h ê đề dà
dành
h cho
h lớ
lớp cao học
h
Chuyên
IMAGE PATTERN RECOGNITION
WITH NEURAL NETWORK
Dr. Lê Dũng
g
School of Electronics and Telecommunications
Hanoi University of Science and Technology
Hà nội
ộ 11/2011
C
huyên đề dành cho lớp cao học
2
TABLE OF CONTENT
Part I:
Design a real application using image pattern
recognition with neural network
1. Automatic Envelopes Classification System in the post office
2. Skin color detector with Neural Network
Part II:
Image Pattern Recognition
+ Digital Image and Image Acquisition
+ Image Enhancement
+ Image
I
Segmentation
S
t ti
+ Image Pattern Recognition
Part III:
Recognition with Neural Network
+ Theory of Neural Network
+ Using Neural Network for Pattern Recognition
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
C
huyên đề dành cho lớp cao học
3
MỤC TIÊU CỦA CHUYÊN ĐỀ
Hiểu thế nào là “Mẫu
Mẫu ảnh
ảnh” (Image Pattern) và nguyên
lý nhận dạng mẫu ảnh (Image Pattern Recognition).
Nguyên tắc tạo và chuẩn hóa mẫu ảnh phù hợp
cho việc nhận dạng bằng mạng Nơron.
Nơron
Nắm được lý thuyết cơ bản về mạng Nơron trong
nhận dạng mẫu ảnh.
Ỵ Định
Đị h hướng
h ớ
cho
h việc
iệ ứng
ứ
d
dụng
kỹ thuật
th ật nhận
hậ
dạng mẫu ảnh bằng mạng nơron.
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
C
huyên đề dành cho lớp cao học
4
TÀI LIÊU THAM KHẢO CHÍNH
“Digital Image Processing”
Barnd Jähne
Spring Verlag 1995
“Neural Networks for Pattern Recognition”
Bishop, C.M.
Oxford University Press, 1995.
“Neural Network Design”
Martin T. Hagan, Howard B. Demuth, Mark Beale
Thomson Learning, 1996.
“Gradient-based learning applied to document recognition”
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P
Proceedings of the IEEE,
IEEE vol.
vol 86,
86 1998.
1998
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
C
Part I : Design a real application
huyên đề dành cho lớp cao học
AUTOMATIC ENVELOPES CLASSIFICATION SYSTEM
(Project : 010-2001-TCT-RDP-BC-26 at the Research Institute of Post and Telecommunication 2000-2001)
Collected envelopes
Control & Operation System Centre
control
Recognition result
(postcode)
Classification of
envelope types
Automatic
Handwritten Postcode
Recognition
Image 640x480
Standard
envelopes
CCD
camera
Separate,
p
, Index &
Put each of
envelopes
on conveyer belt
Light
My
design
control
Mechanical
System to do
classification
Conveyer belt
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
5
C
Part I : Design a real application
huyên đề dành cho lớp cao học
DESIGN THE PROCESS OF FUNCTIONS
Error (reject)
Preprocessing
Segmentation
(Neural network)
Image WxH
CCD
Camera
Light
xxxxx
Recognition
28117
Classification OK
Index i
Envelope
Multi-layers Feed-Forward
Neural Network
Conveyer belt
Preprocessing
Segmentation
Recognition
- Grayscale convert
- Segment the postcode area
- Enhancement
- Segment
g
5 areas for
- Binary convert
each code number
- Subtraction
- Segment 5 number patterns
- Noise filter
- Find envelope
p frame
- Rotate & Crop Postcode area
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
- Patterns normalization
- Recognition using
a neural network.
- Check result
(OK or reject)
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
6
C
Part I : Design a real application
huyên đề dành cho lớp cao học
7
NEURAL NETWORK FOR PATTERN RECOGNITION
16x16
Input layer
Input layer : 256
Normalized
Pattern 16x16
Layer 2
16
Activation function
7
Log-Sigmoid
a=
5x5
7x7
3x3
Layer 2 : 106
(Feature map)
16
3x3
Layer 3
7
1
1 + e − n net
10
0
1
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
Output layer
2
3
4
5
6
7
8
9
Result
Layer 3 : 68
(Sub-sampling)
Output layer : 10
(classification)
Total : 440 neurons
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
C
huyên đề dành cho lớp cao học
Part I : Design a real application
SOFTWARE MODULE (3) : RECOGNIZING POSTCODE
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
8
C
Part I : Design a real application
huyên đề dành cho lớp cao học
SKIN COLOR DETECTOR
FOR A REAL-TIME HAND GESTURE RECOGNITION SYSTEM
2D Color
Camera
Skin color
detector
Skin color
detection
image
Hand feature extraction
Hand gesture recognition
Hand tracking
g
Human-Robot interaction
Human-Computer interaction
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
9
C
Part I : Design a real application
huyên đề dành cho lớp cao học
THE OVERVIEW OF MY COMBINING METHOD
Step 1
Step 2
Image frame
Result
PRNN
Collecting
The
statistical
t ti ti l
skin color
model
Training
Building
Training data set
+ Skin color patterns
+ Non-skin color patterns
The originality of the method:
Step 1: Using the statistical skin color model
Ỉ Fast detection with not high accuracy (coarse work)
Ỉ Check all pi
pixels
els of the image frame (coarse data)
Step 2: Using the pattern recognition neural network
Elliptical
p
skin color
model
Multi-layers FeedForward Neural
Network
ỈDetect with high accuracy (fine work)
ỈL
ỈLearn
tto correctt th
the ddetection
t ti errors off the
th statistical
t ti ti l skin
ki color
l model.
d l
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
10
C
Part I : Design a real application
huyên đề dành cho lớp cao học
DEFINE A PATTERN FOR SKIN COLOR PRNN*
Non-skin
Skin detection result based on
the color information of a pixel
?
Pattern for PRNN
with 9 pixels
Skin
Skin
Non-skin
Under examination
pixel and its
8 neighborhood pixels
* PRNN – Pattern
P
R
Recognition
i i Neural
N
l Network
N
k
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
11
C
Part I : Design a real application
huyên đề dành cho lớp cao học
TỔNG KẾT CÁC KHÁI NIỆM TRONG PHẦN I
¾ Khái niệm
iệ mẫu
ẫ ảnh
ả h trong
t
nhận
hậ dạng.
d
¾ Khái niệm tạo và chuẩn hố mẫu ảnh
¾ Khái niệm
ệ nhận
ậ dạng
ạ g
¾ Khái niệm mạng nơron và huấn luyện mạng nơron
¾ Khái niệm thư viện mẫu ảnh để huấn luyện
¾ Khái niệm huấn luyện mạng nơron
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRONICS AND TELECOMMUNICATION
12