Tải bản đầy đủ (.pptx) (20 trang)

Design an 2 stage amplifier

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (761.83 KB, 20 trang )

VIETNAM NATIONAL UNIVERSITY - HO CHI MINH
UNIVERSITY OF SCIENCE
FACULITY OF ELECTRONICS AND TELECOMMUNICATION
GRADUATE COURSE IN MICROELECTRONICS

Design an 2 stage amplifier
Le Thanh Thien An


Agenda

1. Outline
2. Result review
3. Hand design result
4. Simulation summary result
5. Layout review


Outline



Base on topology as below image and specification information, design an amplifier.
Topology

Specification

Specification

 
Item



Condition

Specification

Unit

MIN

TYP

MAX

Supply Voltage

V

4.5

5

5.5

Temperature

°C

-40

25


150

Input voltage range

V

1

1.5

2.5

Current (Icc)

uA

-

-

800

Slew rate (SR)

MV/s

5

-


-

Open Gain

dB

60

-

-

Unity Gain Frequency

MHz

2

-

-

Phase Margin

deg

50

-


-

mV

-10

-

10

mV

-

-

-

mV

-

-

-

um^2

-


-

3600

Input offset voltage
(3s + systematic)
Saturation region
|Vds - Vdsat|, min
Strong inversion region
|Vgs-Vth|,min
Area (total W*L)

3


Result review

Below result is from hand-calculation.
Amplifier has met all specifications
Cout = 10 pF

Specification

 

hand-calculation

simulation


simulation (Post_layout)

Item

Condition

Specification

Judge
Unit

MIN

TYP

MAX

MIN

TYP

MAX

MIN

TYP

MAX

MIN


TYP

MAX

Supply Voltage

V

4.5

5

5.5

4.5

5

5.5

4.5

5

5.5

4.5

5


5.5

Temperature

°C

-40

25

150

-40

25

150

-40

25

150

-40

25

150


Input voltage range

V

1

1.5

2.5

1

1.5

2.5

1

1.5

2.5

1

1.5

2.5

Current (Icc)


uA

-

-

800

248.67

355.25

532.87

245

379

602

244.6

378.6

600.6

Slew rate (SR)

MV/s


5

-

-

7.36

10.51

15.77

5.12

8.43

15.9

5.04

8.32

15.63

Open Gain

dB

60


-

-

96.22

100.03

105.87

74.57

84.12

88.38

74.59

84.12

88.39

Unity Gain Frequency

MHz

2

-


-

6.02

7.2

8.82

2.98

6.22

14.7

2.978

6.21

14.71

Phase Margin

deg

50

-

-


-

72.8

-

51.29

67.29

72.12

51.27

67.29

72.11

mV

-10

-

10

-

9.89


-

-9.85

-0.05

9.67

-9.87

-0.05

9.81

Input offset voltage
(3s + systematic)

Saturation region
|Vds - Vdsat|, min

Strong inversion region
|Vgs-Vth|,min

-

-

OK
OK

OK
OK
OK

OK

mV

-

-

-

100

-

-

290

-

-

289

-


OK

mV

-

-

-

150

-

-

125

-

-

125

-

-

um^2


-

-

3600

-

2269

-

-

2276

-

-

3293

-

OK
Area (total W*L)

4

OK



Hand design result (1/2)

Items

unit

Mpin0/Mpin1

Mnl0/Mnl1

Mno

Mpr

Mpt1

L

(um)

2

3

3

1


1

1

W (total W)

(um)

27.33

5.9

212.24

7.47

7.47

134.39

finger/multi

 

2/2

2/2

2/72


2/2

2/2

2/36

J

(uA/um)

0.33

1.51

1.51

2.38

2.38

2.38

Vdsat

(V)

0.24

0.37


0.37

0.4

0.4

0.4

Vds - Vdsat

(V)

1.17

0.66

1.5

0.56

0.56

0.56

Area

(um^2)

109.33


35.37

636.71

7.47

7.47

134.34

Cc(pF)

Iref(A)

1.69

17.76

1300

(um2)

6.40E-05

(A/(V^2))

2.41E-05

(A/(V^2))


9.92

(mv)

Cc (pF)

R0(kohm)

Area of Capacitor Cc
(0.0013pF/um2)

unCox =

 

upCox =

 

Input offset voltage


5
Simulation results

Mpt2


Hand design result (2/2)



Step 1: Hand design and simulation

Below image shows the schematic with parameters of components

6


Simulation result summary
Consideration (1) ICC

Contribution Analysis from DC simulation

Current (ICC)
[uA]

7

Res [kohm]

Vth_MPR

Vdsat_MPR

I_MPR

I_MPT1

I_MPT2


Typ

379

2.28E+02

7.45E-01

3.53E-01

1.71E+01

1.80E+01

3.44E+02

Worst

602

1.70E+02

5.23E-01

5.04E-01

2.63E+01

2.90E+01


5.47E+02

Typ

temp = 25 deg VCCA=5V Vcm=1.5 mos_hv=TT Moscap=TT Res=TT

Worst

temp = 150 deg VCCA = 5.5V Vcm=1 mos_hv=FF Moscap=Max Res= FF



Because of channel length effect, current ratio between stage 1 and 2 does not same with hand design.







VCCA max, Vcm min make Vds of MPT1 become bigger
Mos_hv = FF: Vth of mosfet is smaller
Temp. higher => Vth decrease
R value is smaller, => current is higher
Res = FF: fast conductance => current higher


Consideration (2) slew rate

Contribution anaysis from DC simulation


Slew rate
[Mv/s]

Typ

Cc

Res

I_MPR

I_MPT1

I_MPT2

[pF]

[kohm]

[uA]

[uA]

[uA]

Typ

8.43


1.57

2.28E+02

17.1

18.4

350

Worst

5.04

1.99

2.48E+02

11.7

12.3

237

: temp=2 5deg VCCA=5V Vcm=1.5V mos hv=TT MosCap=TT Res=TT

Worst : Temp=-4 0 VCCA=4.5 mos _hv=FS Moscap=MAX Res=SS

8




Cc is biggest contributor for PVT variation of slew rate






VCCA min => current decrease
Temp is lower, so R value increase => current decrease
Res = SS: lower conduction => current decrease
Moscap = max => Cc increase => SR decrease


Consideration (2) Slew rate (2/2)
Contribution anaysis from DC simulation
Slew rate
[Mv/s]

Typ

Res

I_MPR

I_MPT1

I_MPT2


[kohm]

[uA]

[uA]

[uA]

Typ

8.43

1.57

2.28E+02

17.1

18.4

350

Worst

5.04

1.99

2.48E+02


11.7

12.3

237

: temp=2 5deg VCCA=5V Vcm=1.5V mos hv=TT MosCap=TT Res=TT

Worst : Temp=-4 0 VCCA=4.5 mos _hv=FS Moscap=MAX Res=SS

9

Cc
[pF]


Consideration (3) Open gain

Contribution Analysis from DC simulation

Open Gain

gm

[dB]

_MPIN1

gm


[uA/V]

Typ
Worst
Typ

ro

_MN0

ro1

_MPIN1

[uA/V]

[Mohm]

[Mohm]

ro

[kohm]

[Mohm]

ro

ro


_MN0

_MPT2

[kohm]

[kohm]

I_MPT2

I_MPT2

[uA]

[uA]

84.12

79.5

1810

2.16

5.9

3.41

51.87


123

89.7

18

344

74.57

85.6

1820

1.18

3.06

1.93

59.76

521

67.5

29

547


: temp=2 5deg VCCA=5V Vcm=1.5V mos_hv=TT Moscap=TT Res=TT

Worst : temp=1 50 VCCA=5.5 Vcm=1 mos_hv=FF Moscap=MAX Res=FF

10

ro2

_MNL1






VCM decrease so Vds of MPT1, MPT2 increase, ro decrease



To improve open gain, need to decrease current to get ro higher

Vth of Pmos and Nmos decrease: increase current, ro decrease
Res = FF: fast conducton, increase current
Temp. increase, vth decrease: increase current


Consideration (4) Unity Gain Frequency

Contribution Analysis from DC simulation
Unity Gain


Typ
Worst
Typ:

Frequency

Cc

[MHz]

[pF]

gm
_MPIN 1
[uA/V]

[uA]

gm

fu

fp2

_MN 0

(calc)

(calc)


[uA/V]

[MHz]

[MHz]

6.22

1.87

79.5

18

1810

6.77

24.27

2.98

2.27

45.7

12.1

1070


3.2

13.88

temp=2 5deg VCCA=5V Vcm=1.5 mos_hv=TT Moscap=TT Res=TT

Worst: temp=1 50 VCCA=4.5 Vcm=2.5 mos_hv=ss Moscap=MAX Res=SS

11

I_MPT1




fu in my hand design is 7.2M => cause: Cc value is change





Moscap = max => fu is creased

Gm1 decrease by current decrease

Res = SS => decrease current => gm1 decrease
Vds of MPT1, MPT2 is decreased



Consideration (5) Phase Margin (1/2)

Contribution Analysis from DC simulation
fu

fz

Phase Margin

(calc)

(calc)

(calc)

Cc

gm_MPIN1

gm_MN0

I_MPT1

[deg]

[MHz]

[MHz]

[MHz]


[pF]

[uA/V]

[uA/V]

[uA]

I_MPT2
[uA]

Typ

67.29

6.77

24.27

154.05

1.87

79.5

1810

18


344

Worst

51.29

19.39

38.95

431.14

0.993

121

2690

27.6

524

Typ

Worst

12

fp2


temp=25deg VCCA=5V Vcm=1 mos_hv=TT moscap=TT Res=TT

tem=-40 VCCA=5.5 Vcm=1 mos_hv=SF moscap=Min Res=FF



Simulation result does not match with hand design. It’s decreased by fz.








Res=FF => increase current
Moscap=min : Cc decrease => PM decrease
Mos_hv=SF: Vth of NMOS increase => current I2 decrease
Vth of Pmos decrease => current I1 increase
=> PM decrease
VCCA= 5.5 and Vcm =1 => Vds of MPT1 increase , so current increase

The error factor: Cc, gm_PIN1, gm_MN0


Consideration (5) Phase Margin (2/2)

Contribution Analysis from DC simulation
fu


13

fp2

fz

Phase Margin

(calc)

(calc)

(calc)

Cc

gm_MPIN1

gm_MN0

I_MPT1

[deg]

[MHz]

[MHz]

[MHz]


[pF]

[uA/V]

[uA/V]

[uA]

I_MPT2
[uA]

Typ

67.29

6.77

24.27

154.05

1.87

79.5

1810

18

344


Worst

51.29

19.39

38.95

431.14

0.993

121

2690

27.6

524

Typ

temp=25deg VCCA=5V Vcm=1 mos_hv=TT moscap=TT Res=TT

Worst

tem=-40 VCCA=5.5 Vcm=1 mos_hv=SF moscap=Min Res=FF



Consideration (6) Offset Voltage:
Random
Contribution Analysis from DC simulation
Random offset

σVth_diff

σVth_load

gm_MPIN1

gm_MNL1

(Ratio)

voltage [mv]

[mv]

[mv]

[uA/V]

[uA/V]

gm_MNL1/gm_MPIN1 [uA/V]

1.83

2.81


79.5

48.5

0.61

Typ

Typ

9.69

Temp=25deg VCCA=5V Vcm=1.5V mos_hv=TT moscap=TT Res=TT



Main contributor for random offset voltage is load pair



To reduce offset voltage:

-

14

Increase gate length of load pair
Decrease current
Increase delta OV of Nmod (load) a little



Consideration (7) Offset voltage:
Systematic
Contribution Analysis from DC simulation
Systematic
offset voltage

Delta Vgs*

[mv]

Av1

[mv]

gm_MPIN1

[V/V]

ro1

[uA/V]

[Mohm]

ro

ro


MPIN1

MNL1

[Mohm]

[Mohm]

Typ

0.05

8.63

171

79.5

2.16

5.9

3.41

Worst

0.15

17.19


109.9

72.4

1.52

3.39

2.75

Typ

temp=25deg VCCA=5V Vcm=1.5V mos_hv=TT Moscap=TT Res=TT

Worst

temp=150deg VCCA=5.5V Vcm=1 mos_hv=SS Moscap=MAX RES=TT

Delta Vgs* = Vgs_MN0 - Vgs_MNL0




Mismatch characteristic of load pair and output mosfet (Vgs between them) cause of systematic offset voltage
To reduce systematic offset voltage:

-

15


Reduce mismatch current between MPT1 and MPT2
Av1 (gain of stage 1) is enough large (Vof = Delta_Vo1/AV1)


Layout
Circuit schematic for layout

16


Floor-plan
45.8 um



Diff. , load pair are placed
common centroid



Antenna diodies are placed
close to gate with mosfets



Symmetrical placement for
current source mosfets

R & Dummy R
MPT2


Output
MPR

DM

MPT1

DM

Mos
71,8 um

DM

MPIN1

MPIN0

DM

Cc
DM

MPIN0

MPIN1

DM


Antenna
diodes
DM : Dummy

17

DM
DM

MNL0

MNL1

MNL1

MNL0

DM
DM


Important nets

1. VPT1: Tail signal is short and route straight due to center line of differential pair.
2. OUT: short and width correspond with current ratio.

18


Important nets


19

3.

VNL0-VNL1: routing common centroid , using some dummy metal

4.

OUT: increase wiring width for long nets.


THANK FOR YOUR ATTENTION



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×