chênh l hm âàûc tênh)
Vê dủ : Xẹt cün dáy li thẹp cọ âiãûn tråí r âỉåüc âọng vo ngưn cọ Sââ e(t)
hçnh sin hçnh (h.18-1). ta biãút sau khi âọng mäüt thåìi gian thç quạ trçnh trong mảch s
âãún xạc láûp, äøn âënh nãn cọ thãø ạp dủng phỉång phạp tuún tênh họa âãø chuøn hãû
phỉång trçnh vi phán phi tuún thnh phỉång trçnh vi phán tuún tênh gáưn âụng âãø gii
mảch.
Âiãûn cm phi tuún âỉåüc cho dảng hm xáúp xè :
r
ψ(i)
K
e(t)
ba)(ihay
biiL)i(
3
3
0
+ψ+ψ=ψ
++=ψ
Phỉång trçnh vi phán mä t QTQÂ ca mảch l :
)t(e
d
t
d
i.r =
ψ
+
h.18-1
Trỉåìng Âải Hc K Thût - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giạo trçnh Cåí såí K thût âiãûn II Trang
104
Âáy l phỉång trçnh vi phán cáúp 1 liãn hãû hai biãún trảng thại ψ, I nãn r rng
mún gii phỉång trçnh ta phi chuøn tỉì biãún ny sang biãún kia âãø âỉåüc phỉång trçnh
vi phán cáúp 1 theo mäüt biãún. Hai biãún ψ, I liãn hãû våïi nhau trong hm âàûc tênh phi
tuún nãn nãúu dng quan hãû ny âỉa vo phỉång trçnh thç hãû phỉång trçnh s phỉïc tảp
khọ gii. Khi mảch cọ tênh phi tuún nh b qua säú hảng phi tuún trong quan hãû hm
ψ(i) thay vo hãû phỉång trçnh s âỉåüc phỉång trçnh vi phán cáúp mäüt tuún tênh theo
mäüt biãún thç gii âỉåüc dãù dng. Ta chuøn âäøi cạc biãún trong trỉåìng håüp củ thãø nhỉ
sau :
a. Khi quạ trçnh trong mảch cọ tiãu tạn êt nãn cọ
d
t
d
i.r
ψ
<<
thç âäøi biãún i theo
biãún ψ âỉåüc gáưn âụng : i(ψ) ≈ a.ψ
Lục ny phỉång trçnh vi phán theo biãún ψ l :
)t(e.a.r
d
t
d
=ψ+
ψ
Gii phỉång trçnh vi phán tuún tênh gáưn âụng
)t(e.a.r
d
t
d
=ψ+
ψ
(bàòng phỉång
phạp têch phán phỉång trçnh vi phán, hay phỉång phạp toạn tỉí) cho tha mn så kiãûn
ψ(0) s âỉåüc nghiãûm ψ(t), sau khi cọ ψ(t) dỉûa vo quan hãû ψ(i) xạc âënh âỉåüc dng
âiãûn quạ âäü i(t).
b. Khi tiãu tạn trong mảch låïn, nãn cọ
dt
d
i.r
ψ
>>
lục âọ tênh biãún ψ theo biãún i
âỉåüc gáưn âụng : ψ(i) ≈ L
0
.i nãn cọ : 'i.L
d
t
di
.
id
t
d
0
≈
∂
ψ
∂
=
ψ
v phỉång trçnh mä t QTQÂ
l :
)t(e
d
t
di
Li.r
0
=+ l phỉång trçnh tuún tênh. Gii phỉång trçnh cho tha mn så
kiãûn i(0) âỉåüc dng âiãûn quạ âäü i(t) v dỉûa vo quan hãû ψ(i) xạc âënh âỉåüc ψ(t).
II. Cạc bỉåïc ca phỉång phạp tuún tênh họa säú hảng phi tuún nh :
Tỉì vê dủ trãn ta rụt ra cạc bỉåïc thỉûc hiãûn nhỉ sau :
1. Viãút phỉång trçnh ca mảch dỉåïi dảng phỉång trçnh vi phán cáúp 1 theo hai
biãún trảng thại - Ty theo âàûc âiãøm ca mảch âãø qua hm âàûc tênh, tênh gáưn âụng biãún
ny theo biãún kia. Thay vo phỉång trçnh vi phán âãø âỉåüc phỉång trçnh vi phán theo
mäüt biãún.
2. Gii phỉång trçnh vi phán cáúp 1 theo mäüt biãún cho tha mn så kiãûn ta âỉåüc
nghiãûm phán bäú thåìi gian ca mäüt biãún. Dỉûa vo nghiãûm â cọ v
hm âàûc tênh ca
pháưn tỉí phi tuún â cho ta xạc âënh âỉåüc nghiãûm cn lải (cọ thãø dng phỉång phạp
toạn tỉí Laplace hồûc phỉång phạp têch phán kinh âiãøn âãø gii phỉång trçnh vi phán cáúp
mäüt theo mäüt biãún). Chụ ràòng cün dáy li thẹp cọ bo ha thç chn L l giạ trë trung
bçnh
m
m
i
L
ψ
=
.
§3. Phỉång phạp nhiãùu loản ( phỉång phạp tham säú nh) :
I. Tinh tháưn ca phỉång phạp tham säú nh :
Phỉång phạp tham säú nh l th thût âãø gii phỉång trçnh vi phán nọ âàûc biãût
tiãûn låüi khi nghiãn cỉïu cạc hãû dao âäüng phi tuún nh phủ thüc mäüt tham säú.
Trỉåìng Âải Hc K Thût - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giạo trçnh Cåí såí K thût âiãûn II Trang
105
Phỉång trçnh vi phán phi tuún thãø hiãûn tênh phi tuún åí säú hảng báûc cao. Säú
hảng ny tham gia quút âënh nghiãûm quạ trçnh. Coi nọ l mäüt tham säú tham gia vo
phỉång trçnh mảch. Kê hiãûu tham säú âọ l : µ.
Váûy phỉång trçnh vi phán ca mảch l : H(x, µ, t) = 0.
Ta phán têch v gäüp cạc säú hảng ca phỉång trçnh thnh hai nhọm säú hảng :
H(x, µ, t) = H
1
(x, t) + µ.H
2
(x, µ, t) = 0 (18-1)
Trong âọ : H
1
(x, t) l táûp håüp táút c cạc säú hảng tuún tênh trong hãû, cn H
2
(x,
µ, t) l táûp håüp táút c cạc säú hảng phi tuún trong hãû. Trong âọ tham säú µ quút âënh
tênh cháút, mỉïc âäü phi tuún ca quạ trçnh phi tuún trong mảch. Khi µ = 0 säú hảng phi
tuún khäng cn.
Lục ny phỉång trçnh mảch chè cn H
1
(x, t) = 0 gi l phỉång trçnh tuún tênh
suy biãún. Nghiãûm ca H
1
(x, t) = 0 kê hiãûu l x
0
(t) gi l nghiãûm tuún tênh suy biãún.
Nghiãûm ca H(x, µ , t) = 0 kê hiãûu l x(t), nọi chung x(t) ≠ x
0
(t) såí dé cọ sai khạc âọ l
do cọ sỉû tham gia ca säú hảng phi tuún. Tỉïc l mỉïc sai khạc ty thüc µ.
Âäúi våïi cạc quạ trçnh âi âãún äøn âënh, khi µ bẹ cọ thãø coi nghiãûm x(t) cọ quan hãû
gii têch våïi tham säú µ, nãn cọ thãø khai triãøn x(t, µ) theo chùi ly thỉìa våïi tham säú µ .
Ta cọ nghiãûm dỉåïi dảng khai triãøn l :
k
kk
2
22
0
x
!k
x
!2
x
)t(x)t,(x
µ∂
∂µ
++
µ∂
∂µ
+
µ∂
∂
µ+=µ (18-2a)
Viãút gn lải :
)t(
x
)
t
(
x
.)
t
(
x
.)
t
(
x
)t,(
x
k
k
2
2
10
µ++µ+µ+=µ
(18-2b)
Trong âọ x
1
(t), x
2
(t), , x
k
(t) gi l cạc hm hiãûu chènh sỉû sai khạc giỉỵa x(t) v
x
0
(t) âãø x
0
(t) tiãún dáưn âãún x(t). Nãn ta cn gi âáy l phỉång phạp nhiãùu loản.
Tỉì âọ dáùn âãún tinh tháưn ca phỉång phạp l :
Tçm âỉåüc nghiãûm quạ trçnh phi tuún x(t) bàòng cạch gii tçm nghiãûm phỉång
trçnh tuún tênh suy biãún x
0
(t), sau âọ tçm cạc hm hiãûu chènh âãø x
0
(t) tiãún âãún x(t), ta
tháúy cng nhiãưu hm hiãûu chènh thç x
0
(t) cng tiãûm cáûn âãún nghiãûm phi tuún x(t).
II. Vê dủ :
Nảp tủ âiãûn C âãún u
C
(-0) = U
0
räưi cho phọng âiãûn qua âiãûn tråí phi tuún r(i) cọ
hm âàûc tênh i(u) = a.u + b.u
2
nhỉ hçnh (h.18-2). Xạc âënh âiãûn ạp trãn tủ âiãûn sau khi
âọng khọa K.
Phỉång trçnh mä t QTQÂ ca mảch :
trong âọ bu0u.bu.a'u.C
2
C
=++
2
l säú
hảng phi tuún nãn âỉa tham säú µ vo ta âỉåüc phỉång trçnh :
0u.bu.a'u.C
2
C
=µ++
Âàût nghiãûm dỉåïi dảng khai triãøn : u = u
0
+ µ.u
1
(våïi mäüt hm hiãûu chènh u
1
) thç
u' = u'
0
+ µu'
1
v
2
110
2
0
2
u
u
u
2
u
u
µ+µ+=
. Vç u = u
0
+ µ.u
1
l nghiãûm nãn thay vo
phỉång trçnh mảch phi nghiãûm âụng nãn cọ :
0
0
)uu2uu(b)uu(a)'u'u(C
01
2
1
22
01010
=µ+µ+µ+µ++µ+
ubu2bubuuaau'uC'C
u
01
22
1
32
01010
=µ+µ+µ+µ++µ+
Sàõp xãúp cạc säú hảng theo báûc ca µ ta âỉåüc :
0buubu2)buau'C
u
(au'C
u
2
1
3
01
22
01100
=µ+µ+++µ++
Trỉåìng Âải Hc K Thût - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giaùo trỗnh Cồớ sồớ Kyợ thuỏỷt õióỷn II Trang
106
Ta bióỳt caùc sọỳ haỷng cuớa khai trióứn luợy thổỡa õọỹc lỏỷp tuyóỳn tờnh, nón thay nghióỷm
khai trióứn vaỡo phổồng trỗnh maỷch õóứ nghióỷm õuùng phổồng trỗnh maỷch phaới coù nhổợng
phổồng trỗnh cỏn bũng rióng reợ theo tổỡng bỏỷc cuớa à. Tổỡ õoù ta õổồỹc caùc phổồng trỗnh
cỏn bũng rióng reợ :
ặẽng vồùi à = 0 coù C.u'
0
+ a.u
0
= 0 laỡ phổồng trỗnh tuyóỳn tờnh suy bióỳn.
ặẽng vồùi à coù : 0buau'C
u
2
011
=++ .
Vỗ ta chố cỏửn mọỹt haỡm hióỷu chốnh nón khọng cỏửn nhổợng phổồng trỗnh bỏỷc cao
hồn cuớa à.
1.
Giaới phổồng trỗnh tuyóỳn tờnh suy bióỳn õóứ xaùc õởnh nghióỷm tuyóỳn tờnh suy
bióỳn u
0
(t). Tổỡ phổồng trỗnh vi phỏn theo thồỡi gian : C.u'
0
+ a.u
0
= 0 vồùi sồ kióỷn u
C
(0) =
u
C
(-0) = U
0
. Duỡng phổồng phaùp toaùn tổớ giaới phổồng trỗnh vi phỏn tuyóỳn tờnh vồùi bióỳn
u
0
(t) ta õổồỹc nghióỷm tuyóỳn tờnh suy bióỳn.
Vồùi u
0
(t) U
0
(p) chuyóứn sang phổồng trỗnh õaỷi sọỳ aớnh toaùn tổớ :
[]
0)
p
(aU)0(
u
)p(pUC
0C0
=
+
[]
Cap
U
apC
CU
)p(U
CU)0(CuapC)p(U
0)
p
(aU)0(u.C)p(CpU
00
0
0C0
0C0
+
=
+
=
==+
=
+
giaới õổồỹc nghióỷm aớnh toaùn tổớ :
Tổỡ nghióỷm aớnh suy ra gọỳc: U
0
(p)
t
C
a
2
2
0
2
0
t
C
a
00
eU)t(ueU)t(u
==
chuyóứn sang
daỷng aớnh
Ca2p
U
)t(u
2
0
2
0
+
2.
Giaới phổồng trỗnh bỏỷc à õóứ xaùc õởnh haỡm hióỷu chốnh u
1
(t).
Phổồng trỗnh cỏn bũng vồùi bỏỷc cuớa à laỡ :0
tổỡ phổồng trỗnh naỡy ta
thỏỳy roợ à laỡ tham sọỳ, chuyóứn phổồng trỗnh naỡy sang daỷng aớnh toaùn tổớ õổồỹc phổồng
trỗnh :
)buau'Cu(
2
011
=++à
[]
a2pC
bCU
apC)p(U
0
a2pC
CU
b)p(aU)p(CpU
2
0
1
2
0
11
+
=+
=
+
++
ồớ õỏy lổu yù sồ kióỷn õóứ tờnh caùc haỡm hióỷu
chốnh laỡ 0, tổỡ laỡ u
1
(0) = 0, , u
k
(0) = 0.
Giaới õổồỹc nghióỷm aớnh :
()( )
)p(F
)p(F
a2pCapC
bCU
)p(U
2
1
2
0
1
=
++
=
giaới F
2
(p) = (pC+a)(pC+2a) = 0 õổồỹc :
C
a2
p,
C
a
p
21
==
(hai nghióỷm õồn)
Coù :
aC3pC2)p('F
2
2
+=
suy ra nghióỷm gọỳc coù daỷng :
t
C
a
2
2
t
C
a
11
eAeA)t(u
+=
trong õoù :
a
bU
aC
bCU
)p('F
)
p
(F
A,
a
bU
aC
bCU
)p('F
)p(F
A
2
0
2
0
22
21
2
2
0
2
0
12
11
1
=
=====
Trổồỡng aỷi Hoỹc Kyợ Thuỏỷt - Khoa ióỷn - Bọỹ mọn Thióỳt bở õióỷn
Giaùo trỗnh Cồớ sồớ Kyợ thuỏỷt õióỷn II Trang
107
Nón haỡm hióỷu chốnh :
t
C
a
2
2
0
t
C
a
2
0
1
e
a
bU
e
a
bU
)t(u
+=
Daỷng nghióỷm quaù õọỹ laỡ : u(t) = u
0
(t) + u
1
(t).
Bióứu thổùc õióỷn aùp QTQ laỡ :
t
C
a
2
2
0
t
C
a
2
0
t
C
a
010
e.U
a
b
e.U
a
b
eU)t(u)t(u)t(u
+=+=
III. Caùc bổồùc thổỷc hióỷn theo phổồng phaùp nhióựu loaỷn :
Tổỡ vờ duỷ minh hoỹa trón ta ruùt ra caùc bổồùc thổỷc hióỷn phổồng phaùp nhióựu loaỷn nhổ
sau :
1.
ỷt nghióỷm dổồùi daỷng khai trióứn vồùi sọỳ haỡm hióỷu chốnh tuỡy õọỹ chờnh xaùc cỏửn
thióỳt.
2.
Thay nghióỷm vaỡo hóỷ phổồng trỗnh cuớa maỷch, ta ruùt ra õổồỹc nhổợng phổồng
trỗnh cỏn bũng rióng reợ theo tổỡng bỏỷc cuớa tham sọỳ à.
3.
Giaới phổồng trỗnh tuyóỳn tờnh suy bióỳn cho thoớa maợn sồ kióỷn baỡi toaùn õổồỹc
nghióỷm tuyóỳn tờnh suy bióỳn x
0
(t).
4.
Giaới caùc phổồng trỗnh coỡn laỷi theo caùc bỏỷc cuớa à cho thoớa maợn sồ kióỷn 0 ta
seợ õổồỹc caùc haỡm hióỷu chốnh x
1
(t), x
2
(t), , x
k
(t).
5.
Cọỹng nghióỷm tuyóỳn tờnh suy bióỳn vồùi caùc haỡm hióỷu chốnhta seợ õổồỹc nghióỷm
quaù trỗnh quaù õọỹ phi tuyóỳn cỏửn tỗm x(t).
Đ4. Phổồng phaùp bión, pha bióỳn thión chỏỷm (PP VanderPol)
ỏy thổỷc chỏỳt laỡ phổồng phaùp bióỳn thión hũng sọỳ tờch phỏn - laỡ mọỹt thuớ thuỏỷt õóứ
giaới hóỷ phổồng trỗnh vi phỏn phi tuyóỳn. Duỡng tờnh cho hóỷ õồn giaớn, tióỷn lồỹi õóứ khaớo saùt
maỷch dao õọỹng gọửm hai phỏửn tổớ khaùng phi tuyóỳn (hóỷ tọnọm).
I. Tinh thỏửn chung caùc phổồng phaùp bióỳn thión hóỷ sọỳ tờch phỏn.
Ta õaợ bióỳt phổồng trỗnh maỷch phi tuyóỳn coù thóứ vióỳt vaỡ sừp xóỳp dổồùi daỷng :
H(x,t) = H
1
(x,t) + H
2
(x,à,t) (18-3a)
Trong õoù : H
2
(x,à,t) laỡ nhoùm caùc sọỳ haỷng phi tuyóỳn gỏy khoù khn cho vióỷc tỗm nghióỷm
quaù trỗnh, coỡn H
1
(x,t) = 0 laỡ phổồng trỗnh tuyóỳn tờnh suy bióỳn dóự daỡng tỗm õổồỹc nghióỷm
tọứng quaùt x(t,c) vồùi c laỡ hóỷ sọỳ tờch phỏn.
Vỗ maỷch coù phỏửn tổớ phi tuyóỳn nón nghióỷm tuyóỳn tờnh suy bióỳn x(t,c) khaùc
nghióỷm quaù trỗnh phi tuyóỳn nón coù thóứ coi nghióỷm cuớa quaù trỗnh phi tuyóỳn cuợng dổồùi
daỷng x(t,c) nhổng c(t) bióỳn thión theo thồỡi gian õóứ õióửu chốnh nghióỷm tuyóỳn tờnh suy
bióỳn õóỳn nghióỷm quaù trỗnh phi tuyóỳn. Tổùc laỡ nghióỷm quaù trỗnh phi tuyóỳn coù daỷng
x[t,c(t)]. Nóỳu noù laỡ nghióỷm cuớa quaù trỗnh thỗ ta thay vaỡo phổồng trỗnh maỷch, phổồng
trỗnh maỷch phaới õổồỹc nghióỷm õuùng vaỡ tổỡ phổồng trỗnh nghióỷm õuùng õoù ta ruùt ra
phổồng trỗnh vồùi ỏứn sọỳ c(t) laỡ K(c,t) = 0.
Giaới phổồng trỗnh K(c,t) = 0 naỡy ta õổồỹc c(t). (18-3b)
Lổu yù : thuớ thuỏỷt naỡy chố coù lồỹi khi giaới K(c,t) 0 dóự hồn giaới H(x,t) = 0.
II. Phổồng phaùp bión, pha bióỳn thión chỏỷm :
Vồùi caùc baỡi toaùn QTQ coù sinh ra caùc dao õọỹng trong maỷch dỏửn tióỳn õóỳn ọứn
õởnh (dao õọỹng õióửu hoỡa). Trong quaù trỗnh naỡy thọng sọỳ cuớa maỷch phi tuyóỳn coỡn thay
õọứi nhổng bión õọỹ vaỡ goùc pha õỏửu cuớa dao õọỹng thay õọứi rỏỳt ờt so vồùi baớn thỏn dao
Trổồỡng aỷi Hoỹc Kyợ Thuỏỷt - Khoa ióỷn - Bọỹ mọn Thióỳt bở õióỷn
Giaùo trỗnh Cồớ sồớ Kyợ thuỏỷt õióỷn II Trang
108
õọỹng, do õoù coù thóứ boớ qua caùc õaỷo haỡm theo bión õọỹ vaỡ goùc pha õỏửu dỏựn õóỳn coù thóứ
giaớm bỏỷc phổồng trỗnh vi phỏn cuớa maỷch vaỡ vióỷc giaới maỷch seợ dóự daỡng hồn. Ta vỏỷn
duỷng tinh thỏửn õoù phỏn tờch baỡi toaùn dao õọỹng phi tuyóỳn cỏỳp 2 nhổ sau :
Tổỡ phổồng trỗnh mọ taớ maỷch laỡ :
)x,x(fxx
2
0
à=+
Trong õoù :
. )x,x(fHcoỡn),t,x(Hxx
21
2
0
à==+
Thổồỡng H(x,t) phi tuyóỳn ờt nón nghióỷm cuớa H(x,t) khaùc chuùt ờt so vồùi nghióỷm cuớa
phổồng trỗnh tuyóỳn tờnh suy bióỳn H
1
(x,t) = 0.
Giaớ thióỳt
coù nghióỷm õióửu hoỡa laỡ :0xx)t,x(H
2
01
=+=
)
t
cos(.
A
)
t
(
x
0
+
=
Trong õoù : A, laỡ hai hóỷ sọỳ tờch phỏn.
Ta bióỳt trong õaùp ổùng maỷch phi tuyóỳn ngoaỡi õióửu hoỡa cồ baớn coỡn coù caùc õióửu hoỡa bỏỷc
cao nổợa song chuớ yóỳu laỡ õióửu hoỡa cồ baớn coỡn caùc õióửu hoỡa bỏỷc cao laỡ nhoớ, nón coù thóứ
õỷt vỏỳn õóử bióứu dióựn nghióỷm QTQ phi tuyóỳn dổồùi daỷng õióửu hoỡa cồ baớn nhổng coù
bión õọỹ vaỡ goùc pha thay õọứi theo thồỡi gian. Tổùc laỡ dao õọỹng coù bión õọỹ A(t), vaỡ goùc
pha (t).
Luùc naỡy nghióỷm QTQ coù daỷng :
[
]
)
t
(
t
cos)
t
(
A
)
t
(
x
0
+
=
(18-4)
nón chố cỏửn xaùc õởnh A(t) vaỡ (t) lừp vaỡo daỷng (18-4) laỡ õổồỹc nghióỷm quaù õọỹ phi tuyóỳn.
Khi hóỷ phi tuyóỳn ờt nón theo phỏn tờch ồớ trón seợ coù A, bióỳn thión õuớ chỏỷm.
óứ cho goỹn ta õỷt :
=+ )
t
(
t
0
thỗ coù
=
cos
A
)
t
(x nón coù :
+
+=
cosAsin)t()t(Ax
0
Vỗ A, bióỳn thión chỏỷm nón
<<
sinAsinAcosA
0
nón gỏửn õuùng coù :
(18-5) =
sinAx
0
=+=
cosAcosAsinAcos)(AsinAx
0
2
00000
thay vaỡo phổồng trỗnh maỷch ta õổồỹc :
[]
[]
à=
à=+
sinA,cosAfcosAsinA
sinA,cosAfcosAcosAcosAsinA
000
0
2
00
2
00
(18-6)
Tổỡ phổồng trỗnh cỏn bũng chung naỡy ruùt ra phổồng trỗnh cỏn bũng cuớa caùc sọỳ haỷng õọỹc
lỏỷp tuyóỳn tờnh õổồỹ bióứu thổùc cuớa
laỡ :
vaỡA
[]
[]
à
=
à
=
sinA,cosAf
sinA,cosAfA
0
0
0
0
(18-7)
Nhổ vỏỷy thay vỗ phaới giaới mọỹt phổồng trỗnh vi phỏn bỏỷc 2 laỡ :
ta õổa ra õổồỹc 2 phổồng trỗnh vi phỏn bỏỷc 1 vồùi hai bióỳn
nhổ (18-7). Vóỳ phaới
)x,x(fxx
2
0
à=+
)t(),t(A
Trổồỡng aỷi Hoỹc Kyợ Thuỏỷt - Khoa ióỷn - Bọỹ mọn Thióỳt bở õióỷn
Giạo trçnh Cåí såí K thût âiãûn II Trang
109
ca hai phỉång trçnh (18-7) l cạc hm chu k v cọ thãø biãøu diãùn dỉåïi dảng chùi
Fourier. Nãúu åí chùi ta chè láúy gáưn âụng thç cọ dảng rụt gn l :
[]
[]
⎪
⎪
⎭
⎪
⎪
⎬
⎫
ψψψω−ψ
πω
µ
−=θ
ψψψω−ψ
πω
µ
−=
∫
∫
π
•
π
•
2
0
0
00
2
0
0
0
dcossinA,cosAf
A2
dsinsinA,cosAf
2
A
(18-8)
Bàòng 2 phỉång trçnh ny xạc âënh biãn âäü A, gọc pha θ âãø thay vo nghiãûm x(t)
= A(t)cosψ = A(t).cos[ω
0
t + θ(t)].
Trong âọ :
[]
C
2
0
0
FdcossinA,cosAf
2
1
=ψψψω−ψ
π
∫
π
: giạ trë trung bçnh bçnh
phỉång trong mäüt chu k âọ l biãn âäü ca âiãưu ha cå bn thnh pháưn cos.
V
[]
S
2
0
0
FdsinsinA,cosAf
2
1
=ψψψω−ψ
π
∫
π
: l biãn âäü ca âiãưu ha cå bn
thnh pháưn sin. Xạc âënh âỉåüc
v .
∫
•
=
t
0
dtAA dt
t
0
∫
•
θ=θ
Cọ biãøu thỉïc nghiãûm l :
(18-9)
⎥
⎦
⎤
⎢
⎣
⎡
θ+θ+ω
⎥
⎦
⎤
⎢
⎣
⎡
+=
∫∫
t
0
00
t
0
0
dt)t(tcosdt)t(AA)t(x
Trong âọ A
0
, θ
0
l biãn, pha ca nghiãûm tuún tênh suy biãún cho tha mn så
kiãûn ca bi toạn.
Vê dủ : Xẹt tủ âiãûn C âỉåüc nảp âiãûn âãún âiãûn ạp U
0
räưi cho phọng âiãûn qua cün
dáy phi tuún cọ hm âàûc tênh i(ψ) = a.ψ +b.ψ
3
. Xạc âënh ψ(t) sau khi âọng tủ âiãûn
vo cün dáy nhỉ hçnh (h.18-3)
Xạc âënh så kiãûn âäüc láûp : ψ(-0) = ψ(+0) = 0, i
L
(-0) = i
L
(+0) = 0.
Phỉång trçnh hiãûn hnh : u
C
+ u
L
= 0 (âãø xạc âënh så kiãûn phủ thüc) hay :
→=
ψ
+
∫
0
dt
d
idt
C
1
thay tải t = 0 cọ u
C
(0) + ψ’(0) = 0 nãn ψ’(0) = - u
C
(0) = - U
0
.
Tỉì phỉång trçnh mảch :
0idt
C
1
=ψ+
•
∫
âảo hm c hai vãú âỉåüc phỉång trçnh :
0
C
i
=ψ+
••
thay theo biãún ψ cọ :
0
C
b
C
a
3
=
ψ
+
ψ
+ψ
••
h.18-3
C
i(ψ)
K
âáy l phỉång trçnh vi phán cáúp 2 cọ dảng :
0
32
0
=µψ+ψω+ψ
••
trong âọ :
C
b
v
C
a
2
0
=µ=ω
Rụt ra phỉång trçnh tuún tênh suy biãún :
0
2
0
=ψω+ψ
••
Gii phỉång trçnh ny bàòng phỉång phạp toạn tỉí Laplace:
)0()0(p)p(p),p()t(
2
•
••
ψ−Ψ−Ψ↔ψΨ↔ψ
m ψ(0) = 0, ψ'(0) = - U
0
nãn cọ phỉång trçnh nh toạn tỉí l : 0)
p
(U)
p
(
p
2
00
2
=Ψω++Ψ gii ra nghiãûm nh :
2
0
2
0
0
0
2
0
2
0
p
U
p
U
)p(
ω+
ω
ω
−
=
ω+
−
=Ψ
Trỉåìng Âải Hc K Thût - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giạo trçnh Cåí såí K thût âiãûn II Trang
110
tỉì âáy suy ra nghiãûm gäúc :
)90tcos(
U
tsin
U
)t(
0
0
0
0
0
0
0
+ω
ω
=ω
ω
−
=ψ
Váûy ta cọ :
0
0
0
0
0
90,
U
A =θ
ω
=
. Tỉì dảng nghiãûm : ψ
=
ψ
cos)
t
(
A
)
t
(
thay vo phỉång trçnh mảch ta cọ :
ψµ−ψµ−=ψµ−=ψωθ−ψω−
••
3cos
4
1
Acos
4
3
AcosAcosAsinA
3333
00
ta cán bàòng cạc âiãưu ha :
⎪
⎩
⎪
⎨
⎧
µ−=ωθ−
=ψω−
•
•
3
0
0
A
4
3
A
0sinA
rụt ra âỉåüc :
⎪
⎩
⎪
⎨
⎧
ω
µ=θ
=
•
•
0
2
A
4
3
0A
nãn cọ :
⎪
⎪
⎩
⎪
⎪
⎨
⎧
ω
µ
+=
ω
µ
+=θ+θ=θ
ω
==+=
∫∫
∫
•
•
t
U
4
3
90dt
U
4
3
90dt)t(
U
AdtAA)t(A
3
0
2
0
0
t
0
3
0
2
0
0
t
0
0
0
0
0
t
0
0
Làõp A(t) v θ(t) vỉìa tênh âỉåüc vo biãøu thỉïc nghiãûm
[]
)
t
(
t
cos)
t
(
A
)
t
(
0
θ
+ω
=
Ψ
ta
âỉåüc nghiãûm :
⎥
⎦
⎤
⎢
⎣
⎡
ω
µ
+ω
ω
−=
⎥
⎦
⎤
⎢
⎣
⎡
ω
µ
++ω
ω
=ψ t
U
4
3
tsin
U
t
U
4
3
90tcos
U
)t(
3
0
2
0
0
0
0
3
0
2
0
0
0
0
0
III. Cạc bỉåïc thỉûc hiãûn phỉång phạp biãn pha biãún thiãn cháûm :
1.
Viãút phỉång trçnh mảch dỉåïi dảng vi phán phi tuún.
2.
Gii phỉång trçnh tuún tênh suy biãún cho tha mn så kiãûn xạc âënh âỉåüc
A
0
, θ
0
tỉì nghiãûm
[
]
000
t
cos
A
)
t
(
x
θ
+
ω
=
3.
Thay dảng nghiãûm x(t) = A(t)cosψ vo phỉång trçnh vi phán ca mảch phi
tuún tỉì âọ rụt ra cạc phỉång trçnh cán bàòng theo cos, sin âãø âỉåüc cạc biãøu thỉïc ca
.
)t(),t(A
••
θ
4.
Gii tçm
∫∫
••
θ=θ=
t
0
t
0
dt)t()t(,dt)t(A)t(A
5.
Làõp A(t), θ(t) vo dảng nghiãûm :
[
]
)
t
(
t
cos)
t
(
A
)
t
(
x
0
θ+
ω
=
âỉåüc nghiãûm
quạ trçnh quạ âäü l :
[]
[
]
)
t
(
t
cos)
t
(
A
A
)
t
(
x
000
θ
+
θ
+
ω
+
=
§5. Phỉång phạp säú :
Viãûc phán têch mảch phi tuún bàòng cạc phỉång phạp â xẹt s tråí nãn ráút kho
khàn trong trỉåìng håüp mảch phỉïc tảp, säú lỉåüng cạc phán tỉí phi tuún låïn. Lục ny cáưn
thiãút phi dáùn ra hãû phỉång trçnh mảch sao cho viãûc gii nọ thỉûc hiãûn trãn mạy tênh säú
thç viãûc gii mảch phi tuún s ráút nhanh chọng, âäü chênh xạc cao. Hãû phỉång trçnh
nhỉ váûy s cọ âỉåüc khi ta thay hãû säú ca phỉång trçnh vi phán bàòng biãøu thỉïc xáúp xè
räưi váûn dủng cạc máùu thût toạn khạc nhau âãø dáùn ra hãû phỉång trçnh gáưn âụng tênh
âỉåüc trãn mạy tênh säú cho ra nghiãûm. Dỉåïi âáy ta dỉûa vo mäüt máùu sai phán âãø chuøn
hãû phỉång trçnh vi phán thnh hãû phỉång trçnh sai phán räưi âỉa vo mạy tênh gii.
I. Tinh tháưn phỉång phạp sai phán:
Trỉåìng Âải Hc K Thût - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giạo trçnh Cåí såí K thût âiãûn II Trang
111
Ta biãút nghiãûm bi toạn mảch phi tênh l phán bäú thåìi gian x(t). Thay vç gii ra
nghiãûm x(t) liãn tủc theo thåìi gian ta tçm nghiãûm phán bäú råìi rảc theo thåìi gian x(t
0
),
x(t
1
), x(t
2
), , x(t
n
) cạc thåìi âiãøm t
0
, t
1
, t
2
, , t
n
láưn lỉåüt cạch nhau mäüt khong thåìi gian
∆t = h gi l bỉåïc thåìi gian h do ta tỉû chn. Cạc nghiãûm x(t
0
), x(t
1
), x(t
2
), , x(t
n
) láưn
lỉåüt khạc nhau mäüt lỉåüng ∆x gi l säú gia ca biãún säú. Tỉì âọ tháúy ràòng nãúu biãút
nghiãûm tải t
0
(l så kiãûn ca bi toạn), chn bỉåïc h v cọ säú gia ∆x thç ta tênh âỉåüc
x(t
1
), cỉï nhỉ váûy tiãúp tủc láưn lỉåüt tênh âãún x(t
n
).
Vê dủ nhỉ : Tải t
0
cọ nghiãûm l x(t
0
) = x
0
Tải t
1
= t
0
+ h cọ nghiãûm l x(t
1
) = x
1
= x
0
+ ∆
0
x.
Tải t
2
= t
1
+ h = t
0
+ 2h cọ x(t
2
) = x
2
= x
1
+ ∆
1
x.
. . . . . . . . .
Tải t
n
= t
0
+ nh cọ x(t
n
) = x
n
= x
n-1
+∆
n-1
.x
Váûy âãø xạc âënh nghiãûm dỉåïi dảng phán bäú råìi rảc theo thåìi gian cáưn phi tênh
så kiãûn x
0
tải thåìi âiãøm âọng måí t
0
, chn bỉåïc thåìi gian h, chn säú gia ∆x.
R rng nãúu chn bỉåïc h cng nh thç cạc nghiãûm s åí cạc âiãøm thåìi gian sêt
nhau, âäü chênh xạc cng cao.
Cọ nhiãưu cạch xạc âënh ∆
n
x, mäùi cạch s cho âäü chênh xạc khạc nhau.
II. Näüi dung phỉång phạp sai phán :
Âáy l phỉång phạp säú våïi máùu sai phán l :
n1nn1nnn
x
x
)
t
(
x
)
t
(
x
)
t
(
x
)
t
(dx
−
=
−
=∆≈
++
(18-8)
nãn cọ :
h
x
x
)t(
h
x
)t(
dt
d
x
)t(x
n1n
nnn
−
=
∆
≈=
+
•
(18-9)
dt = h l bỉåïc thåìi gian ty chn v âảo hm cáúp 2 l :
)xx2x(
h
1
)xx(
h
1
h
1
)xx(
h
1
h
xx
dt
)t(xd
)t(
dt
xd
)t(x
n1n2n
2
n1n1n2n
n1n
n
n
2
2
n
+−=
⎥
⎦
⎤
⎢
⎣
⎡
−−−≈
−
≈===
++
+++
•
+
•
•
••
(18-10)
tỉång tỉû nhỉ trãn ta xạc âënh biãøu thỉïc gáưn âụng ca âảo hm cáúp cao hån.
Nhỉ váûy thay phẹp âảo hm bàòng phẹp tênh âải säú gáưn âụng ta s chuøn âỉåüc
hãû phỉång trçnh vi phán thnh hãû phỉång trçnh âải säú liãn hãû giạ trë ca biãún åí nhỉỵng
thåìi âiãøm kãú cáûn nhau. Tỉì phỉång trçnh ny dng phỉång phạp thêch håüp tçm bàòng säú
dáưn tỉìng bỉåïc nghiãûm gáưn âụng (biãút giạ trë biãún åí bỉåïc k, tênh âỉåüc giạ trë áøn åí bỉåïc
tiãúp theo k + 1 cỉï thãú tênh dáưn âỉåüc giạ trë nghiãûm råìi rảc gáưn
âụng åí cạc bỉåïc kãø tỉì k = 0 l så kiãûn)
h.18-4
r
i(ψ)
e(t)
K
Ta minh ha phỉång phạp bàòng vê dủ sau âáy :
Vê dủ : Âọng cün dáy li thẹp vo ngư
n e(t) nhỉ hçnh
(h.18-4). Hy xạc âënh ψ(t), i(t) trong mảch.
Så kiãûn bi toạn :
Trỉåìng Âải Hc K Thût - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giạo trçnh Cåí såí K thût âiãûn II Trang
112
0L0L
)0()0(,i)0(i)0(i
ψ
=
−
ψ
=
ψ=−=
Phỉång trçnh mä t quạ trçnh quạ âäü ca mảch :
)t(e
dt
d
i.r =
ψ
+
Gáưn âụng cọ
h
k1k
ψ
−ψ
≈ψ
+
•
nãn phỉång trçnh ca mảch l :
)t(e
h
i.r
k1k
k
=
ψ
−
ψ
+
+
Rụt ra phỉång trçnh âải säú :
[
]
kk1k
i.
r
)
t
(e.
h
−
+
ψ
=
ψ
+
(*)
Tỉì phỉång trçnh (*) xạc âënh tỉìng giạ trë ψ tải nhỉỵng thåìi âiãøm cạch nhau bỉåïc h.
Tải thåìi âiãøm âọng måí : t = 0, k = 0 cọ :
0)0(ii,0)0(
00
=
=
=
ψ=ψ
(så kiãûn â tênh)
thay vo (*) tênh âỉåüc :
[
]
[
]
)0(e.h0)0(e.h0i.
r
)0(e.h
001
=
−
+
=
−
+
ψ=ψ
Biãút ψ
1
tải thåìi âiãøm t
1
= t
0
+ h ta xạc âënh âỉåüc i
1
qua tra hm âàûc tênh l âỉåìng
cong quan hãû ψ(i), cọ ψ
1
, i
1
ta tiãúp tủc xạc âënh
[
]
112
i.
r
)h(e.h −
+
ψ
=
ψ
tải t
2
= t
1
+ h,
tỉì ψ
2
xạc âënh i
2
qua ψ(i) v ta âỉåüc ψ
1
(t
1
), ψ
2
(t
2
), , ψ
k
(t
k
) cng nhỉ i
1
(t
1
), i
2
(t
2
), ,
i
k
(t
k
). Cỉï nhỉ váûy tiãúp tủc xạc âënh cạc nghiãûm ψ
k+1
kãú tiãúp ỉïng våïi tỉìng bỉåïc thåìi
gian.
III. Mäüt säú nháûn xẹt vãư phỉång phạp :
1.
R rng chn bỉåïc h cng nh thç nghiãûm cng chênh xạc.
2.
Ty theo máùu sai phán sai lảc giỉỵa nghiãûm tênh våïi nghiãûm chênh xạc s cọ
cåí ly thỉìa báûc n ca bỉåïc h, våïi cng mäüt bỉåïc h thç báûc n cng låïn sai lảc cng êt,
nghiãûm s häüi tủ nhanh vo nghiãûm chênh xạc.
3.
Nghiãûm råìi rảc tênh åí mäùi bỉåïc cọ mäüt sai säú no âọ gọp pháưn gáy sai säú cho
bỉåïc sau. Nãúu sai säú mäùi bỉåïc khäng gáy nhỉỵng sai säú ngy cng låïn vä hản trong
tỉìng bỉåïc sau ta nọi nghiãûm sai phán l äøn âënh, ngỉåüc lải l khäng äøn âënh. Táút nhiãn
nghiãûm l äøn âënh måïi cọ nghéa. Ta s tháúy våïi mäüt bi toạn nãúu tênh máùu sai phán
ny thç äøn âënh cn tênh theo máùu sai phán khạc cọ thãø khäng äøn âënh.
4.
Cọ thãø dng mạy tênh säú âãø gii phỉång trçnh sai phán mäüt cạch nhanh
chọng. Âáy chênh l ỉu âiãøm näøi báût ca phỉång phạp säú.
§6. Phỉång phạp gii têch âäư thë trãn màût phàóng pha :
I. Biãøu diãùn quạ trçnh ca hãû trong khäng gian trảng thại :
Táút c cạc phỉång phạp tênh mảch â hc cho phẹp tênh âỉåüc phán bäú thåìi gian
ca nghiãûm : x(t) l âỉåìng cong cọ thãø biãøu diãùn trong màût phàóng gäưm trủc honh l
trủc thåìi gian, trủc tung l nghiãûm x, khäng gian âọ l khäng gian trảng thại thåìi gian.
Qua x(t) trãn màût phàóng âọ tháúy âỉåüc cỉåìng âäü åí mäùi thåìi âiãøm, cng xạc âënh
âỉåüc
•
x
nhỉ l âäü däúc ca âỉåìng cong. Nãúu biãút thãm sỉû phủ thüc ca x(t) vo så kiãûn
(thãø hiãûn trãn âỉåìng cong)thç s biãút âỉåüc ton bäü tênh cháút ca hãû kãø c äøn âënh.
Song vç nhiãưu bi toạn khọ gii ra nghiãûm x(t), khọ tçm sỉû phủ thüc ca x(t)
vo så kiãûn v âàûc biãût khi chè cáưn xẹt tênh cháút ca quạ trçnh chỉï khäng cáưn gii
nghiãûm x(t) củ thãø. Lục ny nãn tçm mäüt âỉåìng cong khạc (ỉïng våïi mäüt khäng gian
Trỉåìng Âải Hc K Thût - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giaùo trỗnh Cồớ sồớ Kyợ thuỏỷt õióỷn II Trang
113
khaùc) õóứ bióứu dióựn quaù trỗnh thỗ tióỷn lồỹi hồn laỡ phaới duỡng nhổợng phổồng phaùp õaợ hoỹc õóứ
giaới ra nghióỷm x(t).
Ta coù thóứ duỡng khọng gian traỷng thaùi laỡ khọng gian
chố coù sổỷ lión hóỷ giổợa caùc bióỳn (loaỷi õi bióỳn thồỡi gian) õóứ
bióứu dióựn quaù trỗnh. Quan hóỷ giổợa caùc bióỳn õoù ta goỹi laỡ
quyợ õaỷo pha traỷng thaùi.
Vờ duỷ nhổ coù
tp
11
1
e
A
x = vaỡ
tp
22
2
e
A
x = .
Bióứu dióựn x
1
(t), x
2
(t) trong khọng gian traỷng thaùi
thồỡi gian x(t) nhổ hỗnh (h.18-5).
Coù thóứ bióứu dióựn quaù trỗnh bũng caùch lỏỷp quyợ õaỷo
traỷng thaùi x
2
(x
1
) rọửi veợ quan hóỷ x
2
(x
1
) trong khọng gian
traỷng thaùi, gọửm 1 truỷc x
2
vaỡ truỷc kia laỡ x
1
, tỗm quyợ õaỷo
traỷng thaùi x
2
(x
1
) bũng caùch lỏỳy caùc õióứm thồỡi gian t
0
, t
1
,
t
2
, , t
n
thay vaỡo x
1
(t), x
2
(t) õổồỹc x
20
(x
10
), x
21
(x
11
), ,
x
2n
(x
1n
). Ta õổồỹc quan hóỷ giổợa hai bióỳn x
2
(x
1
) nhổ hỗnh
(h.18-6).
Mọỹt õióứm traỷng thaùi seợ coù toỹa õọỹ (x
1
, x
2
), tỏỷp hồỹp caùc õióứm traỷng thaùi seợ õổồỹc
quyợ õaỷo traỷng thaùi. Theo thồỡi gian õióứm traỷng thaùi seợ di chuyóứn lión tuỷc tổỡ õióứm ban
õỏửu (sồ kióỷn) theo õổồỡng cong quyợ õaỷo traỷng thaùi. ặẽng vồùi caùc sồ kióỷn ban õỏửu khaùc
nhau coù caùc quyợ õaỷo traỷng thaùi khaùc nhau. Sổớ duỷng hoỹ quyợ õaỷo traỷng thaùi naỡy õóứ xeùt
tờnh chỏỳt quaù trỗnh cuớa maỷch õióỷn.
t
0
x
2
(
t
)
x
1
(
t
)
h.18-5
x
2
x
1
0
h.18-6
II. Bióứu dióựn quaù trỗnh trón mỷt phúng pha :
Trổồỡng hồỹp õỷc bióỷt cuớa khọng gian traỷng thaùi khi x
1
= x vaỡ ta coù quan
hóỷ
goỹi laỡ quyợ õaỷo pha, õổồỹc xaùc õởnh trong khọng gian pha. Vồùi truỷc tung laỡ
coỡn truỷc hoaỡnh laỡ x.
= xx
2
)x(x
x
Vờ duỷ : Coù x(t) = X
m
sint laỡ phỏn bọỳ thồỡi gian maỡ quyợ õaỷo traỷng thaùi - thồỡi gian
laỡ mọỹt dao õọỹng chu kyỡ õióửu hoỡa theo t õaợ bióỳt thỗ coù
. tcosX)t(x
m
=
Loaỷi õi bióỳn t trong x(t) vaỡ
ta õổồỹc quan hóỷ
quyợ õaỷo pha
:
)t(x
)x(x
=
=
=
=
tcos
)X(
x
tsin
X
x
tcos)X(x
tsinXx
2
2
m
2
2
2
m
2
22
m
2
22
m
2
ổồỹc quan hóỷ quyợ õaỷo pha laỡ:
x
x
.
)X(
x
X
x
2
m
2
2
m
2
=
+
h.18-7
1
quyợ õaỷo pha
laỡ õổồỡng kheùp kờn nhổ hỗnh (h.18-7)
)x(x
Trổồỡng aỷi Hoỹc Kyợ Thuỏỷt - Khoa ióỷn - Bọỹ mọn Thióỳt bở õióỷn
Giạo trçnh Cåí såí K thût âiãûn II Trang
114
Våïi cạc så kiãûn khạc nhau ca bi toạn ta s v âỉåüc h qu âảo pha. Vç thỉåìng
giạ trë cạc âải lỉåüng váût l l hỉỵu hản nãn cạc quạ trçnh quạ âäü v xạc láûp âỉåüc biãøu
diãùn trãn màût phàóng pha trong mäüt phảm vi xạc âënh bao quanh gäúc ta âäü. Ta tháúy
ngay âỉåìng cong qu âảo pha chênh l âỉåìng cong têch phán ca phỉång trçnh vi phán
mä t mảch. Váûy bn cháút ca phỉång phạp ny l thay vç phi têch phán phỉång trçnh
vi phán (lm âỉåüc dãù dng våïi hãû tuún tênh) cho ra nghiãûm âãø xẹt tênh cháút thç ta v
âỉåìng cong têch phán phỉång trçnh vi phán räưi xẹt tênh cháút. Âáy r rng l phỉång
phạp tiãûn dủng cho c mảch quạ âäü, xạc láûp phi tuún våïi dao âäüng âiãưu ha hồû
c
khäng âiãưu ha. Thỉåìng ta hay gàûp hãû phỉång trçnh vi phán cáúp 2, lục ny qu âảo pha
s l âỉåìng cong phàóng biãøu diãùn trãn màût phàóng pha.
III. Âc tin tỉïc vãư quạ trçnh qua qu âảo pha :
Chụng ta biãút ràòng bàòng cạch phỉång phạp gii mảch â hc tçm nghiãûm x(t) räưi
dỉûa vo phán bäú x(t) xẹt cạc âàûc âiãøm, tênh cháút ca quạ trçnh trong mảch. Váûy våïi
phỉång phạp v qu âảo pha
ta phi âạnh giạ âỉåüc âàûc âiãøm, tênh cháút ca quạ
trçnh trong mảch qua âỉåìng cong qu âảo pha
. Vç thãú ráút cáưn thiãút phi rụt ra mäúi
quan hãû giỉỵa tỉìng âàûc âiãøm ca phán bäú qu âảo pha
våïi tỉìng âàûc âiãøm, tênh cháút
ca quạ trçnh mảch âiãûn. Âãø tỉì âọ nhçn dạng âiãûu phán bäú ca
ta âạnh giạ ngay
tênh cháút ca quạ trçnh mảch âiãûn.
)x(x
•
)x(x
•
)x(x
•
)x(x
•
Dỉåïi âáy ta dáùn ra mäüt säú quan hãû âãø tỉì dảng ca qu âảo pha
âạnh giạ
ngay tênh cháút ca quạ trçnh trong mảch.
)x(x
•
1.
Vãư chiãưu chuøn âäüng âiãøm trảng thại.
Ta biãút trủc tung
biãøu diãùn täúc âäü chuøn âäüng ca âiãøm trảng thại, nãn cạc
âiãøm trảng thại nàòm åí nỉía màût phàóng trãn trủc honh cọ
•
x
•
x
> 0 thç biãún x tàng, nãn
âiãøm trảng thại di chuøn tỉì trại sang phi. Cạc âiãøm trảng thại nàòm åí màût phàóng dỉåïi
trủc honh cọ
•
x
< 0 thç biãún x gim, nãn âiãøm trảng thại di chuøn tỉì phi sang trại.
Nhỉ váûy âiãøm trảng thại chuøn âäüng theo chiãưu kim âäưng häư trãn màût phàóng
pha.
2.
Tỉì qy âảo pha ta biãút âỉåüc gia täúc ca quạ trçnh :
Ta cọ
dt
d
x
x =
•
l täúc âäü ca quạ trçnh âàût nãn cọ :
yx =
•
y.
d
x
dy
x.
d
x
xd
dt
dx
.
x
x
dt
xd
x ==
δ
δ
==
•
•••
••
trong âọ :
d
x
xd
d
x
dy
•
=
l âäü däúc ca qu âảo
pha,
l gia täúc ca quạ trçnh.
••
x
Nãn tỉì
d
x
dy
yx =
••
ta tháúy âỉåüc gia täúc tải mäüt âiãøm trãn qu âảo pha bàòng têch
tung âäü âiãøm âọ våïi âäü däúc qu âảo pha tải âiãøm âọ. Váûy ngoi cạc thäng tin vãư ta âäü
x, täúc âäü
nhỉ tỉì phán bäú thåìi gian, qu âảo pha cn cho biãút gia täúc ca quạ trçnh.
•
x
Trỉåìng Âải Hc K Thût - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
Giaùo trỗnh Cồớ sồớ Kyợ thuỏỷt õióỷn II Trang
115
3. Tổỡ quyợ õaỷo pha bióỳt õổồỹc daùng õióỷu cuớa quaù trỗnh.
Qua quyợ õaỷo pha thỏỳy õổồỹc quaù trỗnh tng hay giaớm, õồn õióỷu hay dao õọỹng, quaù
trỗnh tióỳn õóỳn dao õọỹng xaùc lỏỷp chu kyỡ hay traỷng thaùi cỏn bũng,
a.
Quaù trỗnh tióỳn õóỳn dao õọỹng xaùc lỏỷp chu kyỡ nóỳu quyợ õaỷo pha kheùp kờn : ta õaợ
bióỳt quyợ õaỷo pha cuớa haỡm chu kyỡ õióửu hoỡa x(t) = X
m
sint laỡ õổồỡng Elip :
()
1
X
x
X
x
2
m
2
2
m
2
=
+
xem hỗnh (h.18-7)
Qua õổồỡng quyợ õaỷo pha trón hỗnh (h.18-7) ta thỏỳy noù tióỳn õóỳn cừt truỷc ngang
(truỷc x) dổồùi mọỹt goùc bũng /2 õóứ quaù trỗnh coỡn tióỳp dióựn. Quaù trỗnh chu kyỡ.
b.
Ta bióỳt õióứm õỷc bióỷt trón quyợ õaỷo pha laỡ õióứm cỏn bũng, õióứm maỡ taỷi õoù tọỳc
õọỹ, gia tọỳc cuớa bióỳn bũng 0,
0
dt
dy
xvaỡ0y
dt
d
x
x =====
.
Taỷi õióứm cỏn bũng (õióứm nũm trón truỷc ngang x) quợy õaỷo pha phaới tióỳn õóỳn noù
dổồùi mọỹt goùc khọng vuọng : vỗ goùc /2 thỗ
d
x
dy
d
x
xd
tg ==
laỡ hổợu haỷn nón seợ coù
thóm
0
x
=
. Nón nóỳu quyợ õaỷo pha cừt truỷc ngang dổồùi goùc /2 thỗ ==
dx
xd
tg
dỏựn
õóỳn
nón õióứm cừt khọng phaới laỡ õióứm cỏn bũng thỗ quaù trỗnh coỡn tióỳp tuỷc tióỳp
dióựn. Vỏỷy quaù trỗnh seợ õaỷt cỏn bũng, x(t) tióỳn õóỳn mọỹt giaù trở xaùc lỏỷp x(t) = x() = x
0x
nóỳu quyợ õaỷo pha tióỳn õóỳn truỷc ngang dổồùi mọỹt goùc khọng vuọng. Vờ duỷ nhổ hỗnh (h.18-
8a,b)
0
x
.
x
x
.
x
0
M
ióứm 0 laỡ õióứm cỏn bũng
h.18-8a
ióứm M laỡ õióứm cỏn bũng
h.18-8b
c.
Quaù trỗnh tng, giaớm vọ haỷn khi quyợ õaỷo pha ngaỡy caỡng õi xa dỏửn gọỳc toỹa õọỹ
tióỳn õóỳn vọ haỷn trong goùc phỏn tổ thổù 1 vaỡ 3 nhổ hỗnh (h.18-9a,b).
d.
Quaù trỗnh tng, giaớm dỏửn dao õọỹng khi quyợ õaỷo pha dao õọỹng cừt truỷc ngang
nhióửu lỏửn dổồùi nhổợng goùc khọng vuọng nhổ hỗnh (h.18-10a,b).
Trổồỡng aỷi Hoỹc Kyợ Thuỏỷt - Khoa ióỷn - Bọỹ mọn Thióỳt bở õióỷn
e.
Coù thóứ dổỷa vaỡo quyợ õaỷo pha õóứ õaùnh giaù ọứn õởnh cuớa quaù trỗnh.
Giaùo trỗnh Cồớ sồớ Kyợ thuỏỷt õióỷn II Trang
116
Quaù trỗnh tng vọ haỷn, õồn õióỷu
h.18-9a
0
x
x
.
0
x
x
.
Quaù trỗnh giaớm vọ haỷn, õồn õióỷu
h. 18-9b
x
0
Quaù trỗnh từt dỏửn dao õọỹng
h.18-10b
x
.
0
x
x
.
Quaù trỗnh tng dỏửn dao õọỹng
h.18-10a
IV. Caùch giaới phổồng trỗnh trón mỷt phúng pha :
Baớn chỏỳt cuớa vỏỳn õóử laỡ chuyóứn hóỷ phổồng trỗnh vi phỏn trong khọng gian (x, t)
vóử phổồng trỗnh trong khọng gian (
) giaới ra quan hóỷ õổồỹc quyợ õaỷo pha.
x,x
)x(x
1.
Coù thóứ xỏy dổỷng quyợ õaỷo pha maỡ khọng cỏửn phỏn tờch phổồng trỗnh vi phỏn
maỷch bũng phổồng phaùp õổồỡng õúng nghióng nhổ sau :
Tổỡ phổồng trỗnh traỷng thaùi cuớa maỷch :
)y,x(Q
dt
dy
);y,x(P
dt
d
x
==
.
Khổớ thồỡi gian trong 2 phổồng trỗnh lỏỷp mọỳi lión hóỷ giổợa caùc bióỳn x, y :
)y,x(P
)y,x(Q
dx
dy
=
(18-11)
Cho bióứu thổùc naỡy bũng giaù trở hũng khaùc nhau seợ õổồỹc phổồng trỗnh õổồỡng
thúng nghióng laỡ õổồỡng coù õổồỹc bồới tỏỷp hồỹp nhổợng õióứm maỡ taỷi õoù goùc nghióng cuớa
tióỳp tuyóỳn vồùi quyợ õaỷo pha luọn luọn coù cuỡng mọỹt trở sọỳ. Nóỳu xaùc õởnh õổồỹc tỏỳt caớ caùc
õổồỡng õúng nghióng trón mỷt phúng pha thỗ coù thóứ xỏy dổỷng quyợ õaỷo pha vồùi bỏỳt kyỡ
õióửu kióỷn õỏửu naỡo.
Do vióỷc veợ mọỹt sọỳ lổồỹng lồùn caùc õổồỡng õúng nghióng mỏỳt nhióửu thồỡi gian nón
thổồỡng chố veợ caùc õióứm õỷc bióỷt cho pheùp hỗnh dung trổồùc chuyóứn õọỹng cuớa õióứm traỷng
thaùi quanh õióứm õoù.
ióứm õỷc bióỷt thổồỡng laỡ õióứ
m cỏn bũng, nóỳu quyợ õaỷo pha nũm trón mỷt phúng
thỗ bỏỷc cuớa phổồng trỗnh maỷch õang xeùt khọng quaù bỏỷc 2.
Trổồỡng aỷi Hoỹc Kyợ Thuỏỷt - Khoa ióỷn - Bọỹ mọn Thióỳt bở õióỷn
Giaùo trỗnh Cồớ sồớ Kyợ thuỏỷt õióỷn II Trang
117
2. Vỗ thổồỡng gỷp baỡi toaùn õóỳn cỏỳp 2 nón coù thóứ thỏỳy roợ tinh thỏửn cuớa phổồng
phaùp giaới trón mỷt phúng pha nhổ sau.
Giaớ sổớ phổồng trỗnh vi phỏn theo thồỡi gian cuớa maỷch laỡ :
y
d
x
dy
dt
dx
d
x
xd
dt
xd
x,y
dt
dx
xcoù
x)x,x(Qx)x,x(Px
=====
+=
Thay vaỡo phổồng trỗnh õóứ tỗm quan hóỷ quyợ õaỷo pha y(x) =
ta coù phổồng
trỗnh :
)x(x
y
x
)y,x(Q)y,x(P
dx
dy
raruùtx)y,x(Qy)y,x(P
dt
dy
y +=+=
Roợ raỡng tổỡ phổồng trỗnh thồỡi gian cỏỳp 2 chuyóứn sang quan hóỷ
thaỡnh
phổồng trỗnh cỏỳp 1, vióỷc giaới phổồng trỗnh
thuỏỷn lồỹi hồn.
)x(x
)x(x
Trổồỡng hồỹp õồn giaớn coù thóứ tờch phỏn phổồng trỗnh vi phỏn õổồỹc
.
)x(x
Tổỡ :
y
x
)y,x(Q)y,x(P
dx
dy
+=
giaới ra y(x) veợ õổồỹc õuồỡng quyợ õaỷo pha.
Trổồỡng hồỹp phổùc taỷp duỡng phổồng phaùp gỏửn õuùng õóứ veợ y(x) õỏy chờnh laỡ
phổồng phaùp giaới tờch õọử thở trón mỷt phúng pha maỡ ta muọỳn õóử cỏỷp.
Qua phỏn tờch ta thỏỳy rũng phổồng phaùp trón chố thổỷc hióỷn õổồỹc khi loaỷi õổồỹc
thồỡi gian t trong phổồng trỗnh mồùi cho ra quan hóỷ y(x). Thổồỡng gỷp baỡi toaùn khoù chuùng
ta mồùi giaới theo phổồng phaùp naỡy vaỡ vỗ vỏỷy chố coù nhổợng caùch veợ gỏửn õuùng quyợ õaỷo
pha
.
)x(x
3.
Ta xeùt mọỹt sọỳ phổồng phaùp gỏửn õuùng veợ y(x).
a.
Phổồng phaùp veợ dỏửn tổỡng õoaỷn quyợ õaỷo pha.
Ta xeùt cho maỷch cỏỳp 2. Tổỡ phổồng trỗnh vi phỏn cỏỳp 2 theo thồỡi gian chuyóứn
sang phổồng trỗnh vi phỏn cỏỳp 1 y(x) laỡ :
y
x
)y,x(Q)y,x(P
dx
dy
+=
(18-12)
Khi khọng tờch phỏn phổồng trỗnh vi phỏn cho ra nghióỷm dóự daỡng thỗ ta thổỷc
hióỷn veợ gỏửn õuùng quyợ õaỷo pha y(x) nhổ sau :
Ta thỏỳy
d
x
dy
laỡ õọỹ dọỳc cuớa quyợ õaỷo pha, xaùc õởnh õổồỹc noù khi bióỳt toỹa õọỹ y, x
trong mỷt phúng pha. Thổồỡng ồớ baỡi toaùn quaù trỗnh quaù õọỹ bióỳt õổồỹc sồ kióỷn : x(0) = x
0
,
tổùc laỡ bióỳt õióứm M
0
y)0(x =
0
(x
0
, y
0
) trón quyợ õaỷo pha, vỏỷy thay y
0
, x
0
vaỡo cọng thổùc
(18-12) ta coù õọỹ dọỳc taỷi õióứm M
0
laỡ :
0
0
00000
y
x
)y,x(Q)y,x(P)M(
dx
dy
+=
Sau khi bióỳt õọỹ dọỳc taỷi õióứm M
0
coù thóứ veợ gỏửn õuùng õoaỷn õỏửu tión cuớa quyợ õaỷo
pha bũng caùch tổỡ õióứm M
0
(x
0
, y
0
) keớ mọỹt õoaỷn thúng coù õọỹ daỡi tuỡy yù vồùi õọỹ dọỳc bũng
Trổồỡng aỷi Hoỹc Kyợ Thuỏỷt - Khoa ióỷn - Bọỹ mọn Thióỳt bở õióỷn
Giạo trçnh Cåí såí K thût âiãûn II Trang
118
)M(
d
x
dy
0
. Mụt ca âoản thàóng ty âọ l âiãøm M
1
ta âäü y
1
, x
1
thüc qu âảo pha.
Biãút âiãøm M
1
(y
1
, x
1
) thay vo biãøu thỉïc ta âỉåüc âäü däúc tải âiãøm M
1
l
1
1
11111
y
x
)y,x(Q)y,x(P)M(
dx
dy
+=
(***)
Tỉì âiãøm M
1
ta tiãúp tủc k âoản thàóng âäü di ty våïi âäü däúc (***) xạc âënh tiãúp
âiãøm M
2
(y
2
, x
2
).
Cỉï nhỉ váûy v tỉìng âoản chàõp lải ta s âỉåüc qu
âảo pha y(x) nhỉ hçnh (h.18-11).
Ta tháúy ràòng nãúu chn âäü di cạc âoản thàóng
cng ngàõn thç qu âảo pha
cng chênh xạc.
)x(x
•
Theo cạch ny tỉì nhỉỵng så kiãûn khạc nhau tỉïc l
tỉì cạc âiãøm M
0
khạc nhau ta s v âỉåüc cạc âỉåìng
cong qu âảo pha khạc nhau tảo thnh h qu âảo pha.
Dỉûa vo phán bäú ca qu âảo pha cn cọ thãø xẹt vãư äøn
âënh ca quạ trçnh.
y
0
h.18-11
M
2
y
2
y
1
0
x
y
M
0
M
1
x
2
x
1
Trỉåìng Âải Hc K Thût - Khoa Âiãûn - Bäü män Thiãút bë âiãûn
b.
Phỉång phạp Liena :
Phỉång phạp ny gii mảch dao âäüng phi tuún
cáúp 2 trong âọ säú hảng phi tuún l hm riãng ca
•
x
dảng :
(18-13)
0)x(fxx =−+
•
••
Thç phỉång trçnh qy âảo pha l :
0)y(fx
d
x
dy
y =−+
y
)y(
f
x
dx
dy
hay
−
−=
(18-13a)
Tỉì phỉång trçnh dảng (18-13a) tháúy âäü däúc ca
âỉåìng cong y(x) bàòng thỉång trong âọ tỉí säú l hiãûu ta âäü x våïi hm ca f(y) v máùu
säú chênh l ta âäü y. Âãø tiãûn v âäü däúc áúy trãn màût phàóng pha ta chn tè lãû xêch trãn 2
trủc x, y nhỉ nhau.
h.18-12
y
0
y
x
f
(y)
Q
'
Q
P'
P
M
1
M
0
x
0
α
V theo trủc ngang x hm f(y) nhỉ hçnh (h.18-12).
 cọ âiãøm M
0
(y
0
, x
0
) xạc âënh tỉì så kiãûn, tỉì âiãøm M
0
k âỉåìng thàóng song
song våïi trủc x càõt âỉåìng f(y) tải P ta âỉåüc : x
0
- f(y
0
) = M
0
P chênh l tỉí säú ca âäü däúc
tải M
0
.
Tỉì P k song song våïi trủc y càõt trủc honh x tải Q ta âỉåüc PQ = y
0
l máùu säú
ca âäü däúc tải M
0
Näúi QM
0
cọ gọc α =
0
MQP
)
v cọ tgα =
0
000
y
)y(
f
x
PQ
PM −
=
Váûy ta cọ âäü däúc tải âiãøm M
0
bàòng cạch xạc âënh gọc α l gọc cọ âỉåüc tỉì tam
giạc vng hçnh thnh bàòng cạch tỉì M
0
k âỉåìng song song trủc x càõt f(y) tải P tỉì âọ
Giaùo trỗnh Cồớ sồớ Kyợ thuỏỷt õióỷn II Trang
119
keớ õổồỡng song song truỷc y cừt truỷc x taỷi Q xaùc õởnh =
0
MQP
)
, tổỡ õióứm M
0
xaùc õởnh
õióứm M
1
nhổ sau : õỷt óke õốnh vuọng ồớ õióứm M
0
, mọỹt caỷnh vuọng qua õióứm Q. Tổỡ
õióứm M
0
keớ õoaỷn thúng theo phổồng caỷnh kia cuớa óke lỏỳy õọỹ daỡi tuỡy yù õổồỹc õióứm M
1
toỹa õọỹ x
1
, y
1
, tổỡ M
1
keớ song song truỷc x cừt f(y) taỷi P', tổỡ P' keớ truỷc song song y cừt x taỷi
Q', xaùc õởnh ', duỡng óke õỷt goùc vuọng taỷi M
1
, mọỹt caỷnh qua Q', tổỡ M
1
keớ theo caỷnh
kia õổồỹc õióứm M
2
(x
2
, y
2
) cổù nhổ thóỳ õổồỹc toaỡn bọỹ quyợ õaỷo pha y(x).
Vờ duỷ : Xaùc õởnh quyợ õaỷo pha maỷch õióỷn r - L khi
õoùng vaỡo nguọửn aùp U = const nhổ hỗnh (h.18-13).
r
L
U
K
Sồ kióỷn : i
L
(-0) = i
L
(0) = 0 = i
0
, tổỡ phổồng trỗnh vi
phỏn mọ taớ QTQ : r.i + L.i' = U.
Thay tai t = 0 coù i(0).r + L.i'(0) = U ruùt ra i'(0) =
L
U
Vỏỷy õióứm M
0
(i
0
= 0, i'(0) =
L
U
).
h.18-13
Tổỡ phổồng trỗnh vi phỏn cuớa maỷch : L.i' + r.i = U.
ỷt
y
dt
di
'i ==
nón coù phổồng trỗnh : L.y + r.i = U hay
L
U
L
ri
y +=
tổỡ õoù veợ
õổồỹc quyợ õaỷo pha i'(i) = y(i) nhổ hỗnh (h.18-14) laỡ mọỹt õổồỡng thúng. Veợ õổồỡng i'(i)
bũng caùch xaùc õởnh hai õióứm, trong õoù õióứm thổù nhỏỳt laỡ M
0
(i
0
= 0, i'(0) =
L
U
) ổùng vồùi
sồ kióỷn, õióứm thổù hai laỡ õióứm M
1
coù toỹa õọỹ i
1
vaỡ i'
1
.
Trong õoù i
1
laỡ nghióỷm xaùc lỏỷp sau khi õoùng K :
r
U
ii
xl1
==
coỡn i'
1
= y = 0 vỗ i
1
laỡ xaùc lỏỷp hũng. Vỏỷy coù M
1
(
0'i,
r
U
i
). Nọỳi 2
õióứm M
11
==
0
, M
1
õổồỹc quyợ õaỷo pha i'(i) so saùnh vồùi quan
hóỷ i'(i) coù õổồỹc i(t), i'(t) :
t
L
r
e
r
U
r
U
i
vaỡ
=
i
0
U/
r
h.18-14
M
1
U/L
i' =
y
M
0
t
L
r
e
L
U
'i
=
ta chuùng laỡ mọỹt vaỡ bióứu dióựn ồớ hỗnh (h.18-14).
Trổồỡng aỷi Hoỹc Kyợ Thuỏỷt - Khoa ióỷn - Bọỹ mọn Thióỳt bở õióỷn