The Respiratory System at a Glance
The Respiratory
System at a Glance
Jeremy P.T. Ward
3K'
+HDG RI 'HSDUWPHQW RI 3K\VLRORJ\
DQG 3URIHVVRU RI 5HVSLUDWRU\ &HOO 3K\VLRORJ\
'LYLVLRQ RI $VWKPD $OOHUJ\ DQG /XQJ %LRORJ\
.LQJ¶V &ROOHJH /RQGRQ
/RQGRQ 8.
Jane Ward
0%&K% 3K'
6HQLRU /HFWXUHU
'HSDUWPHQW RI 3K\VLRORJ\
.LQJ¶V &ROOHJH /RQGRQ
/RQGRQ 8.
Richard M. Leach
0' )5&3
&RQVXOWDQW 3K\VLFLDQ DQG +RQRUDU\ 6HQLRU /HFWXUHU
*X\¶V DQG 6W 7KRPDV¶ +RVSLWDO 7UXVW DQG
.LQJ¶V &ROOHJH /RQGRQ 6FKRRO RI 0HGLFLQH
6W 7KRPDV¶ +RVSLWDO
/RQGRQ 8.
With contributions from
Charles M. Wiener
0'
3URIHVVRU RI 0HGLFLQH DQG 3K\VLRORJ\
'HSDUWPHQW RI 0HGLFLQH
-RKQV +RSNLQV 6FKRRO RI 0HGLFLQH
%DOWLPRUH 0' 86$
Third edition
A John Wiley & Sons, Ltd., Publication
7KLV HGLWLRQ I UVW SXEOLVKHG
F
E\ -37 :DUG - :DUG 50 /HDFK
3UHYLRXV HGLWLRQV
%ODFNZHOO 3XEOLVKLQJ ZDV DFTXLUHG E\ -RKQ :LOH\ 6RQV LQ )HEUXDU\ %ODFNZHOO¶V SXEOLVKLQJ
SURJUDP KDV EHHQ PHUJHG ZLWK :LOH\¶V JOREDO 6FLHQWLILF 7HFKQLFDO DQG 0HGLFDO EXVLQHVV WR IRUP
:LOH\%ODFNZHOO
5HJLVWHUHG RIILFH -RKQ :LOH\ 6RQV /WG 7KH $WULXP 6RXWKHUQ *DWH &KLFKHVWHU :HVW 6XVVH[ 32
64 8.
(GLWRULDO RIILFHV *DUVLQJWRQ 5RDG 2[IRUG 2; '4 8.
7KH $WULXP 6RXWKHUQ *DWH &KLFKHVWHU :HVW 6XVVH[ 32 64 8.
5LYHU 6WUHHW +RERNHQ 1- 86$
)RU GHWDLOV RI RXU JOREDO HGLWRULDO RIILFHV IRU FXVWRPHU VHUYLFHV DQG IRU LQIRUPDWLRQ DERXW KRZ WR DSSO\ IRU
SHUPLVVLRQ WR UHXVH WKH FRS\ULJKW PDWHULDO LQ WKLV ERRN SOHDVH VHH RXU ZHEVLWH DW
ZZZZLOH\FRPZLOH\EODFNZHOO
7KH ULJKW RI WKH DXWKRU WR EH LGHQWLILH DV WKH DXWKRU RI WKLV ZRUN KDV EHHQ DVVHUWHG LQ DFFRUGDQFH ZLWK WKH
&RS\ULJKW 'HVLJQV DQG 3DWHQWV $FW
$OO ULJKWV UHVHUYHG 1R SDUW RI WKLV SXEOLFDWLRQ PD\ EH UHSURGXFHG VWRUHG LQ D UHWULHYDO V\VWHP RU
WUDQVPLWWHG LQ DQ\ IRUP RU E\ DQ\ PHDQV HOHFWURQLF PHFKDQLFDO SKRWRFRS\LQJ UHFRUGLQJ RU RWKHUZLVH
H[FHSW DV SHUPLWWHG E\ WKH 8. &RS\ULJKW 'HVLJQV DQG 3DWHQWV $FW ZLWKRXW WKH SULRU SHUPLVVLRQ RI
WKH SXEOLVKHU
:LOH\ DOVR SXEOLVKHV LWV ERRNV LQ D YDULHW\ RI HOHFWURQLF IRUPDWV 6RPH FRQWHQW WKDW DSSHDUV LQ SULQW PD\
QRW EH DYDLODEOH LQ HOHFWURQLF ERRNV
'HVLJQDWLRQV XVHG E\ FRPSDQLHV WR GLVWLQJXLVK WKHLU SURGXFWV DUH RIWHQ FODLPHG DV WUDGHPDUNV $OO EUDQG
QDPHV DQG SURGXFW QDPHV XVHG LQ WKLV ERRN DUH WUDGH QDPHV VHUYLFH PDUNV WUDGHPDUNV RU UHJLVWHUHG
WUDGHPDUNV RI WKHLU UHVSHFWLYH RZQHUV 7KH SXEOLVKHU LV QRW DVVRFLDWHG ZLWK DQ\ SURGXFW RU YHQGRU
PHQWLRQHG LQ WKLV ERRN 7KLV SXEOLFDWLRQ LV GHVLJQHG WR SURYLGH DFFXUDWH DQG DXWKRULWDWLYH LQIRUPDWLRQ LQ
UHJDUG WR WKH VXEMHFW PDWWHU FRYHUHG ,W LV VROG RQ WKH XQGHUVWDQGLQJ WKDW WKH SXEOLVKHU LV QRW HQJDJHG LQ
UHQGHULQJ SURIHVVLRQDO VHUYLFHV ,I SURIHVVLRQDO DGYLFH RU RWKHU H[SHUW DVVLVWDQFH LV UHTXLUHG WKH VHUYLFHV RI
D FRPSHWHQW SURIHVVLRQDO VKRXOG EH VRXJKW
Library of Congress Cataloging-in-Publication Data
:DUG -HUHP\ 3 7
7KH UHVSLUDWRU\ V\VWHP DW D JODQFH -HUHP\ 37 :DUG -DQH :DUG DQG 5LFKDUG 0 /HDFK ZLWK
FRQWULEXWLRQV E\ &KDUOHV 0 :HLQHU ± UG HG
S FP ± $W D JODQFH
,QFOXGHV LQGH[
5HY HG RI 5HVSLUDWRU\ V\VWHP DW D JODQFH -HUHP\ 37 :DUG >HW DO@
,6%1
5HVSLUDWRU\ RUJDQV±'LVHDVHV , :DUG -DQH 0%&K% ,, /HDFK 5LFKDUG 0 0' ,,, 7LWOH
,9 6HULHV $W D JODQFH VHULHV 2[IRUG (QJODQG
>'1/0 5HVSLUDWRU\ 3K\VLRORJLFDO 3KHQRPHQD 5HVSLUDWRU\ 6\VWHP±SK\VLRSDWKRORJ\
5HVSLUDWRU\ 7UDFW 'LVHDVHV :) :U @
5&5
±GF
,6%1
$ FDWDORJXH UHFRUG IRU WKLV ERRN LV DYDLODEOH IURP WKH %ULWLVK /LEUDU\
6HW LQ SW 7LPHV E\ $SWDUD
5
,QF 1HZ 'HOKL ,QGLD
3ULQWHG LQ 6LQJDSRUH
Contents
3UHIDFH WR WKLUG HGLWLRQ
8QLWV DQG V\PEROV
/LVW RI DEEUHYLDWLRQV
Structure and function
6WUXFWXUH RI WKH UHVSLUDWRU\ V\VWHP OXQJV DLUZD\V DQG GHDG
VSDFH
7KH WKRUDFLF FDJH DQG UHVSLUDWRU\ PXVFOHV
3UHVVXUHV DQG YROXPHV GXULQJ QRUPDO EUHDWKLQJ
*DVODZV
'LIIXVLRQ
/XQJ PHFKDQLFV HODVWLF IRUFHV
/XQJ PHFKDQLFV DLUZD\ UHVLVWDQFH
&DUULDJH RI R[\JHQ
&DUULDJH RI FDUERQ GLR[LGH
&RQWURO RI DFLG±EDVH EDODQFH
&RQWURO RI EUHDWKLQJ , FKHPLFDO PHFKDQLVPV
&RQWURO RI EUHDWKLQJ ,, QHXUDO PHFKDQLVPV
3XOPRQDU\ FLUFXODWLRQ DQG DQDWRPLFDO ULJKWWROHIW VKXQWV
9HQWLODWLRQ±SHUIXVLRQ PLVPDWFKLQJ
([HUFLVH DOWLWXGH DQG GLYLQJ
'HYHORSPHQW RI WKH UHVSLUDWRU\ V\VWHP DQG ELUWK
&RPSOLFDWLRQV RI GHYHORSPHQW DQG FRQJHQLWDO GLVHDVH
/XQJ GHIHQFH PHFKDQLVPV DQG LPPXQRORJ\
History, examination and investigation
+LVWRU\ DQG H[DPLQDWLRQ
3XOPRQDU\ IXQFWLRQ WHVWV
&KHVW LPDJLQJ DQG EURQFKRVFRS\
Diseases and treatment
3XEOLF KHDOWK DQG VPRNLQJ
5HVSLUDWRU\ IDLOXUH
$VWKPD SDWKRSK\VLRORJ\
$VWKPD WUHDWPHQW
&KURQLF REVWUXFWLYH SXOPRQDU\ GLVHDVH
3XOPRQDU\ K\SHUWHQVLRQ
9HQRXV WKURPERHPEROLVP DQG SXOPRQDU\ HPEROLVP
3XOPRQDU\ YDVFXOLWLV
'LIIXVH SDUHQFK\PDO LQWHUVWLWLDO OXQJ GLVHDVHV
6DUFRLGRVLV
3OHXUDO GLVHDVHV
2FFXSDWLRQDO DQG HQYLURQPHQWDOUHODWHG OXQJ GLVHDVH
&\VWLF ILEURVL DQG EURQFKLHFWDVLV
3QHXPRWKRUD[
&RPPXQLW\DFTXLUHG SQHXPRQLD
+RVSLWDODFTXLUHG QRVRFRPLDO SQHXPRQLD
3XOPRQDU\ WXEHUFXORVLV
7KH LPPXQRFRPSURPLVHG KRVW
/XQJ FDQFHU
$FXWH UHVSLUDWRU\ GLVWUHVV V\QGURPH
0HFKDQLFDO YHQWLODWLRQ
2[\JHQDWLRQ DQG R[\JHQ WKHUDS\
6OHHS DSQRHD
Cases and self assessment
&DVH VWXGLHV TXHVWLRQV
&DVH VWXGLHV DQVZHUV
6HOIDVVHVVPHQW TXHVWLRQV
6HOIDVVHVVPHQW DQVZHUV
,QGH[
Contents 5
Preface to third edition
7KH PHGLFDO FXUULFXOXP KDV EHFRPH LQFUHDVLQJO\ YHUWLFDOO\ LQWHJUDWHG
ZLWK D PXFK JUHDWHU XVH RI FOLQLFDO H[DPSOHV DQG FDVHV WR KHOS LQ
WKH XQGHUVWDQGLQJ RI WKH UHOHYDQFH RI WKH XQGHUO\LQJ EDVLF VFLHQFH DQG
FRQYHUVHO\ XVH RI EDVLF VFLHQFH FRQFHSWV WR KHOS LQ WKH XQGHUVWDQGLQJ RI
WKH SDWKRSK\VLRORJ\ DQG WUHDWPHQW RI GLVHDVH The Respiratory System
at a Glance KDV EHHQ ZULWWHQ WR WDNH DFFRXQW RI WKLV WUHQG DQG WR
LQWHJUDWH FRUH DVSHFWV RI EDVLF VFLHQFH SDWKRSK\VLRORJ\ DQG WUHDWPHQW
LQWR D VLQJOH HDV\ WR XVH UHYLVLRQ DLG $V VXFK LW VKRXOG EH XVHIXO WR
PHGLFDO VWXGHQWV WKURXJKRXW WKHLU WUDLQLQJ DQG DOVR WR RWKHU KHDOWKFDUH
SURIHVVLRQV LQFOXGLQJ QXUVLQJ
$V ZLWK RWKHU YROXPHV LQ WKH At a Glance VHULHV LW LV EDVHG DURXQG
D WZRSDJH VSUHDG IRU HDFK PDLQ WRSLF ZLWK ILJXUH DQG WH[W FRPSOH
PHQWLQJ HDFK RWKHU WR JLYH DQ RYHUYLHZ RI D WRSLF DW D JODQFH &DVH
VWXGLHV EDVHG RQ VRPH RI WKH PRVW FRPPRQO\ HQFRXQWHUHG FRQGLWLRQV
DUH DOVR SURYLGHG DQG FDQ EH XVHG IRU ERWK EDVLF VFLHQFH DQG FOLQLFDO
VWXG\ $OWKRXJK SULPDULO\ GHVLJQHG IRU UHYLVLRQ WKH ERRN FRYHUV DOO
WKH FRUH HOHPHQWV RI WKH UHVSLUDWRU\ V\VWHP DQG LWV PDMRU GLVHDVHV DQG
DV VXFK FRXOG EH XVHG DV D PDLQ WH[W LQ WKH I UVW FRXSOH RI \HDUV RI WKH
FRXUVH ,W LV DGYLVHG KRZHYHU WKDW DGGLWLRQDO UHIHUHQFH WR PRUH GHWDLOHG
WH[WERRNV ZLOO DLG GHHSHU DQG ZLGHU XQGHUVWDQGLQJ RI WKH VXEMHFW 7KLV
LV SDUWLFXODUO\ WKH FDVH IRU WKH SDWKRSK\VLRORJLFDO FKDSWHUV DV D ERRN RI
WKLV OHQJWK FDQQRW KRSH WR SURYLGH D FRPSOHWH JXLGH WR FOLQLFDO SUDFWLFH
7KH PRVW QRWDEOH FKDQJH WR WKLV WKLUG HGLWLRQ LV WKDW WKH ILJXUH DUH
QRZ LQ FRORXU ZKLFK VKRXOG DLG XQGHUVWDQGLQJ 7KHUH DUH DOVR QHZ
RU H[SDQGHG VHFWLRQV RQ WRSLFV VXFK DV SXEOLF KHDOWK DQG VPRNLQJ
VDUFRLGRVLV DQG VOHHSGLVRUGHUHG EUHDWKLQJ DGGLWLRQDO FDVH VWXGLHV DQG
VHOIDVVHVVPHQW 0&4V 0RVW RI WKH RWKHU FKDSWHUV DQG ILJXUH KDYH
EHHQ UHYLVHG DQG XSGDWHG +RSHIXOO\ ZH KDYH DOVR FRUUHFWHG UHPDLQLQJ
HUURUV IRXQG LQ WKH ODVW HGLWLRQ :H KDYH EHHQ JUHDWO\ DVVLVWHG LQ WKLV
E\ RXU PDQ\ FROOHDJXHV DQG VWXGHQWV ZKR KDYH NLQGO\ DGYLVHG XV DQG
FRPPHQWHG RQ WKH FRQWHQWV EXW DQ\ UHPDLQLQJ HUURUV DQG RPLVVLRQV
DUH HQWLUHO\ RXU UHVSRQVLELOLW\ :H DOVR WKDQN DOO WKH VWDII DW :LOH\
%ODFNZHOO ZLWKRXW ZKRP ZH ZRXOG QRW KDYH EHHQ DEOH WR SURGXFH WKLV
HGLWLRQ RQ WLPH
-HUHP\ 37 :DUG
-DQH :DUG
5LFKDUG 0 /HDFK
6 Preface to third edition
Units and symbols
Units
7KH PHGLFDO SURIHVVLRQ DQG VFLHQWLIL FRPPXQLW\ JHQHUDOO\ XVH 6,
6\VW
C
HPH ,QWHUQDWLRQDO XQLWV
Pressure conversion: 6, XQLW RI SUHVVXUH SDVFDO 3D =1· P
−
$V WKLV LV VPDOO LQ PHGLFLQH WKH N3D =
3D LV PRUH FRPPRQO\
XVHG 1RWH WKDW PLOOLPHWUHV RI PHUFXU\ PP+J DUH VWLOO WKH PRVW
FRPPRQ XQLW IRU H[SUHVVLQJ DUWHULDO DQG YHQRXV EORRG SUHVVXUHV DQG
ORZ SUHVVXUHV ± HJ FHQWUDO YHQRXV SUHVVXUH DQG LQWUDSOHXUDO SUHVVXUH ±
DUH VRPHWLPHV H[SUHVVHG DV FHQWLPHWUHV RI +
2 FP+
2 %ORRG JDV
SDUWLDO SUHVVXUHV DUH UHSRUWHG E\ VRPH ODERUDWRULHV LQ N3D DQG E\ VRPH
LQ PP+J VR \RX QHHG WR EH IDPLOLDU ZLWK ERWK V\VWHPV
N3D= PP+J = FP+
2
PP+J = WRUU = N3D = FP+
2
FP+
2 = N3D = PP+J
VWDQGDUG DWPRVSKHUH ≈ EDU = N3D = PP+J =
FP+
2
Contents DUH VWLOO FRPPRQO\ H[SUHVVHG SHU P/ G/
−
DQG WKHVH
QHHG WR EH PXOWLSOLHG E\ WR JLYH WKH PRUH VWDQGDUG 6, XQLW SHU OLWUH
&RQWHQWV DUH DOVR LQFUHDVLQJO\ EHLQJ H[SUHVVHG DV PPRO · /
−
)RU KDHPRJORELQ J · G/
−
= J · /
−
= PPRO · /
−
)RU LGHDO JDVHV LQFOXGLQJ R[\JHQ DQG QLWURJHQ PPRO = P/
VWDQGDUG WHPSHUDWXUH DQG SUHVVXUH GU\ 673' VHH &KDSWHU
)RU QRQLGHDO JDVHV VXFK DV QLWURXV R[LGH DQG FDUERQ GLR[LGH PPRO
= P/ 673'
Standard symbols
Primary symbols
) = )UDFWLRQDO FRQFHQWUDWLRQ RI JDV
& = &RQWHQW RI D JDV LQ EORRG
9 = 9ROXPH RI D JDV
P = 3UHVVXUH RI SDUWLDO SUHVVXUH
6 = 6DWXUDWLRQ RI KDHPRJORELQ ZLWK R[\JHQ
4 = 9ROXPH RI EORRG
$ GRW RYHU D OHWWHU PHDQV D WLPH GHULYDWLYH HJ
Ú
9 = YHQWLODWLRQ
/PLQ
Ú
Q = EORRG IO Z /PLQ
Secondary symbols
Gas,= ,QVSLUHG JDV BloodD= $UWHULDO
( = ([SLUHG JDV Y = 9HQRXV
$ = $OYHRODU JDV F = &DSLOODU\
' = 'HDGVSDFH JDV $ GDVK PHDQV PL[HG RU PHDQ
7 = 7LGDO HJ
Ā
Y = 0L[HG YHQRXV
% = %DURPHWULF $
DIWHU D V\PERO PHDQV HQG
(7 = (QGWLGDO HJ F¶ = (QGFDSLOODU\
Tertiary symbols Examples
2
= 2[\JHQ
Ú
92
= 2[\JHQ FRQVXPSWLRQ
&2
= &DUERQ GLR[LGH P
A
co
= $OYHRODU SDUWLDO SUHVVXUH RI
&2 = &DUERQ PRQR[LGH FDUERQ GLR[LGH
Typical values
7\SLFDO LQVSLUHG DOYHRODU DQG EORRG JDV YDOXHV LQ KHDOWK\ \RXQJ DGXOWV DUH VKRZQ LQ WKH WDEOH EHORZ 5DQJHV DUH JLYHQ IRU DUWHULDO EORRG JDV YDOXHV
0HDQ DUWHULDO Po
IDOOV ZLWK DJH DQG E\ \HDUV LV DERXW N3D PP+J 7\SLFDO YDOXHV IRU OXQJ YROXPHV DQG RWKHU OXQJ IXQFWLRQ WHVWV DUH
JLYHQ LQ WKH DSSURSULDWH FKDSWHUV 5DQJHV IRU PDQ\ YDOXHV DUH DIIHFWHG E\ DJH VH[ DQG KHLJKW DV ZHOO DV E\ WKH PHWKRG RI PHDVXUHPHQW DQG KHQFH
LW LV QHFHVVDU\ WR UHIHU WR DSSURSULDWH QRPRJUDPV
,QVSLUHG Po
GU\ VHD OHYHO N3D PP+J
$OYHRODU Po
N3D PP+J
$UWHULDO Po
± N3D ± PP+J
$±D Po
JUDGLHQW <N3D < PP+J JUHDWHU LQ HOGHUO\
$UWHULDO R[\JHQ VDWXUDWLRQ >
$UWHULDO R[\JHQ FRQWHQW P/ · /
−
P/ · G/
−
,QVSLUHG Pco
N3D PP+J
$OYHRODU Pco
± N3D ± PP+J
$UWHULDO Pco
± N3D ± PP+J
$UWHULDO &2
FRQWHQW P/ · /
−
P/ · G/
−
$UWHULDO >+
+
@S+ ± QPRO · /
−
±
5HVWLQJ PL[HG YHQRXV Po
N3D PP+J
5HVWLQJ PL[HG YHQRXV 2
FRQWHQW P/ · /
−
P/ · G/
−
5HVWLQJ PL[HG YHQRXV 2
VDWXUDWLRQ
5HVWLQJ PL[HG YHQRXV Pco
N3D PP+J
5HVWLQJ PL[HG YHQRXV &2
FRQWHQW P/ · /
−
P/ · G/
−
$UWHULDO >+&2
−
@ ± P0
Units and symbols 7
List of abbreviations
A–a gradient $±D Po
JUDGLHQW WKH GLIIHUHQFH EHWZHHQ LGHDO
DOYHRODU DQG DUWHULDO Po
AAT α
DQWLWU\SVLQ
AHI DSQRHD SOXV K\SRSQRHD LQGH[
AIDS DFTXLUHG LPPXQH GHILFLHQ \ V\QGURPH
AIP DFXWH LQWHUVWLWLDO SQHXPRQLDSQHXPRQLWLV
+DPPDQ±5LFK V\QGURPH
ALI DFXWH OXQJ LQMXU\
ANA DQWLQXFOHDU DQWLERG\
ANCA DQWLQHXWURSKLO F\WRSODVPLF DQWLERG\
AP DQWHULRU±SRVWHULRU
ARDS DFXWH IRUPHUO\ DGXOW UHVSLUDWRU\ GLVWUHVV V\QGURPH
ATPS DPELHQW WHPSHUDWXUH DQG SUHVVXUH VDWXUDWHG
ATS $PHULFDQ 7KRUDFLF 6RFLHW\ JXLGHOLQHV
BAL EURQFKRDOYHRODU ODYDJH
BALT EURQFKXVDVVRFLDWHG O\PSKRLG WLVVXH
BCG EDFLOOH &DOPHWWH±*X
HULQ
BiPAP ELOHYHO SRVLWLYH DLUZD\ SUHVVXUH ELSKDVLF SRVLWLYH
DLUZD\ SUHVVXUH
BP EORRG SUHVVXUH
BTPS ERG\ WHPSHUDWXUH DQG SUHVVXUH VDWXUDWHG
BTS %ULWLVK 7KRUDFLF 6RFLHW\ JXLGHOLQHV
CA FDUERQLF DQK\GUDVH
cAMP F\FOLF DGHQRVLQH PRQRSKRVSKDWH
CAP FRPPXQLW\DFTXLUHG SQHXPRQLD
CCF FRQJHVWLYH FDUGLDF IDLOXUH
CF F\VWLF ILEURVL
CFA FU\SWRJHQLF I EURVLQJ DOYHROLWLV
CFTR F\VWLF ILEURVL WUDQVPHPEUDQH FRQGXFWDQFH UHJXODWRU
C
L
OXQJ FRPSOLDQFH 93 ZK HUH 3 = DOYHRODU ±
LQWUDSOHXUDO SUHVVXUH
CMV FRQWUROOHG PHFKDQLFDO YHQWLODWLRQ
CMV F\WRPHJDORYLUXV
CNS FHQWUDO QHUYRXV V\VWHP
COAD FKURQLF REVWUXFWLYH DLUZD\ GLVHDVH V\QRQ\PRXV ZLWK
&23' &2/'
COLD FKURQLF REVWUXFWLYH OXQJ GLVHDVH V\QRQ\PRXV ZLWK
&2$' &23'
COPD FKURQLF REVWUXFWLYH SXOPRQDU\ GLVHDVH V\QRQ\PRXV
ZLWK &2$' &2/'
COX F\FORR[\JHQDVH
CPAP FRQWLQXRXV SRVLWLYH DLUZD\ SUHVVXUH
CREST FDOFLQRVLV 5D\QDXG¶V SKHQRPHQRQ HVRSKDJHDO
LQYROYHPHQW VFOHURGDFW\O\ DQG WHODQJLHFWDVLD
CSA FHQWUDO VOHHS DSQRHD
CSF FHUHEURVSLQDO I XLG
CT FRPSXWHG WRPRJUDSK\
CTPA FRPSXWHG WRPRJUDSK\ SXOPRQDU\ DQJLRJUDP
CWP FRDO ZRUNHU¶V SQHXPRFRQLRVLV
CXR FKHVW ;UD\
DIP GHVTXDPDWLYH LQWHUVWLWLDO SQHXPRQLD
D
L
CO
GLIIXVLQJ FDSDFLW\ RI WKH OXQJV IRU FDUERQ PRQR[LGH
D
L
g GLIIXVLQJ FDSDFLW\ RI WKH OXQJV IRU JDV
D
L
O
2
GLIIXVLQJ FDSDFLW\ RI WKH OXQJV IRU R[\JHQ
DRG GRUVDO UHVSLUDWRU\ JURXS
DVT GHHS YHQRXV WKURPERVLV
EBV (SVWHLQ±%DUU YLUXV
ECG HOHFWURFDUGLRJUDP
ECMO H[WUDFRUSRUHDO PHPEUDQH R[\JHQDWLRQ
ECP HRVLQRSKLO FDWLRQLF SURWHLQ
EEG HOHFWURHQFHSKDORJUDP
EGF HSLGHUPDO JURZWK IDFWRU
ELISA HQ]\PHOLQNHG LPPXQRDVVD\
EMG HOHFWURP\RJUDP
EOG HOHFWURRFXORJUDP
ERV H[SLUDWRU\ UHVHUYH YROXPH
ESR HU\WKURF\WH VHGLPHQWDWLRQ UDWH
FDG IOXRURGHR[\JOXFRV
FDG PET IOXRURGHR[\JOXFRV SRVLWURQ HPLVVLRQ WRPRJUDSK\
FEF
25−75
PHDQ IRUFHG H[SLUDWRU\ IO Z RYHU PLGGOH RI
IRUFHG YLWDO FDSDFLW\
FER IRUFHG H[SLUDWRU\ UDWLR
FEV
1
IRUFHG H[SLUDWRU\ YROXPH LQ VHFRQG
FEV
1
/FVC )(9
H[SUHVVHG DV D IUDFWLRQ RU PRUH XVXDOO\ D
SHUFHQWDJH RI )9& )(5
FGF ILEUREODV JURZWK IDFWRU
FRC IXQFWLRQDO UHVLGXDO FDSDFLW\
FVC IRUFHG YLWDO FDSDFLW\
GBM JORPHUXODU EDVHPHQW PHPEUDQH
GM-CSF JUDQXORF\WH PDFURSKDJH FRORQ\VWLPXODWLQJ IDFWRU
GU JHQLWRXULQDU\
HAART KLJKO\ DFWLYH DQWLUHWURYLUDO WKHUDS\
HAP KRVSLWDO DFTXLUHG SQHXPRQLD
HCAP KHDOWKFDUHDVVRFLDWHG SQHXPRQLD
HIV KXPDQ LPPXQRGHILFLHQ \ YLUXV
HR KHDUW UDWH
HRCT KLJKUHVROXWLRQ FRPSXWHG WRPRJUDSK\
ICU LQWHQVLYH FDUH XQLW
IFN-γ LQWHUIHURQγ
Ig LPPXQRJOREXOLQ HJ ,J$ ,J( ,J* DQG ,J0
IL LQWHUOHXNLQ HJ ,/
ILD LQWHUVWLWLDO OXQJ GLVHDVH
INPV LQWHUPLWWHQW QHJDWLYH SUHVVXUH YHQWLODWLRQ
IPF LGLRSDWKLF SXOPRQDU\ ILEURVL V\QRQ\PRXV ZLWK
&)$
IPPV LQWHUPLWWHQW SRVLWLYH SUHVVXUH EUHDWKLQJ
IRV LQVSLUDWRU\ UHVHUYH YROXPH
IVC LQIHULRU YHQD FDYD
JVP MXJXODU YHQRXV SUHVVXUH
K
CO D
/
co GLYLGHG E\ DOYHRODU YROXPH RU .URXJK
FRHIILFLHQ
KS .DSRVL¶V VDUFRPD
LA OHIW DWULXP OHIW DWULDO
LDH ODFWDWH GHK\GURJHQDVH
LG O\PSKRPDWRLG JUDQXORPDWRVLV
LIP O\PSKRF\WLF LQWHUVWLWLDO SQHXPRQLD
LMWH ORZPROHFXODUZHLJKW KHSDULQ
LT OHXNRWULHQH HJ /7&
LV OHIW YHQWULFOH OHIW YHQWULFXODU
MBP PDMRU EDVLF SURWHLQ
8 List of abbreviations
MDR PXOWLGUXJ UHVLVWDQW
MI P\RFDUGLDO LQIDUFWLRQ
MIE PHFRQLXP LOHXV HTXLYDOHQW
MMV PDQGDWRU\ PLQXWH YHQWLODWLRQ
MOF PXOWLRUJDQ IDLOXUH
MRSA PHWKLFLOOLQUHVLVWDQW Staphylococcus aureus
MVV PD[LPDO YROXQWDU\ YHQWLODWLRQ
NANC QRQDGUHQHUJLF QRQFKROLQHUJLF QHUYHV
NHL QRQ+RGJNLQ¶V O\PSKRPD
NIPPV QRQLQYDVLYH SRVLWLYH SUHVVXUH YHQWLODWLRQ
NRDS QHRQDWDO UHVSLUDWRU\ GLVWUHVV V\QGURPH
NREM QRQUDSLG H\H PRYHPHQW
NSAID QRQVWHURLGDO DQWLLQIODPPDWRU GUXJ
NSC QRQVPDOO FHOO
NSIP QRQVSHFLIL LQWHUVWLWLDO SQHXPRQLD
OSA REVWUXFWLYH VOHHS DSQRHD
P
50
SDUWLDO SUHVVXUH DW ZKLFK KDHPRJORELQ LV
VDWXUDWHG ZLWK 2
P
A
DOYHRODU SUHVVXUH
PA SRVWHULRU±DQWHULRU
PA SXOPRQDU\ DUWHULDO
P
A
CO
SDUWLDO SUHVVXUH RI FDUERQ PRQR[LGH LQ WKH DOYHROL
P
a
CO
2
DUWHULDO SDUWLDO SUHVVXUH RI FDUERQ GLR[LGH
P
A
CO
2
DOYHRODU SDUWLDO SUHVVXUH RI &2
PAF SODWHOHWDFWLYDWLQJ IDFWRU
PAH SXOPRQDU\ DUWHULDO K\SHUWHQVLRQ
P
a
O
2
SDUWLDO SUHVVXUH RI R[\JHQ LQ WKH DUWHULDO EORRG
PCP Pneumocystis carinii SQHXPRQLD
PD
20
FEV
1
SURYRFDWLYH GRVH HJ RI KLVWDPLQH RU PHWKDFKROLQH
WKDW LQGXFHV D IDOO LQ )(9
PDGF SODWHOHWGHULYHG JURZWK IDFWRU
PE SXOPRQDU\ HPEROXV SXOPRQDU\ HPEROLVP
PEEP SRVLWLYH HQGH[SLUDWRU\ SUHVVXUH
PEFR SHDN H[SLUDWRU\ IO Z UDWH
PET SRVLWURQ HPLVVLRQ WRPRJUDSK\
Pg SURVWDJODQGLQ HJ 3J'
PH SXOPRQDU\ K\SHUWHQVLRQ
pHa DUWHULDO S+
pK
A
ORJ RI GLVVRFLDWLRQ FRQVWDQW .
$
PMF SURJUHVVLYH PDVVLYH ILEURVL
PMI SRLQW RI PD[LPDO LPSXOVH DOVR NQRZQ DV $SH[
EHDW
PPD SXULILH SURWHLQ GHULYDWLYH
PPHN SHUVLVWHQW SXOPRQDU\ K\SHUWHQVLRQ RI WKH QHZERUQ
PSP SULPDU\ VSRQWDQHRXV SQHXPRWKRUD[
R UHVSLUDWRU\ JDV H[FKDQJH UDWLR
RAD ULJKW D[LV GHYLDWLRQ HOHFWURFDUGLRJUDSK\
RANTES UHJXODWHG RQ DFWLYDWLRQ QRUPDO 7 FHOO H[SUHVVHG DQG
VHFUHWHG
RAW DLUZD\ UHVLVWDQFH PRXWK±DOYHRODU SUHVVXUHDLUIO Z
RBBB ULJKW EXQGOHEUDQFK EORFN
RBC UHG EORRG FHOO
REM UDSLG H\H PRYHPHQW
RV UHVLGXDO YROXPH
RV ULJKW YHQWULFOH
RVD UHVWULFWLYH YHQWLODWRU\ GHIHFW
S
a
O
2
R[\JHQ VDWXUDWLRQ RI DUWHULDO EORRG
SC VPDOO FHOO
SCUBA VHOIFRQWDLQHG XQGHUZDWHU EUHDWKLQJ DSSDUDWXV
SIADH V\QGURPH RI LQDSSURSULDWH VHFUHWLRQ RI DQWLGLXUHWLF
KRUPRQH
SIMV V\QFKURQL]HG LQWHUPLWWHQW PDQGDWRU\ YHQWLODWLRQ
SLE V\VWHPLF OXSXV HU\WKHPDWRVXV
S
O
2
R[\JHQ VDWXUDWLRQ R[\JHQ FRQWHQWR[\JHQ FDSDFLW\
SP VXUIDFWDQW SURWHLQ HJ 63$
STPD VWDQGDUG WHPSHUDWXUH DQG SUHVVXUH GU\
SVC VXSHULRU YHQD FDYD
TB WXEHUFXORVLV
TGFβ WUDQVIRUPLQJ JURZWK IDFWRU β
TLC WRWDO OXQJ FDSDFLW\
T
L
CO
FDUERQ PRQR[LGH WUDQVIHU IDFWRU DOWHUQDWLYH QDPH IRU
D
L
co
UFH XQIUDFWLRQDWHG KHSDULQ
UIP XVXDO LQWHUVWLWLDO SQHXPRQLD
VAP YHQWLODWRUDVVRFLDWHG SQHXPRQLD
V
A
/Q YHQWLODWLRQ±SHUIXVLRQ UDWLR DOYHRODU YHQWLODWLRQEORRG
IO Z LQ D OXQJ UHJLRQ
VC YLWDO FDSDFLW\
VEGF YDVFXODU HQGRWKHOLDO JURZWK IDFWRU
VIP YDVRDFWLYH LQWHVWLQDO SHSWLGH
˙
VO
2
max PD[LPXP R[\JHQ FRQVXPSWLRQ
VRG YHQWUDO UHVSLUDWRU\ JURXSV
V
T
WLGDO YROXPH
WBC ZKLWH EORRG FHOO
WCC ZKLWH FHOO FRXQW
WG :HJHQHU¶V JUDQXORPDWRVLV
List of abbreviations 9
r
1 Structure of the respiratory system: lungs,
airways and dead space
(a) Lung lobes
Right lateral
aspect
Anterior aspect
Left lateral
aspect
RU
RM
RL
LU
LL
= Right upper
= Right middle
= Right lower
= Left upper
= Left lower
Posterior aspect
(c) Bohr equation for measuring
dead space
Anatomical dead space,
Volume = V
D
Respiratory zone:
Alveolar CO
2
fraction = F
A
CO
2
End of inspiration End of expiration
End-tidal =
alveolar gas
Anatomical dead space,
Volume = V
D
In an expired breath
none of the CO
2
expired
came from the dead space region
∴ Quantity of CO
2
in mixed expired air = quantity of CO
2
from alveolar region
V
T
x = (V
T
–V
D
) x
∴ V
D
= V
T
( – )/
Mixed expired gas: Volume = V
T
;
Mixed expired CO
2
fraction =
CO
2
-free gas CO
2
-containing gas
RU
RM
RL
LU
LL
RU
RM
RL
LU
LL
LU
LL RL
RU
T1
T12
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
C7
C6
(b) The airways
Sternal angle
(angle of Louis)
Sternum
Xiphoid
process
Diaphragm
Nasal cavity
Pharynx
Epiglottis
Larynx
Cricoid
Trachea
(generation 0)
Carina
R and L main bronchi
(generation 1)
Bronchi
(generations 2–11)
Bronchioles (generations 12–16)
Respiratory bronchioles
(generations 17–19)
Alveolar ducts and sacs
(generations 20–23)
Body
Manubrium
F
E
CO
2
F
E
CO
2
F
E
CO
2
F
A
CO
2
F
A
CO
2
F
A
CO
2
10
The Respiratory System at a Glance
, 3e. By J.P.T. Ward, J. Ward, R.M. Leach. Published 2010 Blackwell Publishing Ltd.
Lungs
7KH UHVSLUDWRU\ V\VWHP FRQVLVWV RI D SDLU RI lungs ZLWKLQ WKH thoracic
cage &KDSWHU ,WV PDLQ IXQFWLRQ LV JDV H[FKDQJH EXW RWKHU UROHV
LQFOXGH VSHHFK I OWUDWLRQ RI PLFURWKURPEL DUULYLQJ IURP V\VWHPLF YHLQV
DQG PHWDEROLF DFWLYLWLHV VXFK DV FRQYHUVLRQ RI DQJLRWHQVLQ , WR DQ
JLRWHQVLQ ,, DQG UHPRYDO RU GHDFWLYDWLRQ RI VHURWRQLQ EUDG\NLQLQ QRUH
SLQHSKULQH DFHW\OFKROLQH DQG GUXJV VXFK DV SURSUDQRORO DQG FKORUSUR
PD]LQH 7KH right lung LV GLYLGHG E\ transverse DQG oblique fissures
LQWR WKUHH OREHV XSSHU PLGGOH DQG ORZHU 7KH left lung KDV DQ oblique
fissure DQG WZR OREHV )LJ D 9HVVHOV QHUYHV DQG O\PSKDWLFV HQWHU
WKH OXQJV RQ WKHLU PHGLDO VXUIDFHV DW WKH OXQJ URRW RU hilum (DFK OREH
LV GLYLGHG LQWR D QXPEHU RI ZHGJHVKDSHG bronchopulmonary seg-
ments ZLWK WKHLU DSLFHV DW WKH KLOXP DQG EDVHV DW WKH OXQJ VXUIDFH (DFK
EURQFKRSXOPRQDU\ VHJPHQW LV VXSSOLHG E\ LWV RZQ VHJPHQWDO EURQFKXV
DUWHU\ DQG YHLQ DQG FDQ EH UHPRYHG VXUJLFDOO\ ZLWK OLWWOH EOHHGLQJ RU
DLU OHDNDJH IURP WKH UHPDLQLQJ OXQJ
7KH pulmonary nerve plexus OLHV EHKLQG HDFK KLOXP UHFHLYLQJ
ILEUH IURP ERWK vagi DQG WKH VHFRQG WR IRXUWK WKRUDFLF ganglia RI
WKH sympathetic trunk (DFK YDJXV FRQWDLQV VHQVRU\ DIIHUHQWV IURP
OXQJV DQG DLUZD\V SDUDV\PSDWKHWLF EURQFKRFRQVWULFWRU DQG VHFUHWR
PRWRU HIIHUHQWV DQG QRQFKROLQHUJLF QRQDGUHQHUJLF QHUYHV 1$1&
6\PSDWKHWLF QRUDGUHQHUJLF ILEUH VXSSO\LQJ DLUZD\ VPRRWK DUH VSDUVH
LQ KXPDQV DQG WKH β
DGUHQHUJLF UHFHSWRUV DUH VWLPXODWHG E\ FLUFXODW
LQJ FDWHFKRODPLQHV IURP WKH DGUHQDO JODQGV &KDSWHU
(DFK OXQJ LV OLQHG E\ D WKLQ PHPEUDQH WKH visceral pleura ZKLFK LV
FRQWLQXRXV ZLWK WKH parietal pleura OLQLQJ WKH FKHVW ZDOO GLDSKUDJP
SHULFDUGLXP DQG PHGLDVWLQXP 7KH VSDFH EHWZHHQ WKH SDULHWDO DQG YLV
FHUDO OD\HUV LV WLQ\ LQ KHDOWK DQG OXEULFDWHG ZLWK SOHXUDO I XLG 7KH ULJKW
DQG OHIW SOHXUDO FDYLWLHV DUH VHSDUDWH DQG HDFK H[WHQGV DV WKH costodi-
aphragmatic recess EHORZ WKH OXQJV HYHQ GXULQJ IXOO LQVSLUDWLRQ 7KH
SDULHWDO SOHXUD LV VHJPHQWDOO\ LQQHUYDWHG E\ intercostal nerves DQG E\
WKH phrenic nerve DQG VR SDLQ IURP SOHXUDO LQIODPPDWLR pleurisy
LV RIWHQ UHIHUUHG WR WKH FKHVW ZDOO RU VKRXOGHUWLS 7KH YLVFHUDO SOHXUD
ODFNV VHQVRU\ LQQHUYDWLRQ
Lymph channels DUH DEVHQW LQ DOYHRODU ZDOOV EXW DFFRPSDQ\ VPDOO
EORRG YHVVHOV FRQYH\LQJ O\PSK WRZDUGV WKH KLODU bronchopulmonary
nodes DQG IURP WKHUH WR tracheobronchial nodes DW WKH WUDFKHDO EL
IXUFDWLRQ 6RPH O\PSK IURP WKH ORZHU OREH GUDLQV WR WKH posterior
mediastinal nodes
7KH upper respiratory tract FRQVLVWV RI WKH QRVH SKDU\Q[ DQG
ODU\Q[ 7KH lower respiratory tract )LJ E VWDUWV ZLWK WKH WUDFKHD DW
WKH ORZHU ERUGHU RI WKH cricoid cartilage OHYHO ZLWK WKH VL[WK FHUYLFDO
YHUWHEUD & ,W ELIXUFDWHV LQWR right DQG left main bronchi DW WKH OHYHO
RI WKH sternal angle DQG 7 ORZHU ZKHQ XSULJKW DQG LQ LQVSLUDWLRQ
7KH ULJKW PDLQ EURQFKXV LV ZLGHU VKRUWHU DQG PRUH YHUWLFDO WKDQ WKH
OHIW VR LQKDOHG IRUHLJQ ERGLHV HQWHU LW PRUH HDVLO\
Airways
7KH DLUZD\V GLYLGH UHSHDWHGO\ ZLWK HDFK VXFFHVVLYH generation DS
SUR[LPDWHO\ GRXEOLQJ LQ QXPEHU 7KH trachea DQG main bronchi
KDYH 8VKDSHG FDUWLODJH OLQNHG SRVWHULRUO\ E\ VPRRWK PXVFOH /R
EDU EURQFKL VXSSO\ WKH WKUHH ULJKW DQG WZR OHIW OXQJ OREHV DQG GLYLGH
WR JLYH segmental bronchi JHQHUDWLRQV DQG 7KH WRWDO FURVV
VHFWLRQDO DUHD RI HDFK JHQHUDWLRQ LV PLQLPXP KHUH DIWHU ZKLFK LW ULVHV
UDSLGO\ DV LQFUHDVHG QXPEHUV PRUH WKDQ PDNH XS IRU WKHLU UHGXFHG
VL]H *HQHUDWLRQV ± DUH VPDOO EURQFKL WKH VPDOOHVW EHLQJ PP
LQ GLDPHWHU 7KH OREDU VHJPHQWDO DQG VPDOO EURQFKL DUH VXSSRUWHG E\
LUUHJXODU SODWHV RI FDUWLODJH ZLWK EURQFKLDO VPRRWK PXVFOH IRUPLQJ KH
OLFDO EDQGV Bronchioles VWDUW DW DERXW JHQHUDWLRQ DQG IURP WKLV SRLQW
RQZDUGV FDUWLODJH LV DEVHQW 7KHVH DLUZD\V DUH HPEHGGHG LQ OXQJ WLVVXH
ZKLFK KROGV WKHP RSHQ OLNH WHQW JX\ URSHV 7KH terminal bronchioles
JHQHUDWLRQ OHDG WR respiratory bronchioles WKH ILUV JHQHUDWLRQ
WR KDYH DOYHROL &KDSWHU LQ WKHLU ZDOOV 7KHVH OHDG WR alveolar ducts
DQG alveolar sacs JHQHUDWLRQ ZKRVH ZDOOV DUH HQWLUHO\ FRPSRVHG
RI alveoli
7KH EURQFKL DQG DLUZD\V GRZQ WR WKH WHUPLQDO EURQFKLROHV UHFHLYH
QXWULWLRQ IURP WKH bronchial arteries DULVLQJ IURP WKH GHVFHQGLQJ DRUWD
7KH UHVSLUDWRU\ EURQFKLROHV DOYHRODU GXFWV DQG VDFV DUH VXSSOLHG E\ WKH
pulmonary circulation &KDSWHU
7KH DLUZD\V IURP WUDFKHD WR UHVSLUDWRU\ EURQFKLROHV DUH OLQHG ZLWK
ciliated columnar epithelial cells Goblet cells DQG submucosal
glands VHFUHWH mucus 6\QFKURQRXV EHDWLQJ RI FLOLD PRYHV WKH PXFXV
DQG DVVRFLDWHG GHEULV WR WKH PRXWK mucociliary clearance &KDSWHUV
(SLWKHOLDO FHOOV IRUPLQJ WKH ZDOOV RI DOYHROL DQG DOYHRODU GXFWV DUH
XQFLOLDWHG DQG ODUJHO\ YHU\ WKLQ type I alveolar pneumocytes DOYHR
ODU FHOOV squamous epithelium 7KHVH IRUP WKH JDV H[FKDQJH VXUIDFH
ZLWK WKH FDSLOODU\ HQGRWKHOLXP alveolar–capillary membrane 7KH
type II pneumocytes PDNH XS RQO\ D VPDOO SURSRUWLRQ RI WKH DOYHR
ODU VXUIDFH DUHD DQG DUH PRVWO\ IRXQG DW WKH MXQFWLRQ EHWZHHQ DOYHROL
7KH\ DUH VWHP FHOOV ZKLFK FDQ GLYLGH IROORZLQJ OXQJ GDPDJH 7KH\
VHFUHWH surfactant ZKLFK UHGXFHV VXUIDFH WHQVLRQ DQG KDV D UROH LQ
OXQJ LPPXQLW\ &KDSWHU DQG $ VLPLODU VXEVWDQFH LV SURGXFHG E\
WKH QRQFLOLDWHG &ODUD FHOOV IRXQG LQ WKH EURQFKLRODU HSLWKHOLXP FORVH
WR WKHLU MXQFWLRQ ZLWK DOYHROL
Dead space
7KH XSSHU UHVSLUDWRU\ WUDFW DQG DLUZD\V DV IDU DV WKH WHUPLQDO EURQ
FKLROHV GR QRW WDNH SDUW LQ JDV H[FKDQJH 7KHVH conducting airways
IRUP WKH anatomical dead space ZKRVH YROXPH 9
'
LV QRUPDOO\ DERXW
P/ 7KHVH DLUZD\V KDYH DQ DLUFRQGLWLRQLQJ IXQFWLRQ ZDUPLQJ
ILOWHULQ DQG KXPLGLI\LQJ LQVSLUHG DLU
$OYHROL WKDW KDYH ORVW WKHLU EORRG VXSSO\± IRU H[DPSOH EHFDXVH RI D
pulmonary embolus ± QR ORQJHU WDNH SDUW LQ JDV H[FKDQJH DQG IRUP
alveolar dead space 7KH VXP RI WKH DQDWRPLFDO DQG DOYHRODU GHDG
VSDFH LV NQRZQ DV WKH physiological dead space YHQWLODWLRQ RI ZKLFK
LV ZDVWHG LQ WHUPV RI JDV H[FKDQJH ,Q KHDOWK DOO DOYHROL WDNH SDUW
LQ JDV H[FKDQJH VR SK\VLRORJLFDO GHDG VSDFH HTXDOV DQDWRPLFDO GHDG
VSDFH
7KH YROXPH RI D EUHDWK RU tidal volume 9
7
LV DERXW P/ DW
UHVW 5HVWLQJ respiratory frequency I LV DERXW EUHDWKVPLQ VR WKH
YROXPH HQWHULQJ WKH OXQJV HDFK PLQXWH WKH minute ventilation
Ú
9 LV
DERXW P/PLQ = × DW UHVW Alveolar ventilation
Ú
9
$
LV WKH YROXPH WDNLQJ SDUW LQ JDV H[FKDQJH HDFK PLQXWH $W UHVW ZLWK
D GHDGVSDFH YROXPH RI P/ DOYHRODU YHQWLODWLRQ LV DERXW
P/PLQ = − ×
7KH Bohr method IRU PHDVXULQJ DQDWRPLFDO GHDG VSDFH LV EDVHG RQ
WKH SULQFLSOH WKDW WKH GHJUHH WR ZKLFK GHDGVSDFH JDV &2
GLOXWHV
DOYHRODU JDV ∼ &2
WRJLYHPL[HGH[SLUHGJDV∼ GHSHQGV
RQ LWV YROXPH )LJ F Alveolar gas FDQ EH VDPSOHG DW WKH HQG RI WKH
EUHDWK DV end-tidal gas 7KH %RKU HTXDWLRQ FDQ EH PRGLILH WR PHDVXUH
SK\VLRORJLFDO GHDG VSDFH E\ XVLQJ DUWHULDO Pco
WR HVWLPDWH WKH &2
LQ
WKH JDVH[FKDQJLQJ RU ideal alveoli
Structure of the respiratory system: lungs, airways and dead space Structure and function 11
r
2 The thoracic cage and respiratory muscles
c
1
2
3
4
5
6
7
8
9
10
(a) The sternum and ribs and their relationship to the lungs and pleural cavities
Pleural
Horizontal
fissure
Oblique
fissure
Costodiaphragmati
recess
Cardiac notch
Oblique
fissure
Xiphoid
process
Body
Manubrium
Clavicle
(b) Inferior aspect of a rib
Sternum
Articular
facets of
the head
Head Neck
Tubercle
Articular
facet of
the tubercle
Angle
Costal
groove
Shaft
Costal
cartilage
joins here
(c) An intercostal space
Intercostal:
Vein
Artery
Nerve
Innermost
intercostal muscle
To avoid the neurovascular bundle, needles being passed
through the intercostal space (for example to drain a
pleural effusion) should pass close to the top of the rib
(d) Inferior aspect of the diaphragm
Sternal part
Xiphisternum
Costal
part
Right
phrenic
nerve
Inferior
vena
cava
12th rib
Right crus
Left crus
Psoas major
Quadratus lumborum
Lateral arcuate
ligament
Medial arcuate
ligament
Median arcuate
ligament
Aorta
Oesophagus
Vagi
Left
phrenic nerve
Central tendon
of diaphragm
External
intercostal muscle
Internal
intercostal muscle
Costal
part
L1
L2
L3
L4
T1
Lung lobes
12
The Respiratory System at a Glance
, 3e. By J.P.T. Ward, J. Ward, R.M. Leach. Published 2010 Blackwell Publishing Ltd.
Thoracic cage
7KH thoracic cage LV FRPSRVHG RI WKH sternum ribs intercostal
spaces DQG thoracic vertebral column ZLWK WKH diaphragm GLYLG
LQJ WKH WKRUD[ IURP WKH DEGRPHQ
The sternum
7KH GDJJHUVKDSHG sternum KDV WKUHH SDUWV 7KH manubrium ZLWK
ZKLFK WKH ILUV DQG XSSHU SDUWV RI WKH VHFRQG FRVWDO FDUWLODJH DQG WKH
FODYLFOH DUWLFXODWH )LJ D OLHV DW WKH OHYHO RI WKH WKLUG DQG IRXUWK WKR
UDFLF YHUWHEUDH VHH )LJ E 7KH ORZHU SDUWV RI WKH VHFRQG DQG WKLUG
WR VHYHQWK ULEV DUWLFXODWH ZLWK WKH body of the sternum OHYHO ZLWK
7±7 7KH DQJOH EHWZHHQ WKH PDQXEULXP DQG ERG\ DW WKH FDUWLODJL
QRXV manubriosternal joint IRUPV WKH sternal angle (angle of Louis)
DQG WKLV LV D XVHIXO DQDWRPLFDO UHIHUHQFH SRLQW 7KH VPDOO xiphoid
process [LSKLVWHUQXP XVXDOO\ UHPDLQV FDUWLODJLQRXV ZHOO LQWR DGXOW
OLIH
The ribs and intercostal space
7KHIUVWtrue RU vertebrosternal RI WKH SDLUV RI ULEV DUH FRQ
QHFWHG WR WKH VWHUQXP E\ WKHLU FRVWDO FDUWLODJHV 7KH K\DOLQH FDUWLODJHV
RI WKH HLJKWK QLQWK DQG WHQWK IDOVH RU vertebrochondral ULEV DUWLFXODWH
ZLWK WKH FDUWLODJH DERYH DQG WKH HOHYHQWK DQG WZHOIWK DUH IUHH floating
RU vertebral ribs $ W\SLFDO ULE )LJ E KDV D head ZLWK WZR facets
IRU DUWLFXODWLRQ ZLWK WKH FRUUHVSRQGLQJ YHUWHEUD WKH LQWHUYHUWHEUDO GLVF
DQG WKH YHUWHEUD DERYH 7KH ULE DOVR DUWLFXODWHV DW WKH tubercle ZLWK
WKH WUDQVYHUVH SURFHVV RI WKH FRUUHVSRQGLQJ YHUWHEUD 7KH WZR DUWLFXODU
UHJLRQV DFW OLNH D KLQJH IRUFLQJ WKH ULE WR PRYH WKURXJK DQ D[LV SDVVLQJ
WKURXJK WKHVH DUHDV 7KH IODWWHQH VKDIW RI WKH ULE LV ZHDNHVW DW WKH
angle of the rib DQG WKLV LV ZKHUH LW WHQGV WR IUDFWXUH LQ DQ DGXOW 7KH
XSSHU WZR ULEV SURWHFWHG E\ WKH FODYLFOH DQG WKH WZR IORDWLQ ULEV DUH
OHDVW OLNHO\ WR IUDFWXUH 7KHUH LV D FHUYLFDO ULE DWWDFKHG WR WKH WUDQVYHUVH
SURFHVV RI & LQ RI SHRSOH DQG WKH SUHVHQFH RI WKLV ULE PD\ FDXVH
SDUDHVWKHVLDH RU YDVFXODU SUREOHPV GXH WR SUHVVXUH RQ WKH EUDFKLDO
SOH[XV RU VXEFODYLDQ DUWHU\
,QWHUFRVWDO VSDFHV FRQWDLQ external intercostal muscles ZKRVH I EUHV
SDVV GRZQZDUGV DQG IRUZDUGV EHWZHHQ WKH ULEV internal intercostal
muscles ZKRVH I EUHV SDVV GRZQZDUGV DQG EDFNZDUGV DQG DQ LQFRP
SOHWH innermost intercostal layer )LJ F 7KH\ DUH LQQHUYDWHG E\
intercostal nerves ZKLFK DUH WKH DQWHULRU SULPDU\ UDPL RI thoracic
nerves Intercostal veins arteries DQG nerves OLH LQ JURRYHV RQ WKH
XQGHUVXUIDFH RI WKH FRUUHVSRQGLQJ ULE ZLWK WKH YHLQ DERYH DUWHU\ LQ
WKH PLGGOH DQG QHUYH EHORZ
The diaphragm
7KH GRPHVKDSHG diaphragm )LJ G VHSDUDWHV WKH WKRUD[ DQG DE
GRPHQ DQG FRQVLVWV RI D PXVFXODU SHULSKHUDO SDUW DQG D central tendon
ZKLFK LV SDUWO\ IXVHG ZLWK WKH SHULFDUGLXP 7KH PXVFXODU GLDSKUDJP
WDNHV LWV RULJLQ IURP WKH YHUWHEUDH DQG DUFXDWH OLJDPHQWV WKH ULE FDJH
DQG WKH VWHUQXP 7KH right crus DULVHV IURP WKH XSSHU WKUHH OXP
EDU YHUWHEUDH DQG WKH left crus IURP WKH XSSHU WZR OXPEDU YHUWHEUDH
7KHLU I EURXV PHGLDO ERUGHUV IRUP WKH median arcuate ligament RYHU
WKH IURQW RI WKH DRUWD 7KH medial DQG lateral arcuate ligaments DUH
WKLFNHQLQJV RI WKH IDVFLD RYHUO\LQJ WKH psoas major DQG quadratus
lumborum UHVSHFWLYHO\ 7KH FRVWDO SDUW RI WKH GLDSKUDJP LV DWWDFKHG
WR WKH LQQHU DVSHFWV RI WKH VHYHQWK WR WZHOIWK ULEV DQG FRVWDO FDUWLODJHV
7KH VWHUQDO SDUW RULJLQDWHV DV WZR VOLSV IURP WKH EDFN RI WKH [LSKLV
WHUQXP 7KH phrenic nerves (C3, 4, 5) VXSSO\ PRWRU ILEUHV 6HQVRU\
LQQHUYDWLRQ RI WKH FHQWUDO GLDSKUDJP DOVR UXQV LQ WKH SKUHQLF DQG SDLQ
IURP LUULWDWLRQ RI WKH GLDSKUDJP LV RIWHQ UHIHUUHG WR WKH FRUUHVSRQGLQJ
GHUPDWRPH IRU & WKH VKRXOGHUWLS 7KH ORZHU LQWHUFRVWDO QHUYHV VXS
SO\ VHQVRU\ ILEUH WR WKH SHULSKHUDO GLDSKUDJP 7KH DRUWD WKRUDFLF GXFW
DQG D]\JRV YHLQ SDVV WKURXJK WKH GLDSKUDJP DW WKH DRUWLF RSHQLQJ DW WKH
OHYHO RI 7 7KH RHVRSKDJXV EUDQFKHV RI WKH OHIW JDVWULF DUWHU\ DQG
YHLQ DQG ERWK YDJL SDVV WKURXJK WKH RHVRSKDJHDO RSHQLQJ DW WKH OHYHO
RI 7 DQG WKH LQIHULRU YHQD FDYD DQG ULJKW SKUHQLF QHUYH SDVV WKURXJK
DQ RSHQLQJ DW WKH OHYHO RI 7
Muscles of respiration
$OO LQVSLUDWRU\ PXVFOHV DFW WR LQFUHDVH WKRUDFLF YROXPH FDXVLQJ LQ
WUDSOHXUDO DQG DOYHRODU SUHVVXUH WR IDOO WR FUHDWH DQ DOYHRODU±PRXWK
SUHVVXUH JUDGLHQW GUDZLQJ DLU LQWR WKH OXQJV 7KH H[SDQGHG FKHVW ZDOO
DQG OXQJV ZLOO UHFRLO E\ WKHPVHOYHV DQG TXLHW EUHDWKLQJ XVHV QR H[SL
UDWRU\ PXVFOHV
7KH PDLQ LQVSLUDWRU\ PXVFOH WKH diaphragmPRYHVGRZQZKHQLW
FRQWUDFWV E\ DERXW FP GXULQJ TXLHW EUHDWKLQJ DQG ± FP GXULQJ
GHHS EUHDWKLQJ 'XULQJ TXLHW EUHDWKLQJ WKH I UVW ULE UHPDLQV IDLUO\ VWLOO
DQG WKH intercostal muscles HOHYDWH DQG HYHUW WKH VXFFHHGLQJ ULEV 7KH
LQWHUFRVWDO PXVFOHV DOVR VWLIIHQ WKH LQWHUFRVWDO VSDFHV SUHYHQWLQJ WKHP
IURP EHLQJ VXFNHG LQ GXULQJ LQVSLUDWLRQ 7KH scalene muscles ZKLFK
LQVHUW LQWR WKH I UVW WZR ULEV DUHDOVRDFWLYH LQ QRUPDO LQVSLUDWLRQ 5DLVLQJ
WKH XSSHU ULEV SXVKHV WKH VWHUQXP IRUZDUG WKH pump action LQFUHDVLQJ
WKH DQWHULRU±SRVWHULRU GLDPHWHU RI WKH FKHVW DQG DV WKH VORSLQJ ORZHU
ULEV ULVH WKH\ PRYH RXW WKH bucket-handle action DQG WKH WUDQVYHUVH
GLDPHWHU RI WKH FKHVW ZDOO LQFUHDVHV
,Q TXLHW EUHDWKLQJ LQ DGXOWV YHQWLODWLRQ LV ODUJHO\ GLDSKUDJPDWLF
$V WKH GLDSKUDJP FRQWUDFWV LW VTXDVKHV WKH DEGRPLQDO FRQWHQWV DQG
UDLVHV LQWUDDEGRPLQDO SUHVVXUH SXVKLQJ RXW WKH DEGRPLQDO ZDOO DQG
ORZHU ULEV &RQVHTXHQWO\ LQ QRUPDO EUHDWKLQJ WKH FKHVW ZDOO DQG WKH
DEGRPLQDO ZDOO PRYH RXW WRJHWKHU GXULQJ LQVSLUDWLRQ ,I WKH GLDSKUDJP
LV SDUDO\VHG LQFUHDVHG FKHVW YROXPH LV SURGXFHG HQWLUHO\ E\ UDLVLQJ
WKH ULEV DQG DV LQWUDWKRUDFLF SUHVVXUH IDOOV LQ LQVSLUDWLRQ WKH I DFFLG
GLDSKUDJP LV VXFNHG LQWR WKH FKHVW DQG WKH DEGRPHQ PRYHV LQ 7KLV
RXWRISKDVH PRYHPHQW RI WKH FKHVW DQG DEGRPLQDO ZDOOV LV NQRZQ DV
paradoxical breathing ,Q D KLJK FHUYLFDO FRUG WUDQVHFWLRQ DOO UHVSLUD
WRU\ PXVFOHV DUH SDUDO\VHG EXW ZKHQ WKH GDPDJH LV EHORZ WKH SKUHQLF
QHUYH URRWV & EUHDWKLQJ FRQWLQXHV YLD WKH GLDSKUDJP DORQH
,Q WKH QHZERUQ ULEV DUH KRUL]RQWDO VR ULE PRYHPHQWV FDQQRW LQFUHDVH
WKH YROXPH RI WKH FKHVW DQG EUHDWKLQJ LV HQWLUHO\ E\ WKH XSDQGGRZQ
DFWLRQ RI WKH GLDSKUDJP RU VRFDOOHG abdominal breathing$VWKH
ULEV EHFRPH PRUH REOLTXH ZLWK LQFUHDVLQJ DJH WKHUH LV DQ LQFUHDVHG
FRQWULEXWLRQ RI thoracic breathing
:KHQ YHQWLODWLRQ RU UHVLVWDQFH WR EUHDWKLQJ LV LQFUHDVHG accessory
inspiratory muscles DLG LQVSLUDWLRQ 7KHVH LQFOXGH WKH scalene mus-
cles sternomastoids DQG serratus anterior ,I WKH DUPV DUH I [HG E\
JUDVSLQJ WKH HGJH RI D WDEOH FRQWUDFWLRQ RI WKH pectoralis major ZKLFK
QRUPDOO\ DGGXFWV WKH DUP KHOSV H[SDQG WKH FKHVW :KHQ YHQWLODWLRQ
H[FHHGV DERXW /PLQ WKHUH LV DFWLYDWLRQ RI H[SLUDWRU\ PXVFOHV HVSH
FLDOO\ abdominal muscles (rectus abdominis external DQG internal
oblique) ZKLFK VSHHGV XS UHFRLO RI WKH GLDSKUDJP E\ UDLVLQJ LQWUD
DEGRPLQDO SUHVVXUH
The thoracic cage and respiratory muscles Structure and function 13
r
3 Pressures and volumes during normal breathing
Total lung capacity (TLC)
Functional residual capacity (FRC)
Residual volume (RV)
7300 mL
mL
mL3500
1 800
mL
Open thorax:
Pressure gradient distending
the lung (transmural =
alveolar – intrapleural)
Pressure gradient driving air
along airways (mouth – alveolar)
Intrapleural
Alveolar pressure
Mouth
–0.5
0.5
–0.1
0
0
0.1
–0.75
–0.5
0
0.5
Volume
above FRC
(L)
Intrapleural
pressure
relative to
atmospheric
(kPa)
Alveolar
pressure
(kPa)
Airflow
(L/sec)
Inspiration Expiration Inspiration Expiration
(b)
(a) Functional residual
capacity
(c)
(d)
(e)
Air
Air
Outward recoil
of chest wall
Inward recoil
of lungs
‘Negative’
intrapleural
pressure
Chest wall
expands
‘Zero’
pressure
Lungs collapse
Intrapleural
pressure,
–0.5 kPa
Alveolar
pressure, 0 kPa
Heart
Oesophageal
pressure, –0.5 kPa
Table 1
Tidal volume (V
T
) (at rest)
Vital capacity (VC)
Inspiratory reserve volume (IRV)
Expiratory reserve volume (ERV)
500 mL
5500 mL
3300 mL
1700 mL
Inspiratory capacity (IC) 3800
V
T
VC
IRV IC
ERV
TLC
FRC
0
RV
(i)
(ii)
(i)
(ii)
14
The Respiratory System at a Glance
, 3e. By J.P.T. Ward, J. Ward, R.M. Leach. Published 2010 Blackwell Publishing Ltd.
Functional residual capacity
7KH YROXPH OHIW LQ WKH OXQJV DW WKH HQG RI D QRUPDO EUHDWK LV NQRZQ DV WKH
functional residual capacity (FRC) $W )5& WKH UHVSLUDWRU\ PXVFOHV
DUH UHOD[HG DQG LWV YROXPH LV GHWHUPLQHG E\ WKH HODVWLF SURSHUWLHV RI WKH
OXQJV DQG FKHVW ZDOO
7KH OXQJV DUH HODVWLF ERGLHV ZKRVH UHVWLQJ YROXPH ZKHQ UHPRYHG
IURP WKH ERG\ LV YHU\ VPDOO 7KH QDWXUDO UHVWLQJ SRVLWLRQ RI WKH FKHVW
ZDOO VHHQ ZKHQ WKH FKHVW LV RSHQHG VXUJLFDOO\ LV DERXW / ODUJHU WKDQ
DW WKH HQG RI D QRUPDO EUHDWK
,Q WKH OLYLQJ UHVSLUDWRU\ V\VWHP WKH OXQJV DUH VHDOHG ZLWKLQ WKH FKHVW
ZDOO %HWZHHQ WKHVH WZR HODVWLF VWUXFWXUHV LV WKH intrapleural space
ZKLFK FRQWDLQV RQO\ D IHZ PLOOLOLWUHV RI IOXLG :KHQ WKH UHVSLUDWRU\
PXVFOHV DUH UHOD[HG WKH OXQJV DQG FKHVW ZDOO UHFRLO LQ RSSRVLWH GL
UHFWLRQV FUHDWLQJ D VXEDWPRVSKHULF µQHJDWLYH¶ SUHVVXUH LQ WKH VSDFH
EHWZHHQ WKHP DQG WKLV WHQGV WR RSSRVH WKH UHFRLO RI ERWK WKH OXQJV
DQG WKH FKHVW ZDOO )5& RFFXUV ZKHQ WKH outward recoil RI WKH FKHVW
ZDOO H[DFWO\ EDODQFHV WKH inward recoil RI WKH OXQJV )LJ D :KHQ
WKH FKHVW LV RSHQHG DLU HQWHUV WKH LQWUDSOHXUDO VSDFH WKH SUHVVXUH EH
FRPHV DWPRVSKHULF DQG QRWKLQJ RSSRVHV WKH UHFRLO RI WKH OXQJV DQG
FKHVW ZDOO 7KH OXQJV VKULQN WR D VPDOO YROXPH DQG WKH FKHVW ZDOO
VSULQJV RXW
,I WKH HODVWLF UHFRLO RI HLWKHU WKH OXQJV RU WKH FKHVW ZDOO LV DEQRUPDOO\
ODUJH RU VPDOO )5& ZLOO EH DEQRUPDO ,Q OXQJ ILEURVLV WKH OXQJV DUH VWLII
DQG KDYH LQFUHDVHG HODVWLF UHFRLO VR WKH EDODQFH SRLQW DQG KHQFH )5&
RFFXUV DW D VPDOO OXQJ YROXPH ,Q HPSK\VHPD WKHUH LV ORVV RI DOYHRODU
WLVVXH DQG ZLWK LW ORVV RI HODVWLF UHFRLO :KHQ WKH UHVSLUDWRU\ PXVFOHV
DUH UHOD[HG WKH UHGXFHG HODVWLF UHFRLO RI WKH OXQJV RIIHUV OHVV RSSRVLWLRQ
WR WKH RXWZDUG UHFRLO RI WKH FKHVW ZDOO DQG )5& LV LQFUHDVHG WKH barrel
chest RI HPSK\VHPD ,QFUHDVHG )5& FDQ DOVR RFFXU EHFDXVH RI µDLU
WUDSSLQJ¶ VHH &KDSWHU
Intrapleural pressure
7KH VSDFH EHWZHHQ WKH visceral pleura OLQLQJ WKH OXQJV DQG WKH parietal
pleura OLQLQJ WKH FKHVW ZDOO LV VR VPDOO WKDW PHDVXULQJ intrapleural
pressure ZLWK D QHHGOH ULVNV SXQFWXULQJ WKH OXQJ ,QWUDSOHXUDO SUHV
VXUH FDQ EH LQGLUHFWO\ DVVHVVHG IURP oesophageal pressure )LJ E
7KH RHVRSKDJXV LV QRUPDOO\ FORVHG DW WKH WRS DQG ERWWRP H[FHSW GXU
LQJ VZDOORZLQJ DQG LQ WKH XSULJKW VXEMHFW WKH RHVRSKDJHDO SUHVVXUH
LV WKH VDPH DV LQ WKH QHLJKERXULQJ LQWUDSOHXUDO VSDFH 7KH VXEMHFW
VZDOORZV HLWKHU D PLQLDWXUL]HG SUHVVXUH WUDQVGXFHU RU D EDOORRQ FRQ
WDLQLQJ D OLWWOH DLU FRQQHFWHG E\ D WXEH WR DQ H[WHUQDO PDQRPHWHU
*UDYLW\ DIIHFWV WKH IOXLGOLQH LQWUDSOHXUDO VSDFH DQG DW )5& LQ DQ
XSULJKW VXEMHFW WKH LQWUDSOHXUDO SUHVVXUH DW WKH DSH[ RI WKH OXQJV LV
DERXW − N3D − FP+
2 DQG DERXW − N3D − FP+
2 DW WKH
ERWWRP
Pressures, flow and volume during a
normal breathing cycle
'XULQJ LQVSLUDWLRQ WKH FKHVW ZDOO LV H[SDQGHG DQG LQWUDSOHXUDO SUHV
VXUH IDOOV 7KLV LQFUHDVHV WKH SUHVVXUH JUDGLHQW EHWZHHQ WKH LQWUDSOHXUDO
VSDFH DQG DOYHROL )LJ F VWUHWFKLQJ WKH OXQJV 7KH DOYHROL H[SDQG
DQG alveolar pressure IDOOV FUHDWLQJ D SUHVVXUH JUDGLHQW EHWZHHQ WKH
PRXWK DQG DOYHROL FDXVLQJ DLU WR I RZ LQWR WKH OXQJV 7KH DLUIO Z SURILO
)LJ G FORVHO\ IROORZV WKDW RI DOYHRODU SUHVVXUH 'XULQJ H[SLUDWLRQ
ERWK LQWUDSOHXUDO SUHVVXUH DQG DOYHRODU SUHVVXUH ULVH ,Q TXLHW EUHDWKLQJ
LQWUDSOHXUDO SUHVVXUH UHPDLQV QHJDWLYH IRU WKH ZKROH UHVSLUDWRU\ F\FOH
ZKHUHDV DOYHRODU SUHVVXUH LV QHJDWLYH GXULQJ LQVSLUDWLRQ DQG SRVLWLYH
GXULQJ H[SLUDWLRQ $OYHRODU SUHVVXUH LV DOZD\V KLJKHU WKDQ LQWUDSOHXUDO
EHFDXVH RI WKH UHFRLO RI WKH OXQJ ,W LV ]HUR DW WKH HQG RI ERWK LQVSLUDWLRQ
DQG H[SLUDWLRQ DQG DLUIO Z FHDVHV PRPHQWDULO\ :KHQ YHQWLODWLRQ LV
LQFUHDVHG WKH FKDQJHV RI LQWUDSOHXUDO DQG DOYHRODU SUHVVXUH DUH JUHDWHU
DQG LQ H[SLUDWLRQ LQWUDSOHXUDO SUHVVXUH PD\ ULVHDERYH DWPRVSKHULF SUHV
VXUH ,Q IRUFHG H[SLUDWLRQ FRXJKLQJ RU VQHH]LQJ LQWUDSOHXUDO SUHVVXUH
PD\ ULVH WR +N3D+ PP+J RU PRUH
Lung volumes
,I D VXEMHFW EUHDWKHV LQ DQG RXW RI D simple water-filled spirome-
ter )LJ HL WKH GUXP IDOOV DQG ULVHV DQG WKH SHQ DWWDFKHG E\ D
SXOOH\ V\VWHP SURGXFHV D WUDFH )LJ HLL ZKLFK LOOXVWUDWHV WKH LP
SRUWDQW OXQJ YROXPHV &RQYHQWLRQDOO\ YROXPHV FRPSRVHG RI WZR RU
PRUH YROXPHV DUH NQRZQ DV µFDSDFLWLHV¶ ZKHUHDV WKRVH WKDW FDQQRW
EH VXEGLYLGHG DUH NQRZQ DV µYROXPHV¶ 7KH YROXPH EUHDWKHG LQ RU
RXW LV NQRZQ DV WKH tidal volume DQG WKH WUDFH VKRZV VHYHUDO rest-
ing tidal volumes ZKLFK DUH W\SLFDOO\ DERXW P/ $W WKH HQG RI D
QRUPDO TXLHW LQVSLUDWLRQ WKH VXEMHFW FRXOG EUHDWKH LQ PRUH DQG WKLV LV
WKH inspiratory reserve volume (IRV) 6LPLODUO\ WKH YROXPH WKDW KH
RU VKH FRXOG H[KDOH DIWHU D QRUPDO H[SLUDWLRQ LV WKH expiratory reserve
volume (ERV) )RU WKH IRXUWK EUHDWK WKH VXEMHFW EUHDWKHV LQ DQG RXW
DV IXOO\ DV SRVVLEOH 7KLV PD[LPXP WLGDO YROXPH LV WKH vital capacity
(VC = V
T
+IRV +ERV) $W WKH HQG RI D PD[LPDO EUHDWK RXW WKH YRO
XPH UHPDLQLQJ LQ WKH OXQJV LV WKH residual volume)5&DQGtotal lung
capacity DUH WKH YROXPHV LQ WKH OXQJV DW WKH HQG RI D QRUPDO H[SLUDWLRQ
DQG DIWHU D PD[LPDO EUHDWK LQ UHVSHFWLYHO\ 3RVVLEOH YDOXHV IRU D PDQ
DUH JLYHQ LQ 7DEOH $OWKRXJK D ]HUR YROXPH OLQH LV VKRZQ )LJ HLL
LW LV QRW SRVVLEOH WR NQRZ ZKHUH WKLV DFWXDOO\ LV RQ D WUDFH EHFDXVH WKH
VXEMHFW FDQQRW HPSW\ WKH OXQJV LQWR WKH GUXP )RU WKLV UHDVRQ DOWKRXJK
LOOXVWUDWHG LQ )LJ HLL YROXPHV VKRZQ LQ UHG LQ 7DEOH FDQQRW EH
PHDVXUHG IURP D VLPSOH VSLURPHWHU WUDFH 7KH\ FDQ EH PHDVXUHG XVLQJ
helium dilution RU body plethysmography &KDSWHU 7KH UDQJH
RI QRUPDO OXQJ YROXPHV LV ODUJH DQG DQ LQGLYLGXDO¶V YROXPHV PXVW EH
DVVHVVHG ZLWK WKH DLG RI nomograms WKDW JLYH WKH SUHGLFWHG YDOXH RI
HDFK YROXPH IRU WKH VXEMHFW¶V DJH VH[ DQG KHLJKW
Pressures and volumes during normal breathing Structure and function 15
r
4 Gas laws
(a) Altitude, barometric pressure, O
2
fraction and PO
2
Mt Everest summit 8850 m (29 035 ft)
Sea level 0m (0ft)
5486 m (18 000 ft)
P
B
= 250 mmHg (33.3 kPa)
1
⁄
3
sea level value
FO
2
dry air = 0.209 (20.9% O
2
)
∴ PO
2
dry air = 0.209 x 250 = 52 mmHg (7 kPa)
P
B
= 380 mmHg (50.6 kPa)
1
⁄
2
sea level value
FO
2
dry air = 0.209 (20.9% O
2
)
PO
2
dry air = 0.209 x 380 = 79 mmHg (10.6 kPa)
P
B
= 760 mmHg (101.3 kPa)
FO
2
dry air = 0.209 (20.9% O
2
)
PO
2
dry air = 0.209 x 760 = 159 mmHg (21 kPa)
Barometric pressure with increasing altitude
800
700
600
500
400
300
200
100
0
0 10000
10 000 12 000 13000 14 000 16 000
18000
20000 30000 40000 50 000 60000
20000 4000 6000 8000
Altitude (metres)
Altitude (feet)
Barometric pressure (P
B
, mmHG)
Sea level (0m, 0ft)
Mexico City
(2240 m, 7349 ft)
Lhasa, Tibet
(3600 m, 11810 ft)
La Rinconda, Peru*
(5100 m, 16
732 ft)
Mt Everest summit
(8850 m, 29 035 ft)
Cruising altitude
typical passenger jet
(11
278 m, 37 000 ft)
*Highest permanently inhabited town P
B
= barometric pressure; FO
2
= O
2
fraction
(b) Correction factors for gas volumes
Volume
(BTPS)
= volume
(ATPS)
Volume
(STPD)
= volume
(ATPS)
273 + 37
273 + t
O
C
P
B
– PH
2
O
P
B
– 6.3*
*47 if P
B
and P
H
2
O
are in mmHg
*760 if P
B
and P
H
2
O
are in mmHg
(c) Pa rtial pressure of a gas in a liquid
Gas
phase (Pg)
Liquid
phase
liquid X
(P
Xg)
Gas
phase (Pg)
Liquid
phase
liquid Y
(P
Yg)
P
1
Liquid X containing dissolved gas, g, is exposed to a gas phase
containing g at three different partial pressures, P
1
, P
2
, P
3
. Only
when the Pg = P
2
does the number of gas molecules leaving the
liquid per minute ( ) equal the number entering the liquid ( )
– i.e. the liquid and gas phases are in equilibrium.
∴ Partial pressure of gas, g, in liquid X (P
Xg) = P
2
Liquid Y also contains gas, g, and is also in equilibrium with the
gas phase when Pg = P
2
∴ Partial pressure of gas, g, in liquid Y (P
Yg) = P
2
However, the solubility of gas, g, in liquid Y is less than in liquid X,
so at the same partial pressure, liquid Y contains a lower
concentration of g.
273
273 + t
O
C
P
B
– PH
2
O
101*
2
P
3
P
1
2
P
3
Note: In the bottom left flask, gas moves against its
concentration gradient.
P
P
P
B
= 760 mmHg
101.3 kPa
P
B
= 380 mmHg
50.6 kPa
P
B
= 250 mmHg
33.3 kPa
16
The Respiratory System at a Glance
, 3e. By J.P.T. Ward, J. Ward, R.M. Leach. Published 2010 Blackwell Publishing Ltd.
7R XQGHUVWDQG WKH SURFHVVHV LQYROYHG LQ UHVSLUDWLRQ DQG KRZ YDOLG
PHDVXUHPHQWV DUH PDGH LW LV LPSRUWDQW WR XQGHUVWDQG WKH EHKDYLRXU RI
JDVHV LQ ERWK JDV PL[WXUHV DQG OLTXLGV
Fractional concentration and partial
pressure of gases in a gas mixture
Dalton’s law VWDWHV WKDW ZKHQ WZR RU PRUH JDVHV ZKLFK GR QRW UHDFW
FKHPLFDOO\ DUH SUHVHQW LQ WKH VDPH FRQWDLQHU WKH WRWDO SUHVVXUH LV WKH
VXP RI WKH SDUWLDO SUHVVXUHV WKH SUHVVXUH WKDW HDFK JDV ZRXOG H[HUW LI
LVRODWHG LQ WKH FRQWDLQHU
7KH WRWDO SUHVVXUH H[HUWHG E\ WKH DWPRVSKHUH ZDV WUDGLWLRQDOO\ PHD
VXUHG E\ LQYHUWLQJ D ORQJ PHUFXU\ILOOH JODVV WXEH RYHU D PHUFXU\
UHVHUYRLU $W VHD OHYHO WKH KHLJKW RI WKH FROXPQ VXSSRUWHG LV QRUPDOO\
DERXW PP VR EDURPHWULF SUHVVXUH LV PP+J PP+J
∼
=
WRUU ZKLFK LQ 6, XQLWV LV DERXW N3D N3D = PP+J 'ULHG
DLU FRQWDLQV DSSUR[LPDWHO\ R[\JHQ LH R[\JHQ IUDFWLRQ F2
≈ 7KH UHPDLQLQJ JDVHV DUH QLWURJHQ DQG LQHUW JDVHV VXFK
DV DUJRQ DQG KHOLXP DOWKRXJK IRU FRQYHQLHQFH WKHVH SK\VLRORJL
FDOO\ LQHUW JDVHV DUH RIWHQ SRROHG DV µQLWURJHQ ¶ $LU LV FRQVLGHUHG
WR EH &2
IUHH DV WKH DPRXQW SUHVHQW LV YHU\ VPDOO $FFRUGLQJ
WR 'DOWRQ¶V ODZ
'U\ SDUWLDO SUHVVXUH R[\JHQ LQ LQVSLUHG DLU P
,2
= R[\JHQ IUDFWLRQ F
2
× WRWDO EDURPHWULF SUHVVXUH P
%
= . × = . N3D PP+J
$W altitude WKH R[\JHQ IUDFWLRQ RI DLU LV XQDOWHUHG EXW EDURPHWULF
SUHVVXUH LV UHGXFHG EHLQJ DERXW N3D PP+J RQ WKH WRS RI
(YHUHVW )LJ D
Water vapour pressure
$LU FRQWDLQV YDULDEOH DPRXQWV RI ZDWHU YDSRXU GHSHQGLQJ RQ WKH ZDWHU
LW KDV EHHQ H[SRVHG WR DQG WKH WHPSHUDWXUH 7KH PD[LPXP RU saturated
water vapour pressure LV KLJKHU LQ ZDUP WKDQ LQ FRRO DLU DW
◦
& LW
LV N3D PP+J ZKHUHDV DW ERG\ WHPSHUDWXUH
◦
& LW LV
N3D PP+J 7KH relative humidity DFWXDOVDWXUDWHG ZDWHU YDSRXU
SUHVVXUH × RI LQVSLUHG DLU YDULHV ZLWK WKH ZHDWKHU LI LW LV DW
◦
& ZDWHU YDSRXU SUHVVXUH ZLOO EH N3D PP+J 7KH SUHVHQFH
RI ZDWHU YDSRXU PHDQV WKDW DPELHQW Fo
DQG Fn
DUH XVXDOO\ D OLWWOH
ORZHU WKDQ WKH GU\ IUDFWLRQV JLYHQ DERYH $LU SDVVLQJ GRZQ WKH DLUZD\V
TXLFNO\ UHDFKHV ERG\ WHPSHUDWXUH
◦
& DQG VDWXUDWLRQ 7RWDO
SUHVVXUH UHPDLQV FORVH WR EDURPHWULF VR WKH DGGHG ZDWHU YDSRXU FDXVHV
VLJQLILFDQ GLOXWLRQ RI WKH RWKHU JDVHV 7KH DYDLODEOH SUHVVXUH IRU WKH
RWKHU JDVHV LV WKHUHIRUH Pb − N3D Pb − PP+J
7KH partial pressure of moist inspired oxygen P
IO
2
= .×
P% − VDWXUDWHG YDSRXU SUHVVXUH DW
◦
&
0RLVWHQHG LQVSLUHG Pio
LV DOZD\V N3D = × RU PP+J
OHVV WKDQ GU\ Po
1RWH WKDW WKLV KDV D SURSRUWLRQDOO\ JUHDWHU HIIHFW
RQ Pio
DW KLJK DOWLWXGH WKDQ DW VHD OHYHO ,I GU\ DLU LV VDWXUDWHG ZLWK
ZDWHU DW
◦
& DW VHD OHYHO Pio
IDOOV E\ IURP WR N3D
± PP+J RQ WKH VXPPLW RI (YHUHVW Pio
IDOOV IURP WR
N3D ± PP+J D UHGXFWLRQ
The effect of pressure and temperature
on gas volumes
7KH LQYHUVH UHODWLRQVKLS EHWZHHQ WKH YROXPH RI D SHUIHFW JDV DQG LWV
SUHVVXUH GHVFULEHG E\ Boyle’s law 3 ∝ 9 DQG WKH GLUHFW UHOD
WLRQVKLS EHWZHHQ YROXPH DQG DEVROXWH WHPSHUDWXUH = +
◦
&
GHVFULEHG E\ Charles’ law 9 ∝7 DUH LPSRUWDQW ZKHQ PHDVXULQJ JDV
YROXPHV ([SLUHG JDV FROOHFWHG LQ D EDJ RU VSLURPHWHU ZLOO VKULQN ERWK
EHFDXVH RI WKH GLUHFW HIIHFW RI IDOOLQJ WHPSHUDWXUH &KDUOHV¶ ODZ DQG
EHFDXVH ZDWHU YDSRXU FRQGHQVHV DV WHPSHUDWXUH IDOOV 7R HQDEOH YDOLG
FRPSDULVRQV YROXPHV DW ambient temperature and pressure satu-
rated with water (ATPS) DUH FRUUHFWHG WR WKRVH WKH\ ZRXOG RFFXS\
XQGHU VWDQGDUG FRQGLWLRQV )RU PHDVXUHPHQWV RI OXQJ YROXPHV WKLV LV
WR body temperature and pressure saturated with water (BTPS)
)RU 2
FRQVXPSWLRQ RU &2
SURGXFWLRQ standard temperature and
pressure dry (STPD)
◦
& N3D PP+J Ph
o = DUH
XVXDOO\ XVHG VR WKDW HDFK OLWUH FRQWDLQV WKH VDPH QXPEHU RI PROHFXOHV
PROH ≈ /
%R\OH¶V ODZ &KDUOHV¶ ODZ DQG WKH UHGXFWLRQ RI VDWXUDWHG YDSRXU
SUHVVXUH ZLWK WHPSHUDWXUH DUH FRPELQHG LQ WKH HTXDWLRQV IRU FRUUHFWLQJ
YROXPHV JLYHQ LQ )LJ E
Gases dissolved in liquids
,I D JDV LV H[SRVHG WR D OLTXLG WR ZKLFK LW GRHV QRW UHDFW JDV SDUWLFOHV ZLOO
PRYH LQWR WKH OLTXLG Henry’s law VWDWHV WKDW WKH QXPEHU RI PROHFXOHV
GLVVROYLQJ LQ WKH OLTXLG LV GLUHFWO\ SURSRUWLRQDO WR WKH SDUWLDO SUHVVXUH
DW WKH VXUIDFH RI WKH JDV
7KH FRQVWDQW RI SURSRUWLRQDOLW\ LV WKH VROXELOLW\ RI WKH JDV LQ WKH
OLTXLG DQG LW LV DIIHFWHG E\ WKH JDV WKH OLTXLG DQG WKH WHPSHUDWXUH
WHQGLQJ WR IDOO DV WHPSHUDWXUH ULVHV
&RQWHQW RI GLVVROYHG JDV ; LQ D OLTXLG < = VROXELOLW\ RI ; LQ <×
SDUWLDO SUHVVXUH RI ; DW VXUIDFH
7KH partial pressure of a gas in a liquid RU gas tension LV D PRUH
GLII FXOW FRQFHSW WKDQ WKDW RI SDUWLDO SUHVVXUH LQ D JDV SKDVH ZKHUH
ZH FDQ YLVXDOL]H WKH SUHVVXUH RI WKH PROHFXOHV KROGLQJ XS D FROXPQ
RI PHUFXU\ 7KH PROHFXOHV RI WKH JDV LQ WKH OLTXLG SKDVH ZLOO PRYH
DERXW LQ WKH OLTXLG DQG KDYH D WHQGHQF\ WR HVFDSH IURP WKH VXUIDFH
ZKLFK FDQ EH RSSRVHG E\ PROHFXOHV RI WKH VDPH JDV LQ D JDV SKDVH LQ
FRQWDFW ZLWK WKH OLTXLG )LJ F ,I WKH SDUWLDO SUHVVXUH RI WKH JDV LQ
WKH JDV SKDVH LV DOWHUHG XQWLO WKHUH LV QR QHW PRYHPHQW RI JDV EHWZHHQ
WKH JDV SKDVH DQG WKH OLTXLG SKDVH WKH JDV DQG OLTXLG DUH VDLG WR EH LQ
HTXLOLEULXP %\ GHILQLWLRQ WKH SDUWLDO SUHVVXUH RI D JDV LQ D OLTXLG LV
HTXDO WR WKH SDUWLDO SUHVVXUH RI WKDW JDV LQ D JDV SKDVH ZLWK ZKLFK LW
LV LQ HTXLOLEULXP 3DUWLDO SUHVVXUH JUDGLHQW QRW FRQFHQWUDWLRQ JUDGLHQW
DOZD\V GHWHUPLQHV WKH GLUHFWLRQ RI PRYHPHQW EHWZHHQ SKDVHV VXFK DV
D JDV DQG OLTXLG SKDVH
Note on time derivative symbols
6WDQGDUG V\PEROV XVHG LQ UHVSLUDWRU\ SK\VLRORJ\ DUH JLYHQ LQ 8QLWV DQG
6\PEROV RQ SDJH 7LPH GHULYDWLYHV DUH SURSHUO\ GHQRWHG E\ D GRW RYHU
WKH V\PERO HJ
Ú
9
$
DOYHRODU YHQWLODWLRQ LQ /PLQ VHH 8QLWV DQG 6\P
EROV RQ SDJH +RZHYHU IRU WHUPV VXFK DV WKH YHQWLODWLRQ±SHUIXVLRQ
UDWLR 9
$
4 WKH GRWV DUH RIWHQ RPLWWHG DQG WKLV FRQYHQWLRQ LV IROORZHG
WKURXJKRXW WKLV ERRN
Gas laws Structure and function 17
r
5 Diffusion
(a) The alveolar–capillary membrane
(c) Diffusion through a sheet of tissue
(d) The diffusion path through the alveolar–capillary membrane
Alveolar
epithelium
O
2
Alveolus
Red blood cells
Capillary
(e) The oxygen cascade: oxygen tension from ambient air to mitochondria
mmHg
P
O
2
200
150
100
50
0
25
20
15
10
5
0
kPa
Ambient, sea leve
l
Trachea (moisture added)
Alveolar (O
2
taken up,
CO
2
added)
Pulmonary capillary (eq
uilibrates with alveolar)
Arteria
l (R to L
shunt, e.
g. bronchial circulatio
n)
Mean tissue capillary (v
ery variable)
Mitochondria tissue cells (v
ery variable)
Resting mixed venous blood (veno
us varies with tissue)
(b) Transfer of gases across alveolar–capillary membrane
Alveolar
Capillary partial
pressure
00
0
.25 0.5 0.75
Time along pulmonary capillary (second)
CO
O
2
N
2
O
Mixed venous
blood
T = thickness
P
1
A = area
P
2
Interstitial
fluid
Endothelium
O
2
O
2
O
2
O
2
Red blood cells
Pore of Kohn
(gap between
alveoli)
Endothelium
Alveolar
epithelium
Collagen and
elastin fibres
Alveolus
Alveolus
Alveolus
Plasma
pressure
of N
2
0,
0
2
or CO
18
The Respiratory System at a Glance
, 3e. By J.P.T. Ward, J. Ward, R.M. Leach. Published 2010 Blackwell Publishing Ltd.
2[\JHQ DQG FDUERQ GLR[LGH DUH WUDQVSRUWHG LQ WKH ERG\ E\ D PL[WXUH RI
bulk flow DQG diffusion %XON I RZ JHQHUDWHG E\ GLIIHUHQFHV LQ WRWDO
IOXL SUHVVXUH LV LPSRUWDQW LQ PRVW RI WKH DLUZD\V DQG LQ WUDQVSRUWLQJ
EORRG FRQWDLQLQJ WKHVH JDVHV EHWZHHQ SXOPRQDU\ DQG WLVVXH FDSLOODULHV
'LIIXVLRQ GULYHQ E\ SDUWLDO SUHVVXUH GLIIHUHQFHV LV LPSRUWDQW LQ WKH ODVW
IHZ PLOOLPHWUHV RI WKH DLUZD\V DFURVV WKH DOYHRODU±FDSLOODU\ PHPEUDQH
DQG EHWZHHQ WLVVXH FDSLOODULHV DQG PLWRFKRQGULD
The alveolar–capillary membrane )LJ D
$GXOW PDOH OXQJV FRQWDLQ DERXW PLOOLRQ DOYHROL DSSUR[LPDWHO\
PP LQ GLDPHWHU %HWZHHQ QHLJKERXULQJ DOYHROL DUH WZR OD\HUV RI
alveolar epithelium HDFK UHVWLQJ RQ D EDVHPHQW PHPEUDQH HQFORVLQJ
WKH LQWHUVWLWLDO VSDFH FRQWDLQLQJ pulmonary capillaries elastin DQG
collagen fibres7KHalveolar epithelium DQG capillary endothelium
IRUP WKH alveolar–capillary membrane WKURXJK ZKLFK JDVHV GLIIXVH
,W LV YHU\ WKLQ < μP H[FHSW ZKHUH FROODJHQ DQG HODVWLQ ILEUH DUH
FRQFHQWUDWHG ZLWK D WRWDO VXUIDFH DUHD RI DERXW P
7KHUH DUH WZR
W\SHV RI DOYHRODU HSLWKHOLDO FHOOV Type I pneumocytes OLQH WKH DOYHROL
DQG DUH UHODWLYHO\ GHYRLG RI RUJDQHOOHV 7KH URXQG type II pneumocytes
KDYH ODUJH QXFOHL PLFURYLOOL DQG FRQWDLQ VWULDWHG RVPLRSKLOLF ODPHOODU
ERGLHV VWRULQJ VXUIDFWDQW DQ LPSRUWDQW FRPSRQHQW RI DOYHRODU OLQLQJ
IOXL &KDSWHU
Diffusion and perfusion limitation )LJ E
,I JDV FRQWDLQLQJ WKH SRRUO\ VROXEOH JDV QLWURXV R[LGH 1
2 LV LQKDOHG
SXOPRQDU\ FDSLOODU\ Pn
o ULVHV DQG TXLFNO\ HTXLOLEUDWHV ZLWK DOYHRODU
Pn
o :LWK QR DOYHRODU±FDSLOODU\ SDUWLDO SUHVVXUH JUDGLHQW UHPDLQLQJ
GLIIXVLRQ FHDVHV DORQJ WKH UHVW RI WKH SXOPRQDU\ FDSLOODU\ DQG XSWDNH
FDQ RQO\ EH LQFUHDVHG E\ LQFUHDVLQJ SXOPRQDU\ FDSLOODU\ EORRG IO Z
1
2 XSWDNH LV VDLG WR EH perfusion-limited ,Q FRQWUDVW ZKHQ EUHDWK
LQJ D FDUERQ PRQR[LGH &2 FRQWDLQLQJ PL[WXUH WKH &2 FRPELQHV
VR DYLGO\ ZLWK KDHPRJORELQ WKDW SXOPRQDU\ FDSLOODU\ Pco ULVHV OLWWOH
7KH SUHVVXUH JUDGLHQW GULYLQJ GLIIXVLRQ LV SUHVHUYHG DORQJ WKH FDSLO
ODU\ DQG &2 XSWDNH ZRXOG QRW EH LQFUHDVHG E\ LQFUHDVHG SHUIXVLRQ
,PSURYHG HDVH RI GLIIXVLRQ ZLWK UHGXFHG WKLFNQHVV RU LQFUHDVHG DUHD
RI WKH DOYHRODU±FDSLOODU\ PHPEUDQH ZRXOG LQFUHDVH &2 XSWDNH &2
WUDQVIHU LV diffusion-limited 2[\JHQ WUDQVIHU OLHV EHWZHHQ WKHVH WZR
H[WUHPHV EXW LV QRUPDOO\ SHUIXVLRQOLPLWHG
Factors affecting diffusion across a
membrane (Fick and Graham’s laws)
)RU D VKHHW RI WLVVXH RI DUHD $ DQG WKLFNQHVV 7 WKURXJK ZKLFK JDV J LV
SDVVLQJ )LJ F
5DWH RI WUDQVIHU RI JDV J ∝
$
7
P
− P
7KH FRQVWDQW RI SURSRUWLRQDOLW\
=
6ROXELOLW\ RI WKH JDV LQ WKH PHPEUDQHV
√
0ROHFXODU ZHLJKW RI WKH JDV
$OWKRXJK WKH PROHFXODU ZHLJKW RI &2
LV DERXW WLPHV WKDW RI 2
LW LV DERXW WLPHV PRUH VROXEOH DQG VR GLIIXVHV PRUH HDVLO\
)RU WKH DOYHRODU±FDSLOODU\ PHPEUDQH WKH SUHVVXUH JUDGLHQW GULYLQJ
GLIIXVLRQ LV DOYHRODU P
$
PLQXV PHDQ SXOPRQDU\ FDSLOODU\ P
Ā
&
7KH
FRQVWDQWV V PZ $ DQG 7 FDQ EH FRPELQHG WR JLYH D VLQJOH FRQVWDQW
WKH diffusing capacity D
/
J RI WKH OXQJV IRU JDV J
5DWH RI WUDQVIHU RI JDV, J = D
/
JP
$
− P
Ā
C
2[\JHQ GLIIXVLQJ FDSDFLW\, D
/
o
=
2[\JHQ XSWDNH IURP WKH OXQJV
Ú
9
o
P
$
o
− P
Ā
&
o
$OWKRXJK PHDVXUHPHQW RI D
/
o
LV GHVLUDEOH LW LV QRW SRVVLEOH EH
FDXVH PHDQ FDSLOODU\ Po
P
Ā
&
o
FDQQRW EH PHDVXUHG &2 GLIIXVHV
WKURXJK WKH VDPH SDWKZD\ DV 2
DQG LWV UDWH RI GLIIXVLRQ LV DIIHFWHG
E\ WKH VDPH IDFWRUV WKDW DIIHFW R[\JHQ WUDQVIHU +RZHYHU XQOLNH D
/
o
D
/
co LV PHDVXUDEOH 2QFH &2 DUULYHV LQ WKH SXOPRQDU\ FDSLOODU\ EORRG
LW WRR FRPELQHV ZLWK KDHPRJORELQ +DHPRJORELQ KDV DSSUR[LPDWHO\
WLPHV WKH DII QLW\ IRU &2 WKDQ LW GRHV IRU 2
DQG FRQVHTXHQWO\ DV
&2 LV WUDQVIHUUHG DOPRVW DOO RI LW HQWHUV FKHPLFDO FRPELQDWLRQ DQG WKH
PHDQ SXOPRQDU\ FDSLOODU\ Pco FDQ EH DVVXPHG WR EH ]HUR
7KLV VLPSOLILH WKH HTXDWLRQ WR
D
/
co =
&DUERQ PRQR[LGH XSWDNH IURP WKH OXQJV
Ú
9co
P
$
co
6HYHUDO PHWKRGV DUH XVHG IRU PHDVXULQJ D
/
co EXW DOO LQYROYH EUHDWK
LQJ D ORZ OHYHO RI &2 HJ %\ VDPSOLQJ H[KDOHG JDV &2 XSWDNH
DQG PHDQ DOYHRODU Pco FDQ EH FDOFXODWHG 7KH QRUPDO YDOXH GHSHQGV
RQ WKH PHWKRG XVHG EXW LV DERXW ± P/PLQ SHU PP+J ±
P/PLQ SHU N3D $ WUDFHU JDV VXFK DV KHOLXP LV LQFOXGHG LQ WKH JDV
PL[WXUH VR WKDW DOYHRODU YROXPH FDQ DOVR EH PHDVXUHG VHH &KDSWHU
D
/
co LV GLYLGHG E\ DOYHRODU YROXPH WR JLYH DQ LQGH[ KcoWKDW
FRUUHFWV IRU GLIIHUHQW OXQJ YROXPHV $V ERWK D
/
o
DQG D
/
co DUH DI
IHFWHG E\ WKH UDWH RI JDV FRPELQDWLRQ ZLWK KDHPRJORELQ LQ DGGLWLRQ WR
IDFWRUV DIIHFWLQJ GLIIXVLRQ WKH DOWHUQDWLYH WHUP WUDQVIHU IDFWRU T
/
o
DQG T
/
co LV PRUH FRPPRQO\ XVHG LQ (XURSH
Factors affecting
D
L
co (
T
L
co)
D
/
co LV ORZHUHG E\ UHGXFHG DOYHRODU±FDSLOODU\ PHPEUDQH DUHD LQ HP
SK\VHPD SXOPRQDU\ HPEROL RU OXQJ UHVHFWLRQ DQG E\ LQFUHDVHG WKLFN
QHVV LQ SXOPRQDU\ RHGHPD ,Q SXOPRQDU\ ILEURVL WKH DOYHRODU±FDSLOODU\
PHPEUDQH LV ERWK WKLFNHQHG DQG UHGXFHG LQ DUHD JLYLQJ D ORZ D
/
co
ZLWK D ORZ EXW OHVV DIIHFWHG Kco ,QFUHDVHG SXOPRQDU\ EORRG YROXPH
LQ H[HUFLVH LQFUHDVHV WKH HIIHFWLYH DUHD LQFUHDVLQJ D
/
co D
/
co LV LQ
FUHDVHG ZLWK SRO\F\WKDHPLD DQG UHGXFHG LQ DQDHPLD D
/
co LV WKHUHIRUH
QRQVSHFLILF EXW LW LV VHQVLWLYH DQG PD\ UHYHDO DEQRUPDOLWLHV ZKHQ RWKHU
OXQJ IXQFWLRQ WHVWV DUH QRUPDO +\SRYHQWLODWLRQ GRHV QRW DIIHFW D
/
co
EHFDXVH WKH UHGXFHG &2 XSWDNH LV FDXVHG E\ UHGXFHG P
$
co
The oxygen cascade )LJ H VKRZV KRZ Po
IDOOV EHWZHHQ DLU
DQG PLWRFKRQGULD 0LWRFKRQGULDO R[LGDWLYH SKRVSKRU\ODWLRQ ZLOO FHDVH
ZKHQ Po
IDOOV EHORZ PP+J N3D DQG WKLV XOWLPDWHO\ OLPLWV WKH
FDSLOODU\ Po
WKDW FDQ EH WROHUDWHG DQG WKHUHIRUH WKH DPRXQW RI R[\JHQ
WKDW FDQ EH UHPRYHG DV EORRG SDVVHV WKURXJK WKH WLVVXHV &DSLOODU\ Po
PXVW UHPDLQ KLJK HQRXJK WR GULYH GLIIXVLRQ WR FHOOV DW D UDWH VXIILFLHQ
WR PDWFK R[\JHQ FRQVXPSWLRQ DQG PDLQWDLQ PLWRFKRQGULDO Po
DERYH
WKLV FULWLFDO OHYHO
Diffusion Structure and function 19
r
6 Lung mechanics: elastic forces
(a) Static pressure–volume loop
Volume % TLC
100
50
0
FRC
RV
ΔP
ΔV
C
L
= slope ΔV/ΔP
012
10 20 cm H
2
O
kPa
Transmural pressure (= – intrapleural pressure
since measurements taken at zero airflow)
RV
TLC
= Residual volume
= Total lung capacity
FRC
C
L
= Functional residual capacity
= Lung compliance
(c) Surface tension
Laplace’s equation
T= Surface tension
Pressure
above ambient = P
1
P
2
P
1
> P
2
∴ When tap is opened the small
bubble empties into the large
(d) Effect of surface area
R
1
Water molecule
Surfactant molecule
R
2
R
2
< R
1
but T
2
< T
1
because surface concentration of surfactant
is higher when the alveolus is small
The fall in R is more than offset by the fall in T,
∴ since P = 2T , P does not rise, but falls as the alveolus shrinks
P= 2T
R
(b) Dynamic pressure–volume loop
If intrapleural pressure and volume are recorded continuously
(lower panel), a pressure–volume loop (upper panel) can be
constructed from pairs of simultaneous measurements of volume,
e.g. (b) with pressure (b'). Alternatively the pressure and volume
signals can be fed into an X-Y plotter.
Volume above
FRC (litre)
Intrapleural
pressure relative
to atmospheric
0.5
0
–0.5
–1.0
Inspiration Expiration Inspiration Expiration
Volume above FRC (litres)
0.5
0.4
0.3
0.2
0.1
0
–0.5 –0.6 –0.7 –0.8 –0.9 –1.0
Intrapleural pressure relative to atmospheric (kPa)
a,a'
b,b'
c,c'
d,d'
e,e'
f,f'
g,g'
h,h'
i,i'
j,j'
a
b
c
d
e
f
g
h
i
j
a’
b’
c’
d’
e’
f’
g’
h’
i’
j’
R
R
P
20
The Respiratory System at a Glance
, 3e. By J.P.T. Ward, J. Ward, R.M. Leach. Published 2010 Blackwell Publishing Ltd.
7R EUHDWKH LQ WKH LQVSLUDWRU\ PXVFOHV PXVW FRQWUDFW WR RYHUFRPH WKH
LPSHGDQFH RIIHUHG E\ WKH OXQJV DQG FKHVW ZDOO 7KLV LV PDLQO\ LQ WKH
IRUP RI IULFWLRQDO airway resistance &KDSWHU DQG elastic resistance
WR VWUHWFKLQJ RI WKH OXQJ DQG FKHVW ZDOO WLVVXHV DQG WKH IOXL OLQLQJ WKH
DOYHROL
Assessing the stiffness of the lungs:
lung compliance
7KH µVWUHWFKLQHVV¶ RI WKH OXQJ LV XVXDOO\ DVVHVVHG DV OXQJ FRPSOLDQFH
&
/
ZKLFK LV WKH FKDQJH LQ OXQJ YROXPH SHU XQLW FKDQJH LQ GLV
WHQGLQJ SUHVVXUH &
/
= 93 7KH GLVWHQGLQJ SUHVVXUH 3 LV WKH
SUHVVXUH GLIIHUHQFH DFURVV WKH OXQJ ZKLFK HTXDOV DOYHRODU±LQWUDSOHXUDO
SUHVVXUH
,QWUDSOHXUDO SUHVVXUH FDQ EH DVVHVVHG E\ PHDVXULQJ RHVRSKDJHDO
SUHVVXUH &KDSWHU $OYHRODU SUHVVXUH FDQQRW HDVLO\ EH PHDVXUHG GL
UHFWO\ EXW ZKHQ QR DLU LV I RZLQJ DOYHRODU SUHVVXUH PXVW HTXDO PRXWK
SUHVVXUH LH ]HUR 7KH WUDQVPXUDO SUHVVXUH 3 LV WKHQ HTXDO WR LQ
WUDSOHXUDO SUHVVXUH 7KH VXEMHFW EUHDWKHV LQ VWHSV DQG PHDVXUHPHQWV DUH
WDNHQ ZKLOH WKH EUHDWK LV KHOG DQG SORWWHG DV D static pressure–volume
(P–V) curve )LJ D 7KH FXUYH I DWWHQV DV WKH OXQJ YROXPH DSSURDFKHV
WRWDO OXQJ FDSDFLW\ 7/& 7KH LQVSLUDWRU\ FXUYH LV VOLJKWO\ GLIIHUHQW
IURP WKH H[SLUDWRU\ FXUYH DQG WKLV hysteresis LV D FRPPRQ SURSHUW\ RI
HODVWLF ERGLHV Static lung compliance LV WKH VORSH RI WKH VWHHSHVW SDUW
RI WKLV VWDWLF SUHVVXUH±YROXPH FXUYH LQ WKH UHJLRQ MXVW DERYH IXQFWLRQDO
UHVLGXDO FDSDFLW\ )5&
/XQJ FRPSOLDQFH LV QRUPDOO\ DERXW /N3D EXW DV ZLWK OXQJ YRO
XPHV LW LV DIIHFWHG E\ WKH VXEMHFW¶V VL]H DJH DQG JHQGHU ,Q restrictive
disease VXFK DV OXQJ ILEURVLV OXQJ FRPSOLDQFH LV ORZ /LNH D VWLII
VSULQJ RQFH VWUHWFKHG I EURVHG OXQJV KDYH DQ LQFUHDVHG WHQGHQF\ WR
VKULQN EDFN WR WKHLU UHVWLQJ SRVLWLRQ RU LQFUHDVHG elastic recoil7KH
ORVV RI DOYHRODU WLVVXH LQ emphysema PDNHV WKHP HDVLHU WR VWUHWFK
DQG OXQJ FRPSOLDQFH LV LQFUHDVHG $OWKRXJK VDIH VZDOORZLQJ DQ RH
VRSKDJHDO EDOORRQ LV QRW YHU\ SOHDVDQW RU FRQYHQLHQW )RUWXQDWHO\ LW
LV RIWHQ SRVVLEOH WR GHGXFH WKDW D SDWLHQW KDV VWLII OXQJV IURP RWKHU
PHDVXUHPHQWV VXFK DV TLC FRC &KDSWHUV DQG IRUFHG H[
SLUDWRU\ YROXPH LQ VHFRQG FEV
DQG IRUFHG YLWDO FDSDFLW\ FVC
&KDSWHU
Dynamic pressure–volume loops and
dynamic compliance
$ dynamic pressure–volume loop XSSHU SDQHO RI )LJ E LV REWDLQHG
IURP FRQWLQXRXV PHDVXUHPHQWV RI LQWUDSOHXUDO SUHVVXUH DQG YROXPH
GXULQJ D QRUPDO EUHDWKLQJ F\FOH ORZHU SDQHO RI )LJ E 7KHUH DUH
WZR SRLQWV DW WKH HQGV RI LQVSLUDWLRQ DQG H[SLUDWLRQ ZKHUH DLUIO Z
DQG DOYHRODU SUHVVXUH DUH ]HUR D D
DQG H H
DQG WKH VORSH RI WKH
OLQH MRLQLQJ WKHVH SRLQWV LV dynamic compliance ,Q KHDOWK LWV YDOXH LV
VLPLODU WR WKH static compliance EXW LQ VRPH GLVHDVHV LW PD\ EH ORZHU
DV VWLII DUHDV PD\ I OO SUHIHUHQWLDOO\ GXULQJ QRUPDO EUHDWKLQJ %HWZHHQ
WKH WZR ]HUR IO Z SRLQWV WKH G\QDPLF 3±9 ORRS DSSHDUV IDWWHU WKDQ
WKH VWDWLF 3±9 ORRS DV LQWUDSOHXUDO SUHVVXUH PXVW FKDQJH PRUH WR GULYH
DLUIO Z ,Q IDFW WKH DUHD RI WKH G\QDPLF ORRS LV D PHDVXUH RI WKH ZRUN
GRQH DJDLQVW DLUZD\ UHVLVWDQFH &KDSWHU
The air–fluid interface lining the alveoli
'XULQJ LQVSLUDWLRQ DV ZHOO DV VWUHWFKLQJ WKH FROODJHQ DQG HODVWLQ ILEUHV
WKH surface tension IRUFHV DW WKH DLU±DOYHRODU OLQLQJ I XLG LQWHUIDFH
PXVW EH RYHUFRPH $W WKH VXUIDFH RI D EXEEOH WKH DWWUDFWLRQ RI WKH
IOXL PROHFXOHV IRU HDFK RWKHU FUHDWHV D WHQVLRQ ZKLFK WHQGV WR VKULQN
WKH EXEEOH )LJ F /DSODFH GLVFRYHUHG WKDW D JDV EXEEOH LQ D OLTXLG
ZRXOG VKULQN XQWLO WKH SUHVVXUH 3 ZLWKLQ LW UHDFKHG D YDOXH RI 75
ZKHUH 7 LV D FRQVWDQW WKH VXUIDFH WHQVLRQ RI WKH I XLG DQG 5 LV WKH
UDGLXV RI WKH EXEEOH :KHQ D EXEEOH KDV DLU RQ ERWK VLGHV WKHUH DUH
WZR DLU±IOXL LQWHUIDFHV DQG 3 = 75 7KH law of Laplace 3 = 75
RU 75 SUHGLFWV WKDW LI WZR EXEEOHV DUH PDGH RI WKH VDPH IOXLG WKH
VPDOOHU EXEEOH ZLOO KDYH D KLJKHU SUHVVXUH ZLWKLQ LW ± VLQFH ZKHQ WKH
UDGLXV RI FXUYDWXUH LV VPDOO D JUHDWHU SURSRUWLRQ RI WKH VXUIDFH WHQVLRQ
LV GLUHFWHG WR WKH FHQWUH RI WKH EXEEOH ORZHU SDQHO RI )LJ F :KHQ
WKH WZR EXEEOHV DUH FRQQHFWHG WKH VPDOO EXEEOH HPSWLHV LQWR WKH ODUJH
EXEEOH DV DLU IO ZV GRZQ WKH SUHVVXUH JUDGLHQW
7KH OXQJV DUH QRW D VLPSOH V\VWHP RI EXEEOHV FRQQHFWHG E\ WXEHV
EXW PXFK PRUH FRPSOLFDWHG ,Q OLIH DOYHROL DUH QRW VSKHULFDO WKH\ KDYH
LQWHUFRQQHFWLRQV EHWZHHQ QHLJKERXULQJ DOYHROL DQG DOYHRODU I XLG PD\
QRW SURGXFH D FRQWLQXRXV OLQLQJ WR WKH DOYHROL 1HYHUWKHOHVV WKH VXUIDFH
WHQVLRQ IRUFHV LOOXVWUDWHG E\ WKLV PRGHO DUH XQGRXEWHGO\ LPSRUWDQW LQ WKH
OXQJ DQG WKH SUHVHQFH RI DQ DLU±IOXL LQWHUIDFH FUHDWHV VHYHUDO SRWHQWLDO
SUREOHPV
1 ,W UHGXFHV OXQJ FRPSOLDQFH DQG WKH KLJKHU WKH VXUIDFH WHQVLRQ WKH
ORZHU WKH FRPSOLDQFH
2 7KH DOYHROL DQG VPDOO DLUZD\V ZRXOG EH LQKHUHQWO\ XQVWDEOH WHQGLQJ
WR FROODSVH XQGHU VXUIDFH WHQVLRQ IRUFHV GXULQJ H[SLUDWLRQ UHVXOWLQJ LQ
DUHDV RI atelectasis
7KH DEVHQFH RI WKHVH SUREOHPV LQ KHDOWK\ KXPDQV LV WKRXJKW WR EH
SDUWO\ GXH WR WKH SUHVHQFH LQ WKH DOYHRODU OLQLQJ I XLG RI surfactant
Surfactant
3XOPRQDU\ VXUIDFWDQW LV D PL[WXUH RI phospholipids VXFK SKRV
SKDWLG\OFKROLQH DQG SURWHLQV SURGXFHG E\ WKH type II pneumocytes
&KDSWHU 7KH SUHVHQFH RI WKHVH VXEVWDQFHV LQ WKH alveolar lining
fluid ORZHUV WKH VXUIDFH WHQVLRQ DQG LQFUHDVHV FRPSOLDQFH 7KH SKRV
SKROLSLGV KDYH D hydrophilic HQG WKDW OLHV LQ WKH DOYHRODU IOXL DQG D
hydrophobic HQG WKDW SURMHFWV LQWR WKH DOYHRODU JDV DQG DV D UHVXOW
WKH\ IORD RQ WKH VXUIDFH RI WKH OLQLQJ I XLG $V DQ DOYHROXV VKULQNV
LWV VXUIDFH DUHD GLPLQLVKHV DQG WKH VXUIDFH FRQFHQWUDWLRQ RI VXUIDFWDQW
ULVHV )LJ G $V VXUIDFH WHQVLRQ IDOOV ZLWK LQFUHDVLQJ VXUIDFH FRQ
FHQWUDWLRQ RI VXUIDFWDQW WKH LQFUHDVHG WHQGHQF\ IRU DOYHROL WR FROODSVH
ZKHQ WKH\ VKULQN LV RIIVHW DQG VWDELOLW\ LV LPSURYHG $OYHRODU VWDELOLW\
LV DOVR DLGHG E\ WKH FRQQHFWLRQ DQG PXWXDO SXOO RI QHLJKERXULQJ DOYHROL
D SKHQRPHQRQ NQRZQ DV alveolar interdependence
6XUIDFWDQW SURGXFWLRQ LQ WKH IHWXV JUDGXDOO\ LQFUHDVHV LQ WKH ODVW
WKLUG RI SUHJQDQF\ DQG PD\ EH LQDGHTXDWH LQ EDELHV ERUQ SUHPDWXUHO\
JLYLQJ ULVH WR WKH W\SLFDO SUREOHPV RI neonatal respiratory distress
syndrome (NRDS) ± VWLII OXQJV DQG DUHDV RI FROODSVH &KDSWHUV
DQG
6XUIDFWDQW SURWHLQV HJ 63$ 63% 63& DQG 63' FRQWULEXWH WR
WKH VXUIDFH WHQVLRQ ORZHULQJ DFWLRQV RI SKRVSKROLSLGV DV ZHOO DV KDYLQJ
RWKHU IXQFWLRQV VXFK DV KRVW GHIHQFH 7KH\ DUH SUREDEO\ WKH UHDVRQ ZK\
QDWXUDO VXUIDFWDQWV KDYH SURYHG PRUH HIIHFWLYH IRU WUHDWLQJ 15'6 WKDQ
DUWLILFLD VXUIDFWDQW FRPSRVHG RQO\ RI SKRVSKROLSLGV
Lung mechanics: elastic forces Structure and function 21
r
7 Lung mechanics: airway resistance
(a) Laminar and turbulent flow
Laminar flow
Turbulent flow
(b) Main factors influencing bronchomotor tone
(d) Dynamic compression of airways
= Flow–volume curve for maximum effort from partly filled lungs
A = Peak expiratory flow rate with lungs filled to total lung capacity
B = Peak expiratory flow rate for partly filled lungs filled (RV + 3 L)
TLC = Total lung capacity, RV = Residual volume
Normal curve
Obstructive airway disease of smaller airways. Note:
• concave appearance of forced expiratory curve
• forced inspiratory flow affected less than forced expiratory flow
Upper airway obstruction (e.g. tracheal stenosis). Note:
• flat topped flow–volume curve
• forced inspiratory flow affected as much as expiratory flow
Restrictive lung disease. Low peak flow rates are related to low
volume. (Note: this figure is drawn to show the relationship
between these traces by using absolute lung volume which cannot
actually be obtained from a flow–volume loop alone).
(c) The effect of effort on inspiratory and expiratory airflow
Effort dependent
600
300
0
300
600
Airflow (L/min)
ExpirationInspiration
TLC RV
Volume (L)
Effort
independent
A
B
(e) Maximum flow–volume loops
6420
Lung volume (L)
6
5
4
3
2
1
1
2
3
4
5
6
600
300
0
300
600
Airflow (L/min)
ExpirationInspiration
Beginning of
inspiration
Alveolus
Intrathoracic airway
Intrapleural space –0.5
0
8.7 8 6 4 0
+8.0
Numbers are pressures in kPa (1 kPa = 7.5 mmHg)
0
0
During forced
expiration
Airway
smooth
muscle
Synapse
Vagal
efferents
Pulmonary
stretch
r
eceptors
(inhibit)
Vagal
afferents
Brainstem
(Chapter 12)
Airway
irritant
receptors
(activate)
NANC
nerves
(excitatory)
Mast cells, eosinophil
(Chapter 23)
Histamine,
Prostagladins
Leukotrienes etc
β
2
-Receptor
β-Adrenergic agonists
(e.g. adrenaline and
saltbutamol)
NANC
nerv
es
(inhibitory)
NO and VIP
CO
2
ACh via
M
3
receptors
BronchodilationBronchoconstriction
SP and
neurokinins
= Receptor
= Nerve ending
Nitric oxide
Vasoactive intestinal peptide
Substance P
NO =
VIP =
SP =
ACh =
M3 =
Acetylcholine
Muscarinic
type 3 receptor
22
The Respiratory System at a Glance
, 3e. By J.P.T. Ward, J. Ward, R.M. Leach. Published 2010 Blackwell Publishing Ltd.
$LUIO Z LV GULYHQ E\ WKH PRXWK±DOYHRODU SUHVVXUH JUDGLHQW JHQHUDWHG
E\ WKH UHVSLUDWRU\ PXVFOHV &KDSWHUV DQG
$LUIO Z =
3= PRXWK − DOYHRODU SUHVVXUH
5$:= UHVLVWDQFH RI WKH DLUZD\V
,Q laminar flow JDV SDUWLFOHV PRYH SDUDOOHO WR WKH ZDOOV ZLWK FHQWUH
OD\HUV PRYLQJ IDVWHU WKDQ RXWHU RQHV FUHDWLQJ D FRQHVKDSHG IURQW
)LJ D 7KH IDFWRUV DIIHFWLQJ ODPLQDU IO Z RI D IOXL RI YLVFRVLW\ η
LQ VPRRWK VWUDLJKW WXEHV RI OHQJWK l DQG UDGLXV U DUH GHVFULEHG LQ
Poiseuille’s equation
)ORZ =
3
5
= 3
πU
η
∴ 5 =
η
πU
+DOYLQJ WKH UDGLXV RI DQ DLUZD\ LQFUHDVHV LWV UHVLVWDQFH IROG
+RZHYHU DOWKRXJK WKH UHVLVWDQFH RI DQ LQGLYLGXDO EURQFKLROH LV KLJK
WKHUH DUH WKRXVDQGV LQ SDUDOOHO 7KH WRWDO UHVLVWDQFH RI HDFK JHQHUDWLRQ
RI SHULSKHUDO DLUZD\V LV QRUPDOO\ ORZ DQG WKH RYHUDOO UHVLVWDQFH RI OXQJ
DLUZD\V LV GRPLQDWHG E\ WKH ODUJHU DLUZD\V 2XWVLGH WKH OXQJ WKH QRVH
DQG SKDU\Q[ FRQWULEXWH VXEVWDQWLDO UHVLVWDQFH ZKLFK FDQ EH UHGXFHG E\
PRXWK EUHDWKLQJ IRU H[DPSOH GXULQJ H[HUFLVH 3HULSKHUDO DLUZD\V DUH
RIWHQ DIIHFWHG E\ GLVHDVH EXW EHFDXVH WKHLU UHVLVWDQFH PXVW LQFUHDVH
FRQVLGHUDEO\ WR PHDVXUDEO\ DIIHFW DLUZD\ UHVLVWDQFH 5$: WKH\ DUH
NQRZQ DV WKH silent zone
$W KLJKHU OLQHDU YHORFLWLHV HVSHFLDOO\ LQ ZLGH DLUZD\V DQG QHDU
EUDQFK SRLQWV IO Z PD\ EHFRPH turbulent :LWK WXUEXOHQFH WKH ZDYH
IURQW LV VTXDUH DQG I RZ ∝
√
3 QRW 3 UHIOHFWLQ WKH GLVVLSDWLRQ
RI HQHUJ\ LQ WKH IRUPDWLRQ RI HGGLHV 1RUPDOO\ DW UHVW IO Z LV ODPL
QDU WKURXJKRXW WKH DLUZD\V EXW LQ H[HUFLVH LW PD\ EHFRPH WXUEXOHQW
HVSHFLDOO\ LQ WKH WUDFKHD JHQHUDWLQJ FKDUDFWHULVWLF KDUVK EUHDWK VRXQGV
Factors affecting airway resistance
Bronchial smooth muscle and epithelium
%URQFKLDO VPRRWK PXVFOH )LJ E UHFHLYHV D parasympathetic bron-
choconstrictor QHUYH VXSSO\ DFWLQJ YLD DFHW\OFKROLQH DQG PXVFDULQLF
W\SH UHFHSWRUV ZKLFK IRUPV WKH HIIHUHQW OLPE RI D UHIO [ IURP DLU
ZD\ LUULWDQW UHFHSWRUV UDSLGO\ DGDSWLQJ UHFHSWRUV 7KH VPRRWK PXVFOH
DOVR FRQWDLQV β
DGUHQHUJLF UHFHSWRUV ZKLFK FDXVH UHOD[DWLRQ ZKHQ
VWLPXODWHG E\ FLUFXODWLQJ epinephrine DGUHQDOLQH RU GUXJV VXFK DV
VDOEXWDPRO 6\PSDWKHWLF LQQHUYDWLRQ RI WKH DLUZD\V LV VSDUVH LQ KX
PDQV DQG KDV OLWWOH HIIHFW RQ DLUZD\ VPRRWK PXVFOH $LUZD\V DUH DOVR
VXSSOLHG ZLWK H[FLWDWRU\ DQG LQKLELWRU\ QRQDGUHQHUJLF QRQFKROLQHUJLF
1$1& QHUYHV WKH IRUPHU DFWLQJ YLD WKH WUDQVPLWWHUV VXEVWDQFH 3 DQG
QHXURNLQLQV DQG WKH ODWWHU YLD QLWULF R[LGH 12 DQGRU 9,3 YDVRDFWLYH
LQWHVWLQDO SHSWLGH 3DUDV\PSDWKHWLF EURQFKRFRQVWULFWLRQ LV LQKLELWHGE\
DFWLYDWLRQ RI DLUZD\ VWUHWFK UHFHSWRUV VORZO\ DGDSWLQJ UHFHSWRUV DQG
&2
KDV D GLUHFW EURQFKRGLODWRU HIIHFW 3ROOXWDQWV HJ VXOSKXU GLR[LGH
DQG R]RQH DQG VXEVWDQFHV UHOHDVHG IURP PDVW FHOOV DQG HRVLQRSKLOV
FDQ LQFUHDVH 5$: YLD EURQFKRFRQVWULFWLRQ PXFRVDO RHGHPD PXFXV
K\SHUVHFUHWLRQ PXFXV SOXJJLQJ DQG HSLWKHOLDO VKHGGLQJ ± DOO RI ZKLFK
DUH LPSRUWDQW LQ DVWKPD &KDSWHU $LUZD\ UHVLVWDQFH FDQ DOVR EH
LQFUHDVHG E\ FKURQLF PXFRVDO K\SHUWURSK\ LQ FKURQLF REVWUXFWLYH SXO
PRQDU\ GLVHDVH &23' &KDSWHU DQG E\ PDWHULDO ZLWKLQ WKH DLU
ZD\V VXFK DV LQKDOHG IRUHLJQ ERGLHV RU WXPRXUV &KDSWHU
Transmural (airway–intrapleural) pressure gradient
7KH SUHVVXUH GLIIHUHQFH DFURVV DLUZD\V FDQ KDYH LPSRUWDQW HIIHFWV
RQ WKHLU FDOLEUH DQG WKLV XQGHUOLHV WKH HIIHFWV RI HIIRUW RQ DLUIO Z
LOOXVWUDWHG LQ )LJ F $LUIO Z LV PHDVXUHG FRQWLQXRXVO\ DQG SORWWHG
DJDLQVW OXQJ YROXPH DV WKH VXEMHFW EUHDWKHV EHWZHHQ UHVLGXDO YROXPH
59 DQG WRWDO OXQJ FDSDFLW\ 7/& 7KH LQVSLUDWRU\ DLUIO Z DW DQ\
YROXPH LQFUHDVHV SURJUHVVLYHO\ ZLWK LQFUHDVLQJ HIIRUW = PLQLPXP
HIIRUW =PD[LPXP HIIRUW 7KH I RZ±YROXPH FXUYHV IRU SURJUHVVLYHO\
LQFUHDVLQJ H[SLUDWRU\ HIIRUWV XSSHU WUDFHV ± DUH PRUH FRPSOLFDWHG
,Q WKH HDUO\ SDUW RI H[SLUDWLRQ IURP 7/& I RZ LV effort-dependentEXW
WRZDUGV WKH HQG RI WKH EUHDWK DV YROXPH GHFOLQHV WKH WUDFHV SURGXFHG
DW GLIIHUHQW HIIRUW OHYHOV FRPH WRJHWKHU ([SLUDWRU\ DLUIO Z WRZDUGV WKH
HQG RI D EUHDWK LV effort-independent DQG GHWHUPLQHG E\ OXQJ YROXPH
Peak expiratory flow rate 3()5 LV VHHQ WR EH UHGXFHG % LQ )LJ F
LI WKH OXQJV DUH RQO\ SDUWLDOO\ ILOOH DW WKH VWDUW RI WKH IRUFHG H[SLUDWLRQ
(IIRUWLQGHSHQGHQW DLUIO Z LV H[SODLQHG E\ dynamic compression
of airways %HIRUH WKH VWDUW RI LQVSLUDWLRQ )LJ G XSSHU SDQHO WKH
SUHVVXUH DORQJ WKH DLUZD\V LV ]HUR LQWUDSOHXUDO SUHVVXUH LV QHJDWLYH
&KDSWHU DQG WUDQVPXUDO SUHVVXUH DFWV WR KROG DLUZD\V RSHQ ,Q
WUDSOHXUDO SUHVVXUH LV QHJDWLYH GXULQJ ERWK TXLHW DQG IRUFHG LQVSLUDWLRQ
DQG LW UHPDLQV QHJDWLYH LQ TXLHW H[SLUDWLRQ VR WUDQVPXUDO SUHVVXUH KROGV
DLUZD\V RSHQ ,Q D IRUFHG H[SLUDWLRQ KRZHYHU H[SLUDWRU\ PXVFOH FRQ
WUDFWLRQ UDLVHV LQWUDSOHXUDO SUHVVXUH ZHOO DERYH DWPRVSKHULF SUHVVXUH
HJ N3D PP+J LQFUHDVLQJ WKH SUHVVXUH JUDGLHQW IURP DOYHROL
WR PRXWK 7KLV ZRXOG EH H[SHFWHG WR LQFUHDVH DLUIO Z EXW WKH LQFUHDVHG
LQWUDSOHXUDO SUHVVXUH DOVR DFWV WR FRPSUHVV DLUZD\V $LUZD\ SUHVVXUH
IDOOV SURJUHVVLYHO\ DORQJ WKH DLUZD\ DQG DW VRPH SRLQW ± XVXDOO\ LQ WKH
EURQFKL ± WKH DLUZD\ SUHVVXUH ZLOO EH VXII FLHQWO\ EHORZ LQWUDSOHXUDO
SUHVVXUH IRU WKH DLUZD\ WR FROODSVH GHVSLWH LWV FDUWLODJLQRXV VXSSRUW
3UHVVXUH ZLOO WKHQ EXLOG XS GLVWDOO\ RSHQLQJ WKH DLUZD\V DJDLQ 7KH
UHVXOWLQJ I XWWHULQJ ZDOOV FDQ EH VHHQ RQ EURQFKRVFRS\ DQG SURGXFH WKH
EUDVV\ QRWH DXGLEOH RQ IRUFHG H[SLUDWLRQ LQ KHDOWK\ SHRSOH
RAW in disease
,QFUHDVHG DLUZD\ UHVLVWDQFH LV LPSRUWDQW LQ PDQ\ GLVHDVHV DQG FDQ EH
PHDVXUHG XVLQJ D ERG\ SOHWK\VPRJUDSK ,Q KHDOWK\ LQGLYLGXDOV 5$:
LV DERXW N3D/ SHU VHFRQG PP+J/ SHU VHFRQG 0RUH FRP
PRQO\ DLUZD\ UHVLVWDQFH LV DVVHVVHG LQGLUHFWO\ IURP IRUFHG H[SLUDWRU\
PHDVXUHPHQWV VXFK DV forced expiratory volume in 1 second )(9
forced vital capacity )9& DQG 3()5 &KDSWHU (VSHFLDOO\ XVHIXO
LV WKH forced expiratory ratio )(5 = )(9
)9& ZKLFK LV UHGXFHG
ZKHQ 5$: LV LQFUHDVHG LQ obstructive pulmonary disease +LJK DLU
ZD\ UHVLVWDQFH DFFHQWXDWHV G\QDPLF FRPSUHVVLRQ RI DLUZD\V E\ DXJ
PHQWLQJ WKH SUHVVXUH GURS DORQJ DLUZD\V ,Q DGGLWLRQ WKH DLUZD\V PD\
EH OHVV DEOH WR UHVLVW FRPSUHVVLRQ LQ HPSK\VHPD EHFDXVH RI UHGXFHG
UDGLDO WUDFWLRQ DQG LQ DVWKPD EHFDXVH RI EURQFKRFRQVWULFWLRQ &ROODSVH
RI VPDOO DLUZD\V PD\ RFFXU OHDGLQJ WR LQFRPSOHWH H[SLUDWLRQ air trap-
ping DQG LQFUHDVHG IXQFWLRQDO UHVLGXDO FDSDFLW\ ,QDELOLW\ WR SURGXFH
KLJK H[SLUDWRU\ DLUIO Z LPSDLUV HIIHFWLYH FRXJKLQJ ZKLFK FDQ OHDG WR
D YLFLRXV F\FOH DV VHFUHWLRQV DFFXPXODWH IXUWKHU LQFUHDVLQJ 5$: DQG
IXUWKHU UHGXFLQJ SHDN IO Z Expiratory wheezes (rhonchi) KHDUG LQ
DVWKPD DQG RWKHU REVWUXFWLYH GLVHDVHV DUH SUREDEO\ JHQHUDWHG E\ RVFLO
ODWLRQV LQ RSSRVLQJ DLUZD\ ZDOOV QHDU WKHLU SRLQW RI FORVXUH OLNH VRXQGV
IURP WKH UHHGV RI DQ RERH $ UHDVRQDEOH DLUIO Z LV QHHGHG WR JHQHUDWH
VXFK VRXQGV DQG ZKHQ FRQVWULFWLRQ EHFRPHV YHU\ VHYHUH WKH\ GLVDS
SHDU WR JLYH WKH RPLQRXV VLOHQW FKHVW VHHQ LQ OLIHWKUHDWHQLQJ DVWKPD
6PDOO DLUZD\ FROODSVH OHDGV WR FKDUDFWHULVWLF VKDSH RI WKH PD[LPXP
IO Z±YROXPH FXUYH LQ REVWUXFWLYH DLUZD\ GLVHDVH )LJ H ZKLFK GLI
IHUV IURP WKDW LQ XSSHU DLUZD\ REVWUXFWLRQ DQG UHVWULFWLYH OXQJ GLVHDVH
Lung mechanics: airway resistance Structure and function 23