Tải bản đầy đủ (.pdf) (56 trang)

eigenvalues eigenvectors handout

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (431.63 KB, 56 trang )

EIGENVALUES AND EIGENVECTORS
ELECTRONIC VERSION OF LECTURE

Dr. Lê Xuân Đại
HoChiMinh City University of Technology
Faculty of Applied Science, Department of Applied Mathematics
Email:

HCMC — 2018.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

1 / 56


OUTLINE

1

THE REAL WORLD PROBLEMS

2

EIGENVALUES AND EIGENVECTORS OF A MATRIX

3

DIAGONALIZATION



4

MATL AB

Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

2 / 56


The Real World Problems

MODELLING MOTION

PQR →

P Q R is

the reflection over the x−axis.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

3 / 56



The Real World Problems

A=

1 0
0 −1

is the reflection matrix.

Therefore, for every point in the plane
(x1 , x2 ), the matrix that results in a reflection
over the x−axis and then we obtain a new
point in the plane (y1, y2)
x1
−x2
Question: For every point (x1, x2), find
y1
x1
= Ak .
, (k ∈ N).
y2
x2
y1
y2

=

1 0

x1
.
0 −1
x2

Dr. Lê Xuân Đại (HCMUT-OISP)

=

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

4 / 56


Eigenvalues and Eigenvectors of a Matrix

A=

Definition

1 0
−1
0
, u=
,v=
. We have
0 −1
−1

1

A

−1
−1
=
−1
1

A

0
0
0
=
= −1.
1
−1
1

Dr. Lê Xuân Đại (HCMUT-OISP)

and

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

5 / 56



Eigenvalues and Eigenvectors of a Matrix

Definition

DEFINITION 2.1
If A is an n × n matrix, then a nonzero vector
X ∈ Rn , X = 0 is called an eigenvector of A if
AX = λ.X for some scalar λ. The scalar λ is
called an eigenvalue of A and X is said to be
an eigenvector corresponding to λ.
EXAMPLE 2.1
Find eigenvalues and eigenvectors of
A=

1 0
0 −1

Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

6 / 56


Eigenvalues and Eigenvectors of a Matrix


Definition

The equation AX = λX can be rewritten as
(A − λI)X = 0
1 0
x1
0 −1
x2

=

1−λ
0
0 −1 − λ

λx1
λx2
x1
x2


=

0
.
0

This homogeneous linear system has
non-zero solution X = 0, thus
1−λ

0
= 0 ⇔ λ2 − 1 = 0
0 −1 − λ
⇔ λ1 = −1, λ2 = 1.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

7 / 56


Eigenvalues and Eigenvectors of a Matrix

Definition

In the case where λ1 = −1, we have
2x1 + 0x2 = 0
⇔ x1 = 0, x2 = α.
0x1 + 0x2 = 0

Therefore, the eigenvectors corresponding
to λ1 = −1 are α(0, 1), α = 0.
In the case where λ2 = 1. We have
0x1 + 0x2 = 0
⇔ x1 = β, x2 = 0.
0x1 − 2x2 = 0

Therefore, the eigenvectors corresponding

to λ2 = 1 are β(1, 0), β = 0.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

8 / 56


Eigenvalues and Eigenvectors of a Matrix

Definition

EXAMPLE 2.2
Find eigenvalues and eigenvectors of
A=

1 2
−2 1

Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

9 / 56



Eigenvalues and Eigenvectors of a Matrix

Definition

AX = λX can be rewritten
λx1
λx2



1−λ 2
−2 1 − λ

x1
x2

1 2
−2 1
=

x1
x2

=

0
.
0

This homogeneous linear system has

non-zero solution X = 0, thus
1−λ 2
= 0 ⇔ (1 − λ)2 + 4 = 0
−2 1 − λ
⇔ λ1,2 = 1 ± 2i.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

10 / 56


Eigenvalues and Eigenvectors of a Matrix

Definition

In the case where λ1 = 1 + 2i. We have
−2ix1 + 2x2 = 0
⇔ x1 = α, x2 = αi.
−2x1 − 2ix2 = 0

Therefore, the eigenvectors corresponding
to λ1 are α(1, i), α = 0.
In the case where λ2 = 1 − 2i. We have
2ix1 + 2x2 = 0
⇔ x1 = β, x2 = −βi.
−2x1 + 2ix2 = 0


Therefore, the eigenvectors corresponding
to λ2 are β(1, −i), β = 0.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

11 / 56


Eigenvalues and Eigenvectors of a Matrix

Characteristic equation

If λ is an eigen value of A ⇔ ∃X = 0 : AX = λ.X
⇔ AX − λX = 0 ⇔ (A − λI).X = 0.

This homogeneous linear system has
non-zero solution X = 0, thus det(A − λI) = 0
DEFINITION 2.2
If A is an n×n matrix, then λ is an eigenvalue
of A if and only if χA(λ) = det(A − λI) = 0. This
is called the characteristic equation of A. The
polynomial χA(λ) = det(A − λI) is called the
characteristic polynomial.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS


HCMC — 2018.

12 / 56


Eigenvalues and Eigenvectors of a Matrix

Characteristic equation

FINDING EIGENVALUES AND EIGENVECTORS OF A
SQUARE MATRIX

STEP 1. Finding the characteristic equation
det(A − λI) = 0.
STEP 2. Solving this equation to find
eigenvalues.
STEP 3. For every eigenvalue λi , solve the
homogeneous system (A − λi I)X = 0
to find eigenvectors X
corresponding to the eigenvalue λi .
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

13 / 56


Eigenvalues and Eigenvectors of a Matrix


Characteristic equation

THEOREM
2.1



a11 a12 a13


If A =  a21 a22 a23  , then
a31 a32 a33
χA (λ) = |A − λI| = −λ3 + tr(A)λ2 −


a11 a13
a11 a12
a22 a23
λ + det(A)
+
+
a31 a33
a32 a33
a21 a22

where tr(A) = a11 + a22 + a33 is called the trace
of A.
Dr. Lê Xuân Đại (HCMUT-OISP)


EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

14 / 56


Eigenvalues and Eigenvectors of a Matrix

Eigenspace corresponding to the eigenvalue

DEFINITION 2.3
The eigenvetors corresponding to the
eigenvalue λ, together with the zero vector,
form the null space of the matrix (A − λI).
This subspace is called the eigenspace
corresponding to the eigenvalue λ.

Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

15 / 56


Eigenvalues and Eigenvectors of a Matrix

Geometric and Algebraic Multiplicity


DEFINITION 2.4
If λ0 is an eigenvalue of an n × n matrix A,
then the dimension of the eigenspace
corresponding to λ0 is called the geometric
multiplicity of λ0, and the number of times
that λ − λ0 appears as a factor in the
characteristic polynomial of A is called the
algebraic multiplicity of λ0.

Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

16 / 56


Eigenvalues and Eigenvectors of a Matrix

EXAMPLE
2.3


Geometric and Algebraic Multiplicity



3 1 1



Let A =  2 4 2 
1 1 3
1

2

3

Find the characteristic polynomial of A
Evaluate det(A − 2013.I)
Find eigenvalues and eigenvectors of A

Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

17 / 56


Eigenvalues and Eigenvectors of a Matrix

Geometric and Algebraic Multiplicity

1. The characteristic polynomial of A
3−λ 1
1

2 4−λ 2
=
χA (λ) = |A − λI| =
1
1 3−λ
= −λ3 + 10λ2 − 28λ + 24 = −(λ − 2)2 (λ − 6)
2. det(A − 2013.I) = −(2013 − 2)2(2013 − 6)
3. The characteristic equation of A
3−λ 1
1
2 4−λ 2
χA (λ) = |A − λI| =
=0
1
1 3−λ
⇔ −(λ − 2)2 (λ − 6) = 0 ⇔ λ1 = 2, λ2 = 6.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

18 / 56


Eigenvalues and Eigenvectors of a Matrix

Geometric and Algebraic Multiplicity

In the case where λ1 = 2, we have



x1 + x2 + x3 = 0

2x1 + 2x2 + 2x3 = 0


x1 + x2 + x3 = 0




−1
−1




⇒ X1 = α  1  + β  0  , α2 + β2 = 0.
0
1
The algebraic multiplicity of λ1 = 2 is 2 and
the geometric multiplicity of λ1 = 2 is 2.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

19 / 56



Eigenvalues and Eigenvectors of a Matrix

Geometric and Algebraic Multiplicity

In the case where λ2 = 6, we 
have



1
 −3x1 + x2 + x3 = 0
 
2x1 − 2x2 + 2x3 = 0 ⇒ X2 = γ  2  , γ = 0.

 x + x − 3x = 0
1
1
2
3
The algebraic multiplicity of λ2 = 6 is 1 and
the geometric multiplicity of λ2 = 6 is 1.

Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.


20 / 56


Diagonalization

Definition

DEFINITION 3.1
If A and B are square matrices, then we say
that B is similar to A if there is an invertible
matrix S such that B = S−1AS.
DEFINITION 3.2
A square matrix A is said to be
diagonalizable if it is similar to some
diagonal matrix D, that is, if there exists an
invertible matrix S such that S−1AS = D. In
this case the matrix S is said to diagonalize A.
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

21 / 56


Diagonalization

Definition


We have S−1AS = D = dig(λ1, λ2, . . . , λn). It
follows that AS = SD


a11 a12
a a
 21 22
A=
 ... ...
an1 an2

s11 s12
s s
 21 22
S=
 ... ...
sn1 sn2
Dr. Lê Xuân Đại (HCMUT-OISP)

...
...
...
...

a1n
a2n
...
ann

...

...
...
...

s1n
s2n
...
snn

λ1 0

 0 λ


2
,D = 

 ... ...
0 0





...
...
...
...

0

0
...
λn









 = S∗1 S∗2 . . . S∗n


EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

22 / 56


Diagonalization



a11
a
 21
AS = 

 ...
an1

a12
a22
...
an2

...
...
...
...

Definition

a1n
a2n
...
ann

 

s11
 s
  21
.
  ...
sn1

s12

s22
...
sn2

...
...
...
...

s1n
s2n
...
snn







= A S∗1 S∗2 . . . S∗n = AS∗1 AS∗2 . . . AS∗n


s11
s
 21
SD = 
 ...
sn1
Dr. Lê Xuân Đại (HCMUT-OISP)


s12
s22
...
sn2

...
...
...
...

s1n
s2n
...
snn

λ1 0
 0 λ

2

 ... ...
0 0


EIGENVALUES AND EIGENVECTORS



... 0


...


... ... 
. . . λn
HCMC — 2018.

23 / 56


Diagonalization

Definition

Therefore,
(AS)∗i = AS∗i = (SD)∗i = λi S∗i , (i = 1, 2, . . . , n).

So, S∗i is the eigenvector corresponding to
eigenvalue λi (i = 1, 2, . . . , n) of A.
Form the matrix S whose column vectors
are the n basis eigenvectors of A.

Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

24 / 56



Diagonalization

EXAMPLE
3.1


Definition



15 −18 −16


Let A =  9 −12 −8  . Find a matrix S that
4 −4 −6
diagonalizes A.

Step 1. Find eigenvalues, eigenvectors of A.
15 − λ −18
−16
9
−12 − λ −8
=0
χA (λ) = |A − λI| =
4
−4
−6 − λ
⇔ −(λ + 3)(λ + 2)(λ − 2) = 0 ⇔ λ1 = −3 (AM=1),

λ2 = −2 (AM=1), λ3 = 2 (AM=1).
Dr. Lê Xuân Đại (HCMUT-OISP)

EIGENVALUES AND EIGENVECTORS

HCMC — 2018.

25 / 56


×