Tải bản đầy đủ (.pdf) (13 trang)

Tài liệu 333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC 2010 ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (397.62 KB, 13 trang )

333 BÀI TOÁN TÍCH PHÂN LUYỆN THI ĐẠI HỌC


1/ Cho hàm số : f(x)= x.sinx+x
2
. Tìm nguyên hàm của hàm số g(x)= x.cosx
biết rằng nguyên hàm này triệt tiêu khi x=k


2/Định m để hàm số: F(x) = mx
3
+(3m+2)x
2
-4x+3 là một nguyên hàm của hàm số:
f(x) = 3x
2
+10x-4.
3/Tìm họ nguyên hàm của hàm số: f(x)= cos
3
x.sin8x.

TÍNH :

4/I =
3
2
4
3tg xdx





5/I =
4
2
6
(2cotg x 5)dx





6/I =
2
0
1 cosx
dx
1 cosx





7/ I =

2
0

sin
2
x.cos

2
xdx
8/I =

3
0

(2cos
2
x-3sin
2
x)dx
9 / I =
2
2
sin( x)
4
dx
sin( x)
4








10 / I =



3
6


(tgx-cotgx)
2
dx
11/ I =
4
4
0
cos xdx





12 / I =
2
3
0
sin xdx



13*/ I =
3
3
2

3
sin x sinx
cotgxdx
sin x





14/I =
2
4
0
sin xdx



15/I =

3
4
22
2
cos
2
sin
1


xx

dx

16/I =

4
6


cotg2x dx
17/I =
2
2
sin x
4
e sin2xdx




18/ I =


4
0
2
2
cos

x
e

tgx



.


34/I =
1
22
3
1
dx
x 4 x


19/ I =

2
4
4
sin
1


x
dx
20/ I =

4

0
6
cos
1

x
dx
21/I =
dxxxnsix )cos(2cos
44
2
0




22/ I =
2
3
0
cos xdx



23/ I =
3
2
0
4sin x
dx

1 cosx




24/ I =
1
32
0
x 1 x dx


25/I =
1
52
0
x 1 x dx


26/I =
1
0
x
dx
2x 1


27/I =
1
x

0
1
dx
e4


28/I =
2
x
1
1
dx
1e




29/I =
2x
2
x
0
e
dx
e1


30/I =
x
1

x
0
e
dx
e1





31/I =
e
2
1
lnx
dx
x(ln x 1)


32/I =
7
3
3
0
x1
dx
3x 1





33/I =
2
3
2
0
(x 3) x 6x 8dx  


.

35/I =
4
2
2
1
dx
x 16 x


36*/I =
6
2
23
1
dx
x x 9


37/I =

2
22
1
x 4 x dx




38/I =
2
23
0
x (x 4) dx


39/I =
2
4
43
3
x4
dx
x



40*/I =
2
2
2

2
x1
dx
x x 1






41/I =
ln2
x
0
e 1dx


42/I =
1
0
1
dx
3 2x


43/I =
2
5
0
sin xdx




44*/I =
3
0
1
dx
cosx



45/I =
2x
1
x
0
e
dx
e1





46/I =
ln3
x
0
1

dx
e1


47/I =
4
2
6
1
dx
sin x cotgx




48/I =
3
2
e
1
lnx 2 ln x
dx
x



.


49/I =

e
1
sin(ln x)
dx
x


50/I =
1
3 4 5
0
x (x 1) dx


51/I =
1
23
0
(1 2x)(1 3x 3x ) dx  


52/I =
2
3
1
1
dx
x 1 x



53/I =
3
22
6
tg x cotg x 2dx





54/I =
1
23
0
(1 x ) dx


55*/I =
1
2x
0
1
dx
e3


56/I =
x
ln3
x3

0
e
dx
(e 1)


57/I =
0
2x
3
1
x(e x 1)dx




58/I =
2
6
35
0
1 cos x sin x.cos xdx




59*/I =
23
2
5

1
dx
x x 4


60/I =
4
0
x
dx
1 cos2x




61/I =
2x
ln5
x
ln2
e
dx
e1


62/I =
2
e
1
x1

.lnxdx
x



63/I =
2
1
0
x
dx
(x 1) x 1



64/I =
2
0
sin x.sin2x.sin3xdx



65/I =
2
44
0
cos2x(sin x cos x)dx





66*/I =
2
33
0
( cosx sin x)dx




67/I =
7
3
84
2
x
dx
1 x 2x


68*/I =
2
0
4cosx 3sinx 1
dx
4sinx 3cosx 5






69/I =
9
3
1
x. 1 xdx


70/I =
2
3
0
x1
dx
3x 2




71*/I =
6
0
x
sin dx
2



72*/I =
2

0
x
dx
2 x 2 x  


73/I =
3
32
0
x . 1 x dx


74**/I =
1
2
0
ln(1 x)
dx
x1




75/I =
2
0
sin x
dx
sin x cosx





76/I =
e
1
cos(ln x)dx



77*/I =
2
2
0
4 x dx


78/I =
2
1
x
dx
1 x 1



.

79/I =

e
1
1 3lnx ln x
dx
x



80/I =
3
2
2
ln(x x)dx



81/I =
e
2
1
(ln x) dx


82/I =
2
e
e
lnx
dx
x



83/I =
2
e
1
lnx
dx
lnx


84/I =
2
2
1
xln(x 1)dx


85/I =
3
2
3
1
dx
x3


86/I =
1
2

0
1
dx
4x


87/I =
2
4
0
sin xdx



88/I =
3
2
6
ln(sin x)
dx
cos x




89/I =
2
1
cos(ln x)dx



90*/I =
2
2
0
ln( 1 x x)dx


91*/I =
3
2
2
1
dx
x1


92/I =
3
8
1
x1
dx
x



93/I =
3
3

2
1
x
dx
x 16



.

94/I =
6
2
0
cosx
dx
6 5sinx sin x




95*/I =
2
e
2
e
11
( )dx
ln x
ln x




96/I =
3
2
4
x 4 dx




97/I =
2
32
1
x 2x x 2 dx

  


98/I =
3
4
4
cos2x 1dx






99/I =
0
cosx sin xdx



100/I =
2
0
1 sinxdx




101/I =
3
4
4
sin 2x dx




102/I =
0
1 sinxdx





103/I =
1
3
2
1
ln(x x 1) dx







104*/I =
2
0
xsin x
dx
1 cos x




105*/I =
1
2x
1
1
dx

(x 1)(4 1)




106*/I =
4
1
x
1
x
dx
12




107/I =
2
4
0
xsin xdx



108/I =
2
4
0
xcos xdx





109/I =
6
2
0
x.sin xcos xdx



110*/I =
2x
1
2
0
xe
dx
(x 2)


111/I =
2x 2
0
e sin xdx





112/I =
2
2
1
1
x ln(1 )dx
x




113/I =
e
2
1
e
lnx
dx
(x 1)


114/I =
1
2
0
1x
x.ln dx
1x





115/I =
2
t
1
ln x
dx I 2
x






116/I =
3
0
sin x.ln(cosx)dx



117/I =
2
e
2
1
cos (lnx)dx




118/I =
4
0
1
dx
cosx



119*/I =
4
3
0
1
dx
cos x



120/I =
2
1
3x
0
x e dx


121/I =
2

2
sin x 3
0
e .sin xcos xdx



122/I =
2
4
0
sin2x
dx
1 cos x




123/I =
1
2
0
3
dx
x 4x 5


124/I =
2
2

1
5
dx
x 6x 9


125/I =
1
2
5
1
dx
2x 8x 26




126/I =
1
0
2x 9
dx
x3




127/I =
4
2

1
1
dx
x (x 1)



128*/I =
0
2
2
sin2x
dx
(2 sin x)




129/I =
1
2
0
x3
dx
(x 1)(x 3x 2)

  


130/I =

1
3
0
4x
dx
(x 1)


131/I =
1
42
0
1
dx
(x 4x 3)


132/I =
3
3
2
0
sin x
dx
(sin x 3)




133/I =

3
3
6
4sin x
dx
1 cosx





134/I =
3
2
6
1
dx
cosx.sin x




135/I =
3
0
sin x.tgxdx



136/I =

3
4
1
dx
sin 2x





.
137/I =
3
4
2 2 5
0
sin x
dx
(tg x 1) .cos x




138/I =
3
22
3
1
dx
sin x 9cos x







139/I =
2
2
cosx 1
dx
cosx 2







140/I =
2
0
1 sin x
dx
1 3cosx






141/I =
2
0
cosx
dx
sin x cosx 1




142/I =
4
2
1
1
dx
x (x 1)


143/I =
1
3
3
1
dx
x 4 (x 4)

  



144/I =
3
3
0
sin x
dx
cosx



145/I =
1
0
x 1 xdx


146/I =
6
4
x 4 1
. dx
x 2 x 2




147/I =
0
2
1

1
dx
x 2x 9




148/I =
3
2
1
1
dx
4x x


149/I =
2
2
1
4x x 5dx




150/I =
2
2
2
2x 5

dx
x 4x 13





151/I =
1
x
0
1
dx
3e


152/I =
1
4x 2x
2
2x
0
3e e
dx
1e




153/I =

4
2
7
1
dx
x 9 x


154/I =
2
x2
0
e sin xdx



155/I =
4
2
44
0
cos x
dx
cos x sin x





156/I =

1
0
3
dx
x 9 x


157/I =
0
xsinxdx



158/I =
22
0
x cos xdx



159/I =
1
0
cos x dx


160/I =
1
0
sin x dx



161/I =
2
4
0
xsin x dx



162/I =
2
4
0
xcos x dx



163/I =
2
0
xcos xsin xdx



164/I =
6
2
0
xcos xsin xdx




165/I =
4
x
1
e dx


166/I =
4
3x
0
e sin4xdx



167/I =
2x 2
0
e sin xdx



168/I =
2x
1
2
0

xe
dx
(x 2)


169/I =
e
1
(1 x)ln xdx


170/I =
e
2
1
xln xdx


171/I =
1
e
2
1
ln xdx


172/I =
e
1
x(2 ln x)dx



173/I =
2
e
2
e
11
( )dx
ln x
ln x



174/I =
2
2
1
(x x)ln xdx


175/I =
2
2
1
1
x ln(1 )dx
x




176/I =
2
5
1
lnx
dx
x


177/I =
e
2
1
e
lnx
dx
(x 1)


178/I =
1
2
0
1x
xln dx
1x





179/I =
2
3
cosx.ln(1 cosx)dx





180/
2
2
sin x 3
0
e sinxcos xdx



181/I=
2
4
0
sin2x
dx
1 sin x






.
182/I =
2
4
0
sin2x
dx
1 cos x




183/I =
2
2
1
5
dx
x 6x 9


184/I =
2
1
0
x 3x 2
dx
x3





185/I =
4
2
1
1
dx
x (x 1)


186/I =
1
2
0
ln(1 x)
dx
x1




187/I
4
1
6
0
1x
dx

1x




188/I =
1
15 8
0
x 1 x dx


189/I =
x
1
xx
0
e
dx
ee




190/I=
e
1
e
ln x dx



191/I =
2
sin x
0
(e cosx)cosxdx




192/I =
2
0
sin2x.cosx
dx
1 cosx




193/I =
2
0
sin2x sin x
dx
1 3cosx






194/I =
2
4
0
1 2sin x
dx
1 sin2x





195/I =
53
3
2
0
x 2x
dx
x1




196/I =
3
2
4
tgx

dx
cosx 1 cos x





197/I =
2
2
1
x1
( ) dx
x2





198/I =
4
2
0
x.tg xdx



199/I =
5
3

( x 2 x 2)dx

  


200/I =
4
1
2
dx
x 5 4




201/I =
2
1
x
dx
x 2 2 x  



202/I =
2
2
1
ln(1 x)
dx

x



203/I =
2
0
sin2x
dx
1 cosx




204/I =
2008
2
2008 2008
0
sin x
dx
sin x cos x




205/I =
2
0
sin x.ln(1 cosx)dx





206/I =
2
3
2
1
x1
dx
x



207/I =
3
4
2
0
sin x
dx
cos x



208/I =
2
2
0

cos x.cos4xdx



209/I =
1
2x x
0
1
dx
ee


210/I =
e
2
1
e
lnx
dx
(x 1)


211/I =
1
0
1
dx
x 1 x



212/I =
2
1
2
0
x
dx
4x


213/I =
1
2
0
x
dx
4x


214/I =
1
4
2
2
0
x
dx
x1



215/I =
2
0
sin3x
dx
cosx 1




216/I =
2
2
2
2
0
x
dx
1x


217/I =
2
2
4
1
1x
dx
1x






218/I =
3
7
3
2
0
x
dx
1x


219/I =
x
ln2
x
0
1e
dx
1e




220/I =
1

0
x 1 x dx


221/I =
1
2
0
x 1dx


222/I =
2
33
0
(cos x sin x)dx




223/I =
2
3
0
x1
dx
x1





224/I =
1
2 2x
0
(1 x) .e dx


225/I =
2
2
0
cosx
dx
cos x 1




226/I =
7
3
3
0
x1
dx
3x 1





.
227/I =
2
6
1 sin 2x cos2x
dx
cosx sin x






228/I =
x2
1
2x
0
(1 e )
dx
1e




229/I =
3
23
0

x (1 x) dx


230/I =
3
2
2
0
sin x.cos x
dx
cos x 1




231/I =
1
2
2
0
4x 1
dx
x 3x 2




232*/I =
2
0

xsin x.cos xdx



233/I =
2
0
cosx
dx
cos2x 7




234/I =
4
2
1
1
dx
x (x 1)


235/I =
2
23
0
sin2x(1 sin x) dx





236/I =
2
3
0
x1
dx
3x 2




237/I =
4
2
7
1
dx
x x 9


238/I =
34
0
xsin xcos xdx



239/I =

2
3
2
cosx cosx cos xdx






240*/I =
1
2
1
ln( x a x)dx




241/I =
2
x
0
1 sinx
dx
(1 cosx)e







242/I =
2
0
sin2x sinx
dx
cos3x 1





243/I =
4
22
0
sin2x
dx
sin x 2cos x




244/I =
2
3
2
2
0

x
dx
1x


245/I =
2
3
2
2
0
x
dx
1x


246/I =
2
1
2
2
2
1x
dx
x



247/I =
2

1
2
0
x
dx
4x


248/I =
2
2
2
3
1
dx
x x 1


249/I =
1
5 3 6
0
x (1 x ) dx


250/I =
2
0
sin x
dx

1 sin x




251/I =
2
0
cosx
dx
7 cos2x




252/I =
4
2
1
1
dx
(1 x)x


253/I =
2
3
0
x1
dx

3x 2




254*/I =
3
4
cosx sin x
dx
3 sin2x







.


255/I =
2
3
2
cosx cosx cos xdx







256/I =
3
4
4
tg xdx




257*/I =
2
x
0
1 sin x
e dx
1 cosx





258/I =
1
23
0
(1 x ) dx



259/I =
4
2
0
x.tg xdx



260/I=
2
22
0
1
dx
(4 x )


261/I =
2
1
3
0
3x
dx
x2


262*/I =
5
2

5
1
1x
dx
x(1 x )




263/I =
3
2
0
cosx
dx
1 sin x




264/I =
2
3
6
0
sin x
dx
cos x




265/I =
3
6
0
sin x sin x
dx
cos2x




265/I =
2
3
1
dx
sin x 1 cosx





266/I =
3
62
1
1
dx
x (1 x )




.

267/I =
2
2
0
sin x
dx
cos x 3




268/I =
2
0
sin x
dx
x



269/I =
2
2
0
sin xcosx(1 cosx) dx





270/I =
44
4
0
sin x cos x
dx
sin x cosx 1






271/I =
44
4
0
sin x cos x
dx
sin x cosx 1





272/I =

2
0
sin xcosx cosx
dx
sin x 2





273/I =
1
1
x
3
a
e
dx
x


274/I =
32
1
2
0
x 2x 10x 1
dx
x 2x 9
  




275/I =
3
1
23
0
x
dx
(x 1)


276/I =
1
3
0
3
dx
x1


277*/I =
4
1
6
0
x1
dx
x1





278/I =
1
3
0
x
dx
(2x 1)


279/I =
7
2
1
dx
2 x 1


280/I =
3
2
2
1
2
1
dx
x 1 x



.

281*/I =
2
1
2
0
xln(x 1 x )
dx
1x




282/I =
4
2
1
(x 1) lnxdx


283/I =
3
2
0
x ln(x 1)dx



284/I =
3
2
2
1
3x
dx
x 2x 1


285/I =
1
32
0
4x 1
dx
x 2x x 2

  


286/I =
1
2
2
1
2
1
dx
(3 2x) 5 12x 4x


  


287/I =
1
0
1
dx
x 1 x


288/I =
2
0
cosx
dx
2 cos2x




289/I =
2
4
cosx sin x
dx
3 sin2x







290/I =
2
33
0
(cos x sin x)dx




291/I =
2
54
0
cos xsin xdx



292/I =
2
44
0
cos2x(sin x cos x)dx





293/I =
2
0
1
dx
2 sin x




294/I =
2
0
1
dx
2 cosx





295/I =
2
2
2
3
1
dx
x x 1



296/I =
3
7
3
2
0
x
dx
1x


297*/I =
2
3
1
1
dx
x 1 x


298/I =
3
1
2
0
x
dx
x 1 x



299/I =
1
2
1
1
dx
1 x 1 x

  




300/I =
3
4
6
1
dx
sin xcosx




301/I =
2
0
cosx
dx

cosx 1




302/I =
2
0
cosx
dx
2 cosx




303/I =
2
0
sin x
dx
sin x 2




304/I =
3
2
0
cos x

dx
cosx 1




305/I =
2
0
1
dx
2cosx sinx 3





306/I =
2
2
3
cosx
dx
(1 cosx)





307/I =

4
3
0
tg x dx





.
308*/I =
1
2x
1
1
dx
3e




309*/I =
2
x
sin x
dx
31






310*/I =
2
0
sin x
dx
cosx sinx




311/I =
4
2
44
0
sin x
dx
cos x sin x




312*/I =
2
2
0
tgx
dx

1 ln (cosx)




313*/I =
2
0
sin x
dx
cosx sin x




314*/I =
1
x2
1
1
dx
(e 1)(x 1)




315*/I =
1
3x 1
0

e dx



316*/I =
2
1
2
0
x
dx
x4


317*/I =
3
2
42
0
cos x
dx
cos 3cos x 3




318*/Tìm x> 0 sao cho
2t
x
2

0
te
dt 1
(t 2)




319*/I =
3
2
4
tan x
dx
cosx cos x 1





320*/I =
1
2
0
3x 6x 1dx  



321*/I =
4

5
0
tg x dx



322/I =
4
3
6
cotg x dx




323/I =
3
4
4
tg x dx




324*/I =
4
0
1
dx
2 tgx





325/I =
5
2
0
sin x
dx
cosx 1




326/I =
3
2
6
cos2x
dx
1 cos 2x





327*/I =
4
2

0
tgx 1
( ) dx
tgx 1





328*/I =
1
3
1
2
x
dx
x1


329*/I =
3
3
2
4
1
xx
dx
x




330/I =
x
ln3
xx
0
e
dx
(e 1) e 1


331/I =
1
4
e
2
1
e
1
dx
xcos (ln x 1)





333*/I =
4
0
ln(1 tgx)dx








×