Lecture Notes in
Mathematics
Edited by A. Dold and B. Eckmann
Series: California Institute of Technology, Pasadena
Adviser: C. R. DePrima
593
IIIIII IIIIIIIIIIIII
Klaus Barbey
Heinz KSnig
Abstract Analytic Function Theory
and Hardy Algebras
III II
I IIIII III Inllll
I
Springer-Verlag
Berlin-Heidelberq • New York 1977
II
II III I
Authors
Klaus Barbey
Fachbereich Mathematik
UniversitAt Regensburg
U niversit~tsstraBe 31
8400 Regensburg/BRD
Heinz K6nig
Fachbereich Mathematik
Universit~t des Saarlandes
6 6 0 0 SaarbdJcken/BRD
AMS Subject Classifications (1970): 46J 10, 46J 15
ISBN 3-540-08252-2 Springer-Verlag Berlin • Heidelberg • New York
ISBN 0-38?-08252-2 Springer-Verlag New York • Heidelberg • Berlin
This work is subiect to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, and storage in data banks.
Under § 54 of the German Copyright Law where copies are made for other
than private use, a fee is payable to the publisher, the amount of the fee to
be determined by agreement with the publisher.
© by Springer-Verlag Berlin • Heidelberg 1977
Printed in Germany
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2141/3140-543210
www.pdfgrip.com
Preface
The p r e s e n t work w a n t s
tional-analytic
theory.
classical analytic
It is an a b s t r a c t v e r s i o n of those parts of
f u n c t i o n t h e o r y w h i c h can be c i r c u m s c r i b e d by b o u n d a r y
v a l u e t h e o r y and Hardy
the
to be the s y s t e m a t i c p r e s e n t a t i o n of a func-
spaces H p. The f a s c i n a t i o n of the field comes from
fact that famous c l a s s i c a l
theorems
of t y p i c a l
vor a p p e a r as i n s t a n t o u t f l o w s of an a b s t r a c t
are s t a n d a r d r e a l - a n a l y t i c m e t h o d s
and m e a s u r e
theory.
such as e l e m e n t a r y
in papers of Arens
and Singer,
and went t h r o u g h
c h l e t algebras,
and i l l u m i n a t e
Gleason,
functional analysis
H e l s o n and L o w d e n s l a g e r ,
several steps of a b s t r a c t i o n
logmodular algebras,...).
the c o n c r e t e c l a s s i c a l
concept
theory.
We p r e s e n t
the u l t i m a t e
is the a b s t r a c t Hardy a l g e b r a situation.
IV-IX.
It is
to b u i l d up a cohe-
rent t h e o r y of r e m a r k a b l e and p l e a s a n t w i d t h and depth.
in C h a p t e r s
(Diri-
for about ten years.
c o m p r e h e n s i v e as w e l l as pure a n d s i m p l e and p e r m i t s
present a systematic account
Bochner,
It never c e a s e d to r a d i a t e back
step of a b s t r a c t i o n w h i c h has b e e n u n d e r w o r k
The c e n t r a l
fla-
The a b s t r a c t t h e o r y s t a r t e d a b o u t t w e n t y y e a r s ago
Bishop,
Wermer,...
complex-analytic
theory the tools of w h i c h
We a t t e m p t
to
The a b s t r a c t Hardy alge-
bra s i t u a t i o n can be looked upon as a local s e c t i o n of the a b s t r a c t function a l g e b r a situation.
To a c h i e v e the l o c a l i z a t i o n is the m a i n b u s i n e s s
of the a b s t r a c t F . a n d M . R i e s z
d e c o m p o s i t i o n procedure.
voted
t h e o r e m and of the r e s u l t a n t G l e a s o n p a r t
These
are c e n t r a l
themes in C h a p t e r s
to the a b s t r a c t f u n c t i o n a l g e b r a situation.
c o n c r e t e unit disk s i t u a t i o n
concepts.
Chapter
in such a spirit as to p r e p a r e
C h a p t e r X is d e v o t e d to s t a n d a r d a p p l i c a t i o n s
theory to p o l y n o m i a l and r a t i o n a l a p p r o x i m a t i o n
II-III de-
I presents
the
the a b s t r a c t
of the a b s t r a c t
in the c o m p l e x plane
and
is the m o s t c o n v e n t i o n a l part of the book.
In c o m p a r i s o n w i t h the r e s p e c t i v e parts of the e a r l i e r t r e a t i s e s on
u n i f o r m algebras,
present work
the m o s t c o m p r e h e n s i v e of w h i c h
contains n u m e r o u s new results.
tion it is shaped after
the w o r k of K6nig.
s u b s t a n t i a l new m a t e r i a l .
Riesz
t h e o r e m VI.4.1.
estimation
Pichorides
for the a b s t r a c t
and Notes
M o s t of the c h a p t e r s
the
contain
i n d i v i d u a l n e w result is p e r h a p s
Let us also quote
the
S e c t i o n VI.5 on the M a r c e l
conjugation after f u n d a m e n t a l results of
in the unit d i s k situation.
Introductions
[1969],
and s y s t e m a t i z a -
A p r i m e p o i n t is the s y s t e m a t i c use of the asso-
c i a t e d a l g e b r a H #. The m o s t i m p o r t a n t
approximation
is G A M E L I N
In c o n c e p t s
For m o r e d e t a i l s we refer to the
to the i n d i v i d u a l
chapters.
www.pdfgrip.com
IV
In its o v e r a l l
les ~ne l e c t u r e s
California
part
pation
and
likewise
in S e a t ~ t l e / W a s h i n g t o n
Galen
Seever
and
tion,
a n d he w a n t s
to p a r t i c i p a t e
step
seminar,
with
active
to i n c l u d e
we want
care
Above
the p r o o f s
with
their
assistance.
his
all h e
of
sends
student
1970/7]
our
care,
and
thanks
who
typed
to H o r s t
to K a r l a
www.pdfgrip.com
of W a s h i n g t o n
thanks
Barbey
notes
to
cooperawho
started
which
formed
text.
in c o n n e c t i o n
Schirmbeck
thoughtfulness,
his h o s t s
deepest
Klaus
in
his
the p a r t i c i -
and pleasant
lecture
sincere
work
and which
who were
his
resembat the
to e x p r e s s
to w h o m he o w e s
valuable
work
1967/68
He w a n t s
DePrima
of the p r e s e n t
and Gisela
in
at the U n i v e r s i t y
former
to e x p r e s s
distinctive
form.
Lumer
for m o s t
and valuable
and
the p r e s e n t
held
and Charles
the e l a b o r a t i o n
interest
parts
K~nig
in P a s a d e n a / C a l i f o r n i a ,
Seminar
in 1970.
to U l l a F a u s t
impressive
kind
Algebra
in the e v o l u t i o n
In c o n c l u s i o n
for h i s
which
to G u n t e r
to K S z 6 Y a b u t a
with
in c e r t a i n
in a p r o v i s i o n a l
to W i m L u x e m b u r g
days,
in the F u n c t i o n
the n e x t
and
algebras
of T e c h n o l o g y
distributed
thanks
in t h o s e
function
Institute
had been
warmest
structure
on
May
to M i c h a e l
with
the
Loch who
and Gerd
Neumann
a common
final
text
read most
Rod~
for
of
Contents
Chapter
I.
Functions
Boundary
in
the
I.
Harmonic
2.
Pointwise
3.
Holomorphic
4.
The
Value
Unit
Theory
Disk
Functions
Harmonic
and
Holomorphic
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
Convergence:
The
Functions
Function
for
Fatou
Theorem
and
its
Converse.
I
.
. . . . . . . . . . . . . . . . . . . .
Classes
HoI#(D)
and
H#(D)
. . . . . . . . . . .
16
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter
II.
Function
I.
Szeg6
2.
Measure
3.
The
Algebras:
Functional
abstract
4.
Gleason
5.
The
and
Theory:
The
Fundamental
Prebands
F.and
Bounded-Measurable
M.Riesz
21
Situation.
22
. . . . . . . . . . .
22
Bands
. . . . . . . . . . . . .
26
Theorem
. . . . . . . . . . . . .
31
and
Lemma
Parts . . . . . . . . . . . . . . . . . . . . . . . .
abstract
Szeg~-Kolmogorov-Krein
34
Theorem . . . . . . . . .
36
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter
III.
Function
I.
Representative
2.
Return
3.
The
4.
Comparison
to
the
Gleason
Algebras:
Measures
and
of
two
Compact-Continuous
Jensen
F.and
Harnack
the
The
and
abstract
Measures
M.Riesz
Situation
Part
I.
IV.
The
Abstract
Hardy
Algebra
44
44
47
Decompositions
Situation
.
. . . . . . . .
Metrics . . . . . . . . . . . . . . .
Gleason
42
. . . . . . . . .
Theorem
. . . . . .
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter
6
12
. . . . . . . . .
48
54
58
59
Basic Notions
and Connections
with the Function
Algebra
Situation . . . . . . . . . . . . . . . . . . . . . .
60
2.
The
Functional
66
3.
The
Function
4.
The
Szeg~
~
. . . . . . . . . . . . . . . . . . . . . .
Classes
Situation
H # and
L#
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter
V.
Elements
I.
The
Moduli
2.
Substitution
of
of
the
into
Abstract
Hardy
invertible
entire
Algebra
Elements
Functions
Theory
of
H #.
76
79
. . . . . . .
81
. . . . . . . .
81
. . . . . . . . . . . . .
www.pdfgrip.com
69
84
VI
3.
Substitution
into
4.
The
Class
5.
Weak-L
]
6.
Value
Carrier
Function
Functions
of Class Hol#(D)
. . . . . . . .
+
H . . . . . . . . . . . . . . . . . . . .
Properties
of
and
the
Functions
Lumer
Spectrum
in
H+ .
.
.
.
.
.
.
.
.
.
1. A
2.
VI.
The
Abstract
Representation
Definition
of
Theorem
the
3.
Characterization
4.
The
basic
5.
The
Marcel
6.
Special
7.
Conjugation
102
of
Return
Riesz
to
the
108
. . . . . . . . . . . . . . . . . .
110
E with
and
Situations
106
. . . . . . . . . . . . . . .
abstract
Approximation
Conjugation
the
means
. . . . . . . . . . .
111
M . . . . . . . . . .
115
of
Theorem . . . . . . . . . . . . . . .
Kolmogorov
Estimations
119
. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
Marcel
Riesz
and
Kolmogorov
Estimations.
Disk
VII.
Analytic
Situation
. .
and
Isomorphisms
with
the
I.
The
Invariant
The
Maximality
Subspace
3.
The
Analytic
4.
The
Isomorphism
5.
Complements
6.
A
of
Theorem
Theorem
Disk
on
I.
VIII.
149
151
Theorem.
. ..
. . . . . . . . . . . . . .
simple
Invariance
of
H
. . . . . . . . .
Examples . . . . . . . . . . . . . . . . . . . . .
The
Weak
Compactness
Decomposition
2.
Strict
3.
Characterization
of M . . . . . . . . . . . . . . . .
Theorem
Convergence
of
Hewitt-Yosida
. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
Theorem
and
Main
Result
. . . . . . . . . .
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter
IX.
Logmodular
Densities
I.
Logmodular
Densities
2.
The
Subgroup
3.
Small
Closed
Extensions
149
. . . . . . . . . . . . . . .
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter
146
. . . . . . . . . . . . . . . . . . .
Theorem . . . . . . . . . . . . . . . . . . .
the
144
Unit
. . . . . . . . . . . . . . . . . . . . . . . . . .
2.
Class
Disks
126
138
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter
91
97
. . . . . . . . . . . . . .
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter
85
and
Small
Extensions
. . . . . . .
155
160
165
167
170
172
172
175
177
180
181
. . . . . . . . . . . . . . . . . . . .
181
Lemma . . . . . . . . . . . . . . . . . .
186
. . . . . . . . . . . . . . . . . . . . . .
190
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
www.pdfgrip.com
197
VII
Chapter
X.
Function
I.
Consequences
2.
The
Cauchy
Algebras
of
the
on
Compact
abstract
Transformation
214
5.
On
. . . . . . . . . . .
218
6.
The Logarithmic
Transformation
Logarithmic
Capacity
of Planar
of Measures
and the
Sets . . . . . . . . . . . . .
221
~7. T h e
Walsh
for
R(K)
. . . . . . . . . . . . . . .
199
204
Basic
Parts
cA(K)
Theory . . . . . .
. . . . . . . . . . . .
On the annihilating
and the representing
Measures
f o r R(K) a n d A ( K ) . . . . . . . . . . . . . . . . . . . . . .
Gleason
P(K) o R ( K )
Algebra
Measures
198
3.
the
on
Hardy
Sets . . . . . . . .
4.
8.
Facts
of
Planar
and
A(K)
Theorem . . . . . . . . . . . . . . . . . . . . . .
Application
to
the
Problem
of
Rational
Approximation
....
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I.
Linear
Functionals
2.
Measure
3.
The
Theory
Cauchy
and
the
Hahn-Banach
Theorem
. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
Formula
via
the
Divergence
Theorem . . . . . . . .
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References
Notation
Subject
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Index
209
227
231
234
236
236
239
241
244
245
. . . . . . . . . . . . . . . . . . . . . . . . . .
255
Index . . . . . . . . . . . . . . . . . . . . . . . . . . .
257
www.pdfgrip.com
Chapter
Boundary
for H a r m o n i c
The
basic
present
model
where
the
then
rems
a r e valid.
in H a r m ( G ) ,
Riemann
HoI(G),
The
sphere
situation
into
the
which
It leads
action.
The
Disk
forms
G~,
the
plane
Harm~(G)
class
G~.
abstract
individual
theory
classical
q let Harm(G)
the c l a s s
of t h o s e
denote
kernel
value
theory
and unit
P:D×S~.
if G is u n b o u n d e d .
= Re
for the
circle
above
classes
the
which
of G r e l a t i v e
Furthermore
s
-
--
s-z
function
S = {s6~: IsI=1}
It is d e f i n e d
s+z
P(z,s)
let
of h o l o m o r p h i c
for u n i t
by the
to be
sz
1-1zl 2
I -s~
[s-z 12
+
s-z
classes
is d o m i n a t e d
V zED a n d
s6S,
I-R 2
P ( R e Z U , e Iv)
=
V 0~R
and
real
u,v.
1-2Rcos(u-v)+R 2
some
immediate
properties,
1-1zl
O < - -
iii)
6~Itl~
for e a c h
< - -
=
P ( R , e i V ) < p ( R , e iu)
P(R,eit)~o
i) P is c o n t i n u o u s
on DxS
and
1+Lzl
< P(z,s)
l+Iz I =
ii)
theo-
functions
in Harm(G)
the c l o s u r e
the r e s p e c t i v e
denote
of b o u n d e d
functions
Here G means
so t h a t ~ 6 G
a n d CHoI(G)
boundary
We l i s t
the
up to the p o i n t
G~¢.
D = {z6~: Izl
Poisson
in the U n i t
theory.
for w h i c h
of the c o m p l e x
functions
extensions
HoI~(G)
functions
the c o n c r e t e
c a n be p u t
and CHarm(G)
continuous
to the
Functions
abstract
the r e a s o n s
subset
of h a r m o n i c
admit
Theory
Functions
F o r G an o p e n
class
theory
illuminate
1. H a r m o n i c
describes
subsequent
the a b s t r a c t
will
Value
and H o l o m o r p h i c
chapter
for
I
for r e a l
for R+I
V z6D a n d
s6S.
1_[z I
u,v with
pointwise
lu!~ivi~
in O< itl=<~ and
6>0.
www.pdfgrip.com
and O~R
hence
uniformly
in
disk
iv) P ( z e , s e ) = P ( z , s )
v) P ( R ~ , B ) = P ( R B , ~ )
A n d we r e c a l l
sentation
for z6D a n d s,~6S.
for e , B 6 S and O
from elementary
theorem.
Here
w i t h the n o r m a l i z a t i o n
1.1 R E P R E S E N T A T I O N
f(Rz)
analytic
i denotes
THEOREM:
= I ~-Szf(Rs)dl(s)
S
for f£Harm(D)
f(Rz)
For f£HoI(D)
= iImf(O)
we have
and O~R
1.2 REMARK:
on S
we have
+ / S+ZRef(Rs)dl(s)
s - z
S
V z6D and O~R
f P(z,s)dl(s)
S
=I for z6D.
behaviour
we put f R : f R ( s ) = f ( R s )
Let
repre-
measure
w e have
We t u r n to the b o u n d a r y
f:D~
the b a s i c
Lebesgue
V z6D and O~R
= ] P(z,s)f(Rs)dl(s)
S
In p a r t i c u l a r
theory
I(S)=I.
= ~ P(z,s)f(Rs)dl(s)
S
Hence
function
one-dimensional
1~p~.
of the f u n c t i o n s
in H a r m ( D ) .
For
Vs£S.
For f£Harm(D)
then
I
I (/If(Rs) IPdl(s)) p for
llfRll
:=
LP(1)
is m o n o t o n e
Proof:
increasing
For O
=
f(rz)
For
[
Max[f(Rs) I
s6S
we o b t a i n
: f(R~z)
from
1 < q < ~ the c o n j u g a t e
1.1
r
= / P(~z,s)f(Rs)dl(s)
S
1
and p = ~ are a l m o s t o b v i o u s ,
flf(rz) IPdl(z)
S
for p = ~
in O
F r o m this the c a s e s p=1,
c a s e s p=1
1~<~
s
exponent
V z6S.
separate
so we r e s t r i c t
treatment.
ourselves
we o b t a i n
< f(/ P ( ~rz , s ) I f ( R s ) I d l ( s ) ) P d l ( z )
S S
= / p<-~z,sll/q
S S
www.pdfgrip.com
The
to 1
_<
f(f P(-~z,s)d~(s))P/q(/ p(~z,s)If(Rs)I Pd~
S S
S
= f(/ P(--~z,s)If(Rs)IPd~{s)]d~{zl = /If(Rs) SPd~(s),
S S
S
w h e r e v) above has been applied.
For 1~p<~ we define HarmP(D)
QED.
to consist of the functions f6Harm(D)
with
Npf
:= lim IlfRl P(1)
R+I
=
sup JlfRil
< ~.
O
LP(1)
For p=~ this coincides with the earlier definition.
N1f ~ Npf ~ N f
we see that Harm~(D)
for f6Harm(D)
c HarmP(D)
behaviour of the functions
Here ca(S)
From
c Harml(D).
in HarmP(D)
We formulate the b o u n d a r y
in the subsequent propositions.
denotes the class of c o m p l e x - v a l u e d Baire measures on S.
1.3 PROPOSITION:
i) For e6ca(S)
define the function
<8>:<8>(z) = / P(z,s)dS(s)
S
Then <8>6Harm1(D)
V z6D.
and N 1 < 8 > = I H ] : = t o t a l
R+I we have Convergence
<8>RI+@
variation of 8. F u r t h e r m o r e
in the weak • topology o(ca(S),C(S))
for
=
~(c(s)~c(s) ~.
ii) Let I ~ < ~. For F£LP(1)
consider the function
f = <Fl>:f(z) = / P(z,s)F(s)dl(s)
S
Then f6HarmP(D)
V z6D.
and Npf= IIF I~
_P(1) . F u r t h e r m o r e
gence fR÷F in L P ( 1 ) - n o r m if I ~ < ~
for R+I we have conver-
and in the weak • topology o(L~(1),LI(1))
= a(LI(1)',LI(1)) if p=~.
iii) For F6C(S)
convergence
Proof:
we have f=<Fl>6CHarm(D).
Furthermore
for R+I we have
fR÷F uniformly on S.
I) <8>6Harm(D)
8 the d e f i n i t i o n
for 86ca(S)
represents
2) In order to prove iii)
fR÷F for R+I. For O~R
is obvious since for real-valued
<8> as the real part of a function in HoI(D).
it suffices to show the u n i f o r m c o n v e r g e n c e
and z6S we have
www.pdfgrip.com
fR(Z)-F(z)
= / P(Rz,s)(F(s>-F(z))dl(s)
S
: / P(R,~)(F(s)-F(z)]dl(s)
S
- 2~ f P(R'eit)(F(zelt)-F(z))dt'
and hence for O<~
into
!tl~6 and d ~ I t I ~
IfR(Z)-F(z) i ~2~_~6 p(R, eit)~(6)dt + 2 ]IFII P(R,e i6) =< ~(~) + 2 IIFII P(R,e i6) ,
where ~ is the modulus of continuity
lim sup
R+I
Hf R- F H ~ ~(6>
SO that l{fR-F{l+o
of the function F6C(S).
Therefore
for each o<6<~,
for R+I.
3) We next prove i). For f=<e>6Harm(D)
and O
/{f(Rz) {dl(z) <_ /(~ P(Rz,s)d{0] (s))dl(z)
S
S S
=f(f
P(Rs,z)dl(z))dl% I (s) = ll81l,
s s
therefore f6Harm I (D) and Nlf< lle]l. The weak* convergence to be shown
means that [HfRdl ÷ fHd8 for R+I for each H6C(S). But this is true since
S
S
for h = <HI> we know from iii) that
/ HfRdl = /(/ H(z)P(Rz,s)d@(s))dl(z)
S
S S
= ]'(f H(z)P(Rs,z)dI(z))dO(s)
S S
And then
= f hR(S)de(s ) + / Hd8 for R%1.
S
S
IfHfRdll__< liHll flfRldl_<_ IIH]INIf for O
S
S
IfHdSI__< IIHIINIf for each H6C(S). This means
S
implies that
IIsIl < N1f, so that we obtain
=
Nlf= {{8 I{.
4) In order to prove ii) we obtain
I{fR{{ Lp(l) ~
for O~R
I{F{I Lp(%)
as in the proof of 1 •2 • Thus fEHarmP(D)
case 1<__p<~ we use the fact that C(S)
and Npf~ IIFI~ P(%) . Then in the
is dense in LP(I). Thus for HEC(S)
www.pdfgrip.com
and h=<Hl>
we have
< II (f-h)Rl I
+ IIF-HII
+ IIhR-HII
llfR -FII L p ( l ) =
LP(I)
LP(I)
LP(I)
2 IIF-HII ~p(~) + IIhR-HII
for O
=
in v i e w of iii),
lim sup IIfR-FII
< 2 IIF-HII
R+I
LP(%) =
LP(%)
and h e n c e
fR÷F in LP(1)-norm.
From
= lim
IIFII LP(1)
In the case p : ~ the weak~
+ fHFdl
S
for R+I
HfRdl
LP(I)
= N
P
that
f.
to be shown m e a n s
But this
in L I (1)-norm
= f hRFdl
S
S
is true
since
that
/HfRdl
S
for h=<Hl>6
and hence
+ / HFdl
S
for R+I.
then
I/S HfRd%l
implies
that
[IFII ~
~N
L (I)
=< IIHIILI(%) [IfRII L ~(l)
IfS NFdll
with
ii) Let
with
% IIHII L I (l) N~f
f, so that we o b t a i n
1.4 PROPOSITION:
8 6 ca(S)
i) For each
=< IIHII L 1 (l)N~f
for O
for each H6L I (X). This means
N f= IIF!I ~
. QED.
L (l)
f6Harm1(D)
there
exists
a unique
f=<8>.
1
f£HarmP(D)
there
exists
a unique
F6LP(1)
f=<Fl>.
iii)
For each
Proof:
f6CHarm(D)
i) The m e a s u r e s
IIfR~II =
Let
convergence
that hR+H
it follows
llfRI I
R+I
for each H6LI(1).
6Harm I (D) we know
And
this
8 6 ca(S)
exists
fRl6Ca(S)
there
f(Rz)
is a s e q u e n c e
a unique
with
f=<Fl>.
V O <=R < I .
Nlf< ~
of these m e a s u r e s
R(n)+l
with
= ] P(z,s)fR(S)dl(s)
S
z6D we take H=P(z,.)
F6C(S)
fulfill
IIf~ll ~I (~)=<
be a w e a k • limit p o i n t
for each H6C(S)
1.1 we have
For fixed
there
and a s u i t a ble
www.pdfgrip.com
for R+I.
[HfR(n)dl÷[HdS.
S
S
Thus
Now from
V z6D and 0£R
sequence
R=R(n)+I
to obtain
f(z)
ii)
For
IIfRI[L p
the
1~q<~
the c o n j u g a t e
(x)=
fR for
p
R+I.
exponent
for O
there
=
Then
of iii)
is s i m i l a r
needed.
The
we o b t a i n
but
(HERGLOTZ):
the n o n n e g a t i v e
since
assertions
V z6D.
L P ( x ) = L q ( I ) ".
a weak • limit
the c o m p a c t n e s s
immediate
formula
f=<8>
fEHarm(D)
and
In v i e w
point
as in the p r o o f
are
The
functions
= <8>(z)
we h a v e
exists
f=<Fl>
simpler
uniqueness
1.5 C O R O L L A R Y
ween
= / P(z,s)de(s)
S
of i).
The
argument
from
1.3.
defines
of
F6LP(1)
of
proof
is not
QED.
a bijection
the n o n n e g a t i v e
bet-
measures
86 P o s ( S ) .
Proof:
For
f6Harm(D)
f(O)
so t h a t
and
Loomis.
dition
will
Convergence:
abelian-type
As u s u a l
Baire
the
functions
and
the
assertions
is not
be v a l u a b l e
are
variation
= ½(@(t+)+@(t-))
for
follow
from
1.3
f Fd0
S
We c a n e x t e n d
Fatou
unless
with
that
abstract
functions
in b i j e c t i v e
behaviour
theorem.
converse
an e x t r a
f>O.
to
tauberian
con-
theorem
theory.
of b o u n d e d
the
@(z) - O(~-)
due
The Loomis
correspondence
with
of the
Besides
variation.
with
the
normalization
= @(-z+) - @(-z),
is
= / F(eit)d@(t)
-7
@:[-~,~]ữÂ
true
@:[-~,~]ữ~
the c o r r e s p o n d e n c e
its C o n v e r s e
convergence
famous
to a s s u m e
Itl
and
its t a u b e r i a n
for the
for us to w o r k
of b o u n d e d
@(0)=0:
is the
we p r o v e
converse
86ca(S)
Theorem
the p o i n t w i s e
answer
h e r e we h a v e
V.5
measures
for
The
theorem
is s a t i s f i e d :
in S e c t i o n
@(t)
Then
The Fatou
We ask
fR for R+I.
It is c o n v e n i e n t
The
for O
=
: [IfRl [ LI (l)
and N 1 f = f ( O ) .
f6Harml(D).
functions
of t h i s
we h a v e
QED.
2. P o i n t w i s e
Let
: SI f(Rs)dl(s)
f6Harm1(D)
1.4.
nonnegative
V F6C(S).
to a u n i q u e
function
www.pdfgrip.com
@1~÷~
with
the p e r i o d i c i t y
property
bounded
and
@(t+2~)-@(t)=const
variation
@(0)=0.
Equivalent
The
with
V real
the n o r m a l i z a t i o n
above
correspondence
f Fde
S
= ] F(elt)dO(t)
T-~
In p a r t i c u l a r
2.1
8 is n o n n e g a t i v e
FATOU
Let
THEOREM:
Let
f £ Harm1(D)
the
÷
iff
V real
t
and e a c h
real ~.
V real
u
@ is r e a l - v a l u e d
and mono-
above
we
@({e
2~
l({e
~dS,
te
corollary.
limit
is = ~de
6
result
We
and
t+O.
Let
iu
is,) for
: e - t < u < e + t})
<
exists
<
V
O
:s-t u ~ + t})
t+O
for
f6Harml (D) w i t h
f(Rs)
~ iu
< <
8 (ie
:~-t u ~+t})
for
l-almost
all
corresponding
l-almost
all
radial
limits
j
=
s6S,
el~6S.
06ca(S).
and
the
Thus
we
Then
the
limit
func-
L I (1).
c a n be e x t e n d e d
shall
2.3 L O O M I S
86ca(S)
lim
R+I
I
2t
iu
subsequent
2.2 C O R O L L A R Y :
for
_
I
tends ÷ 2~
limits.
86ca(S)
see t h a t
the
The
corresponding
f o r R+I.
this
radial
with
A
2z
-
ding
V F6C(S)
6 Pos(S)
@ ( a + t - ) - @(s-t+)
2t
tion
local
~6~ with
f(Re ie) ÷ A
From
and
8(t)=~(O(t+)+O(t-))
of
reads
= @(v-)-@(u+)
0(e+t) - @(s-t)
2t
have
is a f u n c t i o n
increasing.
G:~÷~.
Then
then
is
e({eit:u
tone
t, w h i c h
come
back
THEOREM:
a n d 0:~÷~.
from
to t h i s
point
to n o n - t a n g e n t i a l
in S e c t i o n
Let f 6 H a r m I (D) be n o n n e g a t i v e
Let
e6~ with
f(Rel~)÷A
www.pdfgrip.com
4.
with
for R+I.
correspon-
Then
O(e+t)-e(~-t)
2t
The
proofs
f(z)
have
to be b a s e d
.
P(z,elt)d@(t)
=
transformation
convenient
to t r a n s f e r
A={s6~:Re S~O}via
up the
allows
relation
V z6D.
us to a s s u m e
the p r o b l e m
an a p p r o p r i a t e
1-s
h:h(s)=1--~ for
function
It m a p s
from
the
that
unit
~=O.
disk
fractional-linear
But
then
it is
D to the h a l f p l a n e
map.
L e t us w r i t e
this map
corresponds
which
(and is e q u a l
of b o u n d e d
of a n o r m a l i z e d
= -¢(X)
to its
inver -
s6A a n d
e
e
it
it
number
=
@(-'rr+)
1-ixs
s-ix
-z
We
=
x6~ and
= cRes-
= eRes
In p a r t i c u l a r
lim
~+O
+
--~+6
-tan-2
increasing
for c o r r e s p o n d i n g
Re
1-ixs
S--lX
/ Re , 1 - i x s d~(x)
s-ix
for O < s < ~
,
Ttl<~,
iff ~ is so a n d
x6~ and
~-~
f P(z,eit)dO(t)
-~+6
d~(x)
°
and -l
is
find
= cRe.11+z + l i m
6+O
Fn ?
of b o u n -
c
~.
we h a v e
= f P(z,eit)d@(t)
-~
@:[-~,~]÷~
function
the c o r r e s p o n d e n c e
-9(-~)
and monotone
z=h(s)6D.
+z
c:
[t[
variation
for c o r r e s p o n d i n g
@ is r e a ~ v a l u e d
c is >=O. L e t n o w
and
function
¢('~)-9(~-)
In p a r t i c u l a r
V x6~
consists
~:]~÷~ a n d a c o m p l e x
@(t)
f(z)
A÷D
t
= e it ~ x = - t a n 2
a normalized
to a p a i r
ded variation
therefore
s6~ m a p s
i~÷S with
h(ix)
Under
on the
transition.
The
se).
for t+O.
~
it
= / Re e it +z d @(t)
-~
e
-z
-~
An o b v i o u s
A
+ 2~
we have
www.pdfgrip.com
Itl
f(z)
= CS +
-~
I+x2-~
S -~-~d~(x)
S +x
with ~:~(x)=~(x)-~(-x)
normalization
= CS+
I+x2~
S --~---~(X),
S +x
for x~O a function of bounded variation
~(x)=½(~(x+)+~(x-))
monotoneincreasing
i
Vx>O and ~(O)=0,
if ~ is so. It follows
with the
and ~ real-valued
and
that f(z)÷A for z+1 is equiva-
lent to
1+x 2
S --~--~ d~(x)÷A
o
s +x
for s+O
and hence to / - - ~ 2
o s +x
d~(x)÷A
for s+O.
On the other hand we have
(x) _ ~ (x) -+ (-x)
x
x
_-
@(t)-@(-t)
t
tan
for corresponding
x>O and O
so that
@ (t)-@ (-t)
÷~
2t
We can therefore
for t+O is equivalent
reformulate
2.4 FATOU THEOREM:
~(x)
x
to
our assertions
L e t ~ :[0,~[÷~
2
÷ ~A for
as follows.
be of bounded
variation with ~(0)=0
and
F: F(s)
Then ~(x) ÷ a
x
for x+O implies
2.5 LOOMIS THEOREM:
with ~(0)=0
2 ~ ~
d~(x)
= ~
s2+x 2
that F(s)÷a
for s>O.
for s+O.
Let ~ :[O,~[÷~ be monotone increasing
(and F as above)
Then F(s)÷a
for s%O implies
and bounded
that ~(x) ÷ a
•
x
for x+O.
Proof of 2.4: This
is a typical
proof of an abelian theorem.
Fix ~>O.
Then for s>O we have
F(S)
- 2_aa~arctan ~~ = ~2 of s +x
2
_
~2 S2+6
2~
(~(~ -a~) + ~ o
F(s)
d(~(x)-ax)
al 2sx2
7
+ ~ 6
2
(s2+x2) 2ax + ~
s +x
s 2 i~(6 ) _ a6 I
_ 2a~ arctan ~I =< ~2 s2+6
2Sup{i~(X)_a]:O
x
=
+ 2
s
~ s2+~-----2var(~)
www.pdfgrip.com
'
10
and hence
For
l i m s u p l F ( s ) - a I _<_ 2 Sup{I~---~)-al :O
s+O
6+O the
The
assertion
proof
of
follows.
2.5 w i l l
2.6 U N I Q U E N E S S
QED.
be b a s e d
REMARK:
Let
Proof
for L e b e s g u e - a l m o s t
of 2.6:
The
an odd c o n t i n o u s
for O
above
and hence
it
-e 7 +z d0(t)
-~ e
-z
= 0
If
x>O.
V
= ~ H(t~dt
O
J+t 2
function
for all
s6£.
X6~
of b o u n d e d
variation
dx = 2s ~f ~ H(x)
O S +x
H(Ixl)
1+X 2
Under
~:~÷~.
the transition
We h a v e
dx = O
A÷D d e s c r i b e d
@: [-~,~] ÷ 9
From
QED.
Alternative
WeierstraB
spanned
proof
theorem.
1.3.i)
ha:he(x)
identity
P(z,eit)d0(t)
of 2.6:
This
that
=0
I
- e2+x2
shows
with
with
a~s
rr
H (x___Z
~=0 and hence
based
linear
on the
Stone-
subspace
o<~
t h a t A is an a l g e b r a .
of S t o n e - W e i e r s t r a B .
2I 2
e -s
of b o u n -
functions
v O~x~
h6
proof
be the c l o s e d
Now
o~
_
f h a ( x ) _ H(X)
dx
o
s2+x 2
for all O < ~ , s < 1
V z6D,
function
0=0 and h e n c e
is an a b - o v o
C([O,~])
a n d by the
h -h 6 = (62-~2)h
in v i e w
odd c o n t i n u o u s
we c o n c l u d e
Let AcRe
by the c o n s t a n t s
A=ReC([O,~])
f
and hence
is the c o r r e s p o n d i n g
the
assertion.
Vz6D
-~
ded variation.
The
function.
we o b t a i n
f
where
all
Baire
remark.
for all O
= 0
= 7J s ( 1 + x 2 )2+ i x2( 1 - s 2 )
-~
S +x
1-ixs d~(x)
s-ix
-~
uniqueness
formula
: ~(x)
defines
subsequent
H : [ O , ~ [÷ ~ be a b o u n d e d
H(x)_
~ a x
o s +x
then H(x)=O
on the
dx
-
]" H(x------Z d x )
0
and hence
www.pdfgrip.com
a2+x 2
= 0
Therefore
11
/ h(x)
o
H(x____~)dx : 0
s2+x2
F r o m this the a s s e r t i o n
Proof
x>O.
of 2.5:i)
V h6A = R e C ( [ O , ~ ] )
is obvious.
There
exists
and O
QED.
an M > O such that O ~ ( x ) < _ M x
for all
In fact we have
F(s)
which
~ _ _s
2
d~(x)
~ ~ o s2+x 2
> 72
=
7 2-~
~(S,
r,s
d~(x)
o
for
s>O,
in v i e w of the a s s u m p t i o n s i m p l i e s the result, ii) L e t us f o r m
I
~t:~t(x)=t--~(tx) for x~o. T h e n ~ t : [ O , ~ [ ÷ ~ is l i k e w i s e
for t > O the f u n c t i o n
monotone
increasing
and b o u n d e d w i t h ~ t ( O ) = O ,
x~O. N o w a f t e r p a r t i a l
F(s)
It f o l l o w s
integration
2 [
= ~ o
2
= ~ £
for s>O.
2sx
(s2+x2)2 ~ t ( x ) d x
for s>O and t>O.
to p r o v e ~ ( X ) ÷ a for x%0 w e c o n s i d e r a s e q u e n c e t ( n ) % O for
I
the v a l u e s t(n--~(t(n))=~t(n) ( 1 ) c o n v e r g e to some l i m i t c.
In v i e w
of i) c m u s t be finite.
the f u n c t i o n s
~t(n)
val of
Therefore
[O,~[.
to W I D D E R
[1946]
and a s u b s e q u e n t
pointwise
on
increasing
T h e n we have to s h o w that c=a.
(n=I,2 .... ) are e q u i b o u n d e d
the H e l l y
Chapter
1.16)
diagonal
[O,~[
selection
applied
selection
to a f u n c t i o n
and s a t i s f i e s
on each bounded
theorem
to
[O,N]
lead to a s u b s e q u e n c e
@:[0,~[+ R which
2sx 2
(s2+x2)2
The operation
in q u e s t i o n .
F(s)÷a
is l i k e w i s e m o n o t o n e
Now
from
for s>O
for s+O w e d e d u c e
~(x) dx = 2 i
x
~
I t
~ /...ds
o
(N=I,2...)
which converges
via d o m i n a t e d
that
2 i
a = ~
subinter-
(for w h i c h we r e f e r
successively
2 ~
2s
x2
= ~ /
,
I
O S2+X 2 S2+X 2 ~ ~t(n) (x)dx
and f r o m the a s s u m p t i o n
In v i e w of ii)
O~8(x)<_Mx for all x>=O. We k e e p the n o t a t i o n
for the s u b s e q u e n c e
F(t(n)sl
gence
2sx
~(x)dx
(s2+x2)2
In o r d e r
which
~t(n)
for all
that
F(ts)
iii)
and a l s o O<_~t(x)
2sx
(s2+x2)2
for t>O leads
oo
2 [ 1 1 1 _ x_x__]
a = ~ o ttx t2+x 2 ~ e ( x ) d x
e(x)dx
for s>O.
to
oo
2 [
t
~(X)dx
= ~ o t2+x 2
x
www.pdfgrip.com
for t>O
conver-
12
2 ~ t
i~)_ald
t2+x 2 - Thus
f r o m 2.6 we o b t a i n
@(x~)=ax
for all x>o,
for all x>O.
We introduce
classes
for I ~ o
and the f u n c t i o n
HP(D)
:= {F6LP(I) : <FI> 6 H o I ( D ) }
A(D)
:= {F6C(S)
H~(D)
the b i j e c t i v e
correspondences
c {<FI> :F6H I (D)} c Hol I (D)
c
c H 1 (D) ~ H I ( D ) I c
HP(D)
theorem
to the h a r m o n i c
is an algebra.
function
Therefore
and the H ~ I d e r
inequality
l e a d s to o b v i o u s
for
In p a r t i c u l a r
1
measure
and
enters
/ F(s)G(s)P(z,s)dI(s)
S
the scene:
<(FG)~>
an(D)
t h a t HI(D) I=an(D)
w e e n the HP(D)
implies FG 6A(D)
for 1 < p ! ~,
cHolP(D)
relative
HoI(D)
classes
: <FI> 6 H o l ( D ) } .
It w i l l be a m a i n
A new aspect
tiplicative
On the side of
:= {@6ca(S) : <8> 6 H o I ( D ) } ,
CHoI(D) c H o l ~ ( D )
cat~vity:
w i t h the e a r l i e r d e -
v a l u e s we i n t r o d u c e
1.3 and 1.4 c o n t a i n
1
HolP(D) :={f6Hol(D) :Npf< ~} =
CHoI(D) : = H o I ( D ) D C H a r m ( D ) .
the c l a s s of a n a l y t i c m e a s u r e s ,
with
QED.
F o r p = ~ this c o i n c i d e s
We had a l s o d e f i n e d
A(D) c
Hence
we have in fact @ ( x ) = a x
c = l i m ~t(n) (1)=e(1)=a.
the f u n c t i o n
an(D)
Then
8 is m o n o t o n e
all x>O.
Functions
= HOI(D) AHarmP(D)
the b o u n d a r y
for t>O
for L e b e s g u e - a l m o s t
and s i n c e
In p a r t i c u l a r
3. H o l o m o r p h i c
finition.
e(x)=ax
x = 0
A(D)
situation
a n d H~(D)
multiplicative
the u n e x p e c t e d
The obvious
= <F~><GI>
(F.and M . R I E S Z ) .
means
is m u l t i p l i -
are a l g e b r a s ,
relations
fact t h a t F , G 6 A ( D )
that
= CS F ( s ) P ( z , s ) d l ( s ) l < ] G ( s ) P ( z , s ) d l ( s ) l
S
S
www.pdfgrip.com
bet-
n o t i o n of a m u l -
V z6D,
13
w h i c h means that for each z6D the m e a s u r e P(z,-)l
for z=O the m e a s u r e
I itself)
(and in p a r t i c u l a r
is m u l t i p l i c a t i v e on A(D). The same is
true for H~(D).
3.1 REMARK:
Proof:
Let 86an(D)
and F6A(D).
Let h=<e> and f=<Fl>.
f(z)h(Rz)
Then F86an(D)
For O~R
and <FS>=<FI><8>.
then FhR6A(D)
= / P(z,s)F(s) hR(S)dl(s)
S
and
V z6D.
For R+I it follows that
f(z)h(z)
3.2 REMARK:
= / P(z,s)F(s)dS(s)
S
For Q6ca(S)
V z6D.
QED.
the subsequent p r o p e r t i e s are equivalent.
i) 8 6an(D) , that is '<8> 6HoI(D) .
ii)
~ snd0(s) = 0 (n=I,2 .... ).
S
iii) / Hd0 = H(O) / do for all p o l y n o m i a l s H ( i n o n e complex variable).
S
S
iv) / Ha0 = h(O) / dO for all H6A(D) with h(O)=<Hl>(O)=/Hdl.
S
S
S
In this case we have the C a u c h y formula
<0>(z)
Proof:
i) ~ i v )
= / s
d@(s)
S s-z
is 3.1 for z=O.
tains the p o l y n o m i a l s . i i i ) ~ i i )
¥ zED.
iv) ~ i i i )
is obvious
is trivial,
ii)~i)
since A(D)
con-
and the last asser-
tion follow from
<0>Iz) = f PIz,s)d0
= / (~s
S
+
S
S~)d0Cs )
I -sz
oo
= / S__~z 0(S ) + ~
~n f sndo(s)
S
n=1
S
3.3 PROPOSITION:
i) A(D)cC(S)
bra of the p d y n o m i a l s .
ReC(S)
V z6D.
QED.
is the supnorm closure of the subalge-
Furthermore
ReA(D)cReC(S)
is supnorm dense in
(the D I R I C H L E T property).
ii) Let 1~p<~. Then HP(D)cLP(1)
is the L P ( 1 ) - n o r m closure of A(D)
(and hence of the subalgebra of the polynomials).
iii) H~(D)cL~(I)
is the weak* closure of A(D)
www.pdfgrip.com
(and hence of the
14
subalgebra of the polynomials).
exist functions Fn6A(D)
L=(1)
sense
Proof:
We have more: For each FEH
(and hence the F
n
w h i c h annihilate
06ca(S)
in the
can be chosen to be polynomials).
i) It is clear that A(D)cC(S)
of 3.2 the m e a s u r e s
(D) there
with !IFnlI < llFIi
and F ÷F pointwise
=
L~(1)
n
is supnorm closed. And in view
w h i c h annihilate A(D)
the polynomials.
are the same as those
The d e n s i t y of the subalgebra of the
p o l y n o m i a l s also has a simple direct proof:
For F6A(D)
and f=<Fl> we
have llfR-Fll+Ofor R+I, and in view of the Taylor series e x p a n s i o n each
fR for O~R
is the u n i f o r m limit of polynomials.
Dirichlet property
all F£A(D).
let @6ca(S)
annihilate ReA(D)
In order to prove the
and hence F and F for
It follows that /sUdS(s)= 0 Vn6$ and hence e=O in view of
S
theorem.
the W e i e r s t r a S
ii)iii)
In view of 3.2 HP(D)
= 0(n=I,2,...)
F6HP(D)
norm
consists of the F6LP(I) with /snF(s)dl(s)
S
and is therefore closed in the respective sense. For
and f=<Fl> we have fR6A(D)
if
I~<~,
for O~R
w h e r e a s IIfRl[ ~ IIFII
sense if p = ~ after 2.1. QED.
and fR+F for R+I in LP(~) -
and fR÷F pointwise in the L~(1)
L~(~)
We conclude this section with the formulation of the most fundamental classical
theorems.
We present almost no proofs. All these theorems
will be put into broad and natural context and appear as simplest special cases in the abstract theories of Chapters
3.4
F. and M.RIESZ THEOREM:
II and III.
Each analytic m e a s u r e
is a b s o l u t e l y con-
tinuous with respect to ~, that is an (D) =HI(D)~.
In view of the future a b s t r a c t i o n we deduce this t h e o r e m from a certain m o d i f i e d version.
3.5 M O D I F I E D F.and M.RIESZ THEOREM:
A s s u m e that e6ca(S)
A(D),
that is f FdS=O VF£A(D). If @=~+6 with l-continous
S
lar 6, then e and ~ likewise a n n i h i l a t e A(D).
annihilates
~ and l-singu-
3.6 LEMMA: Let 0 6 an(D) be ~ O. Then there exists an n(n=O,1,2...)
such that
1 Zn e 6 an(D) and
where Z:Z(s)=s
Sf ~dn
Z e + O,
is the identity function.
www.pdfgrip.com
15
Thus in view
Proof of 3.6: From 3.2 we know that jsnd@(s)=O
~
Vn~1.
S
of the WeierstraB
for a smallest
theorem we have /s-ndQ(s)40
S
for some n>=O and hence
n>=O. Then 3.2 shows that this n~O
fulfills
the asser-
tion. QED°
Proof of 3 . 5 ~ 3.4:
l-singular
i) Let @£an(D)
~. Then @-@(S)I=(e-@(S)I)+~
3.5 we see that
~ likewise
that a l-singular
But if now the above
analytic measure with
3.7 JENSEN
A(D).
ii)
A(D)
~ and
so that from
In particular
analytic measure must annihilate
l-singular
8 must be = O .
annihilates
annihilates
integral=O.
that
and @=~+~ with l-continuous
A(D),
i) shows
that is has an
B were 40, then 3.6 would lead to a
integral
40. This contradiction
shows
QED.
INEQUALITY:
Let F6A(D)
and f=<Fl>.
Then
V z6D.
log]f(z) I ~ / P(z,s)logIF(s) Idl(s)
s
Hence the same is true for F6HI(D).
3.8 COROLLARY:
If F6HI(D)
Proof of A(D) ~ H I ( D )
is 4 ° then logIFI6L1(1).
in 3.7: Let F6HI(D).
For O~R
we have
loglf(Rz) I ~ / P(z,s)loglfR(s) Idl(s)
S
~ P(z,s)log(IfR(s) l+£)dl(s)
S
Now IIfR-FII L1(1)÷O
V z6O and e>O.
for R+I so that for a suitable
have fR(n)+F pointwise
and under an Ll(1)-majorant.
for log(IfR(n) I+c) ÷ log(IFl+e).
It follows
follows
DP:DP(o)
= Inf{/IFIPd~:F£A(D)
S
Then the same is true
V z6D and e>O,
from Beppo Levi.
then f(z)40 for some z6D. Thus the assertion
For the last theorem we introduce
we
that
loglf(z) I ~ f P(z,s)log(IF(s) l+e)dl(s)
S
and for s%O the result
sequence R(n)+1
Proof of 3.8: If F40
is obvious.
QED.
the functionals
with f(O)=1}
www.pdfgrip.com
V ~ 6 Pos(S),
16
where
1
3.9 SZEG0-KOLMOGOROV-KREIN
THEOREM:
For
1<=p<~ we have
= exp(f ( l o gd~
~ ) dl)
S
DP(o)
V a6Pos(S).
In particular
V O<_F£LI(1),
DP(FI) = exp(f(logF)dl)
S
which
is the Szeg~ theorem.
4. The Function
Classes
HoI#(D)
In the future abstract
and H#(D)
theory the function
class which corresponds
to the class H#(D)
to be defined
important
function classes which correspond
than the
in the present
section will be far more
to the HP(D)
finite p~1. As before our main concern will be the transition
for
from D
to S.
For G an open subset of ~ we define a function
HoI#(G)
iff there exists a sequence
on G, fn ÷ I pointwise
on G
of functions
(and hence uniformly
f:G÷~
to be of class
fn6HOl~(G)
with
on each compact
Ifnl~1
subset
of G),
and f f6Hol~(G) for all n>1. We list some immediate consequences.
n
=
i) HoI~(G) c H o l # ( G ) c H o l ( G ) , and HoI#(G) is an algebra, ii) HoI#(G) con-
tains the class HOI+(G) of the functions f£Hol(G) with Re f >=0. In fact,
n
we can take fn:=n--~, iii) If U,Vc(~ are open and @:U+V a holomorphic map,
then f6Hol#(V)
implies
that fo@6Hol#(U).
Let us now turn to the unit disk situation.
F6L(1)
F
to be of class H#(D)
n6H ~ (D) with
FnF6H~(D)
iff there exists
[Fnl ~< I, Fn÷1 pointwise
(as usual
for all n~1. Then H~(D)cH#(D),
4.1 PROPOSITION:
For f6Hol#(D)
F(s) := lim fR(s)
R+I
is an algebra.
limit
for l-almost
www.pdfgrip.com
a function
of functions
in the L(1)-sense)
and H#(D)
the radial
exists
We define
a sequence
all s6S,
t
and
17
and produces
an
element F6H#(D).
The map f ~ F
thus defined
is a bijec-
tion HOI#(D)÷H#(D).
Proof:i)
Let f£Hol#(D),
the definition
and take functions
with gn:=fnf6Hol~(D).
dary functions.
Then
IF
f 6HoI~(D)
n
Let Fn,Gn6H~(D)
as required
the respective
in
boun-
n
=
f IFn-I 12dl < 2-2Re / Fnd~. = 2{1-ReFn(O)~÷O.
S
S
Therefore
after transition
to a suitable
subsequence
we can assume
that
F +I pointwise, ii) We choose a Baire set NcS with ~ (N)=O such that in
n
each point s6S-N I) radial convergence fn (Rs)÷Fn(s) and gn(RS)÷Gn(S)
for R+I takes place
the Fn6H~(D)
for each n>1,
thus obtained
now the equation
and 2) the representatives
on S-N
fulfills Fn(S)÷1
fn(Rs)f(Rs)=gn(RS)
choose an n> 9 with Fn(S) tO.
for s6S-N and O~R
Then fn(RS)+O
S÷Fn(S)
of
for n÷ ~. Consider
For fixed s6S-N
for R sufficiently
close to I.
Thus the limit F(s):=limf(Rs) exists in each point s6S-N. The element
R+I
F6L(I) thus produced
fulfills FnF=G n for all n>__1. Therefore F6H#(D).
iii)
In case F=O we have Gn=O and hence gn=O for all n>1.
fn÷1 this implies
that f=O. Therefore
the above map f~F is injective.
iv) Let us now start with a function F6H #(D),
as required
in the definition
and take functions
F n 6H~(D)
And put fn=<Fn ~>, gn =
with Gn:=FnF6H~(D).
=<Gn~>ÊHoI~(D) ã Then
IfnI<1 and fn ữI on D. Now flgn=fngl
since the difference
is in HOI~(D)
FIGn-FnGI--O.
In view of
and possesses
for all 1 'n>1
=
the boundary
Therefore
fn÷1 on D implies
that there exists
f:D+~ such that fnf=gn
for all n>1. This
implies
now ~6H #(D) be the radial boundary
FnF for all n>1.
In view of Fn÷l
f~F under consideration
4.2 COROLLARY:
is surjective.
Let f6Hol#(D).
that f6Hol#(D).
function produced
this implies
function
a function
Let
by f. Then Fn~=Gn =
that ~=F.
Thus the map
QED.
Then for l-almost
all s6S the angular
limit
F(s):=lim f(z) on ~ ( s , e ) : = { z 6 D : - R e ( z - s ) ~
Z÷S
z6~(s,~)
exists
for all O
[z-sicos e}
(and of course each time is equal to the radial
www.pdfgrip.com
18
limit obtained
Proof:
proof
in 4.1).
i) A n i m m e d i a t e
shows
that we can r e s t r i c t
fix a p o i n t
assume
for z÷s on w(s,~)
transition
we h a v e a f u n c t i o n
e a c h O<~<~.
that f(z)÷c
for e a c h O
to t r a n s f e r
[1950]
VoI.I
p.186),
fn:fn(Z)=f(~)
Vz6A
in e a c h p o i n t
z>O. T h e r e f o r e
exists.
is e q u i b o u n d e d
from D to the
Vz6¢.
such that f ( z ) + c
the aid of the V i t a l i
ii) T h e s e q u e n c e
After
the
for z+O,
and
for
theorem
(see
of the f u n c t i o n s
in A and s a t i s f i e s
in v i e w of V i t a l i
Then
We shall
We can of c o u r s e
the p r o b l e m
map h:h(z)=~
f6Hol~(&)
f6Hol~(D).
lim f ( R s ) = : c
R+I
for z÷O o n ~ ( ~ ) : = { z 6 A : R e z ~ I z l c o s ~ }
T h i s w i l l be d o n e w i t h
CARATHEODORY
i) and ii) of the a b o v e
to the case
limit
A v i a the f r a c t i o n a l - l i n e a r
we h a v e to p r o v e
compact
ourselves
s=1. T h e n it is c o n v e n i e n t
half p l a n e
of p a r t s
s6S such that the r a d i a l
that f ( z ) ÷ c
prove
adaptation
fn(Z)÷C
for n÷ ~
f ÷c u n i f o r m l y
n
s u b s e t of A. Thus for f i x e d O < e < ~ we have a s e q u e n c e
on e a c h
of ~n %0
such that
Ifn(Z)-CI=If(~)-c
This
implies
that
3.4-3.5
contain
important
Ho!#(D) and H#(D). N o t e
lity 3.7 and 3.8.
w i t h ½!IzI~1
I f ( z ) - c l ~ Sn V z6~(~)
The n e x t r e s u l t s
classes
!e n v Z[~(~)
with
Assume
that f 6 H o l + ( D ) .
until
From
QED.
on the r i c h n e s s
d e p e n d u p o n the J e n s e n
of t h e s e r e s u l t s
and 3 . 7 - 3 . 9 w i l l n o t be c o m p l e t e
4.3 LEMMA:
IzI<~ and n~1.
information
that 4 . 5 - 4 . 7
So the p r o o f s
a n d n~1.
of the
inequa-
as w e l l as t h o s e of
the end of C h a p t e r
1.5 we h a v e
e6Pos(S)
II.
such that
Re f =<@> and h e n c e
f(z)
Then ef6Hol#(D)
Proof:
Then
i) A s s u m e
f 6HoI(D)
n
+ / S+Zde(s)
sS-Z
V z6D.
iff @ is a b s o l u t e l y c o n t i n u o u s w i t h r e s p e c t
P u t Fn: = M i n ( F , n )
fn:fn(Z)
= ilmf(O)
that @ is l - c o n t i n u o u s
to i.
a n d 8=FI w i t h O < F £ L I ( 1 ) .
and
= i Imf(O)
with
+ S/ ss+z
JzFn(S)d~(s)
V z6D and n~1.
f ÷f and Re f =<F l > 6 H a r m
n
n
n
www.pdfgrip.com
(D) w i t h Re f < Re f .
n=