Tải bản đầy đủ (.pdf) (688 trang)

Dendrimers and Other Dendritic Polymers pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (15.05 MB, 688 trang )

Dendrimers and Other Dendritic
Polymers
Wiley Series in Polymer Science
Series Editor:
Dr John Scheirs
ExcelPlas
PO Box 2080
Edithvale
VIC 3196
AUSTRALIA
scheirs.john@pacific.net.au
Modern Fluoropolymers
High Performance Polymers for Diverse Applications
Polymer Recycling
Science, Technology and Applications
Metallocene-Based Polyolifins
Preparation, Properties and Technology
Polymer–Clay Nanocomposites
Forthcoming titles:
Modern Styrenic Polymers
Modern Polyesters
Dendrimers and Other
Dendritic Polymers
Edited by
JEAN M. J. FRE
´
CHET
University of California, Department of Chemistry and Materials Sciences
Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
and


DONALD A. TOMALIA
Dendritic Sciences, Inc., / Dendritic Nanotechnologies Limited,
Central Michigan University, Mt. Pleasant, MI, USA
WILEY SERIES IN POLYMER SCIENCE
John Wiley & Sons, Ltd
Copyright © 2001 by John Wiley & Sons, Ltd.,
Baffins Lane, Chichester,
West Sussex PO19 1UD, UK
National 01243 779777
International (;44) 1243 779777
e-mail (for orders and customer service enquiries): cs-books @wiley.co.uk
Visit our Home Page on:
or
All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1P 0LP, UK, without the permission in writing
of the publisher.
Other Wiley Editorial Offices
John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA
WILEY-VCH Verlag GmbH, Pappelallee 3,
D-69469 Weinheim, Germany
John Wiley & Sons Australia Ltd., 33 Park Road, Milton
Queensland 4064, Australia
John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop 02-01,
Jin Xing Distripark, Singapore 129809
John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale, Ontario M9W 1L1, Canada

Library of Congress Cataloging-in-Publication Data
Dendrimers and other dendritic polymers/edited by Jean M. J. Fre´ chet and Donald A. Tomalia.
p. cm. — (Wiley series in polymer science)
Includes bibliographical references and index.
ISBN 0-471-63850-1 (alk. paper)
1. Dendrimers. I. Fre´ chet, Jean M. J. II. Tomalia, Donald A. III. Series.
TP1180.D45 D46 2001
668.9—dc21 2001045497
British Library Cataloguing in Publication data
A catalogue record for this book is available from the British Library
Cover art by Dr Stefan Hecht, University of California, Berkeley.
ISBN 0-471-63850-1
Typeset in 10/12pt Times from the author’s disks by Vision Typesetting, Manchester
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in
which at least two trees are planted for each one used for paper production.
Contents
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Series Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
A Brief Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . xxvii
D. A. Tomalia and J. M. J. Fre´ chet
I INTRODUCTION AND PROGRESS IN THE CONTROL OF
MACROMOLECULAR ARCHITECTURE
1 Introduction to the Dendritic State . . . . . . . . . . . . . . . . . . . 3
D. A. Tomalia and J. M. J. Fre´ chet
1 Natural and Synthetic Evolution of Molecular Complexity . . 3
1.1 Traditional Organic Chemistry . . . . . . . . . . . . . . . 4
1.2 Traditional Polymer Chemistry . . . . . . . . . . . . . . . 6
2 The Dendritic State . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Dendritic Branching Concepts — Historical Overview . . 10

2.2 A Comparison of Traditional Organic Chemistry and
Polymer Science with Dendritic Macromolecular
Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Dendritic Polymers — A Fourth Major New
Architectural Class . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Random Hyperbranched Polymers . . . . . . . . . . . . . 15
2.5 Dendrigraft (Arborescent) Polymers . . . . . . . . . . . . 17
2.6 Dendrons and Dendrimers . . . . . . . . . . . . . . . . . . 19
2.6.1 Synthesis — Divergent and Convergent Methods . 20
2.6.2 Dendrimer Features . . . . . . . . . . . . . . . . . . 23
2.6.3 Dendrimer Shape Changes . . . . . . . . . . . . . . 26
2.6.4 De Gennes Dense Packing . . . . . . . . . . . . . . 27
3 New Properties Driven by the Dendritic State . . . . . . . . . . 31
3.1 Comparison of Traditional and Dendritic Polymer
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Overview of Unique Dendrimer Properties —
Monodispersity . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Unimolecular Container/Scaffolding Properties . . . . . . 35
3.4 Amplification of Terminal Surface Groups . . . . . . . . . 36
3.5 Persistent Nanoscale Dimensions and Shapes . . . . . . . 37
4 Intermediate Architectures Between Thermoplastics and
Thermosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Megamers — A New Class of Macromolecular
Architecture? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2 Structural Control of Linear Macromolecules . . . . . . . . . . . . 45
C. J. Hawker
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2 Living Polymerizations . . . . . . . . . . . . . . . . . . . . . . 45
3 Anionic Polymerizations . . . . . . . . . . . . . . . . . . . . . 46

4 Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . 49
5 Anionic Ring Opening . . . . . . . . . . . . . . . . . . . . . . . 50
6 Cationic Polymerization . . . . . . . . . . . . . . . . . . . . . 50
7 Cationic Ring Opening . . . . . . . . . . . . . . . . . . . . . . 51
8 Living Free Radical Polymerizations . . . . . . . . . . . . . . 53
9 Molecular Weight Control . . . . . . . . . . . . . . . . . . . . 56
10 Functional Group Control . . . . . . . . . . . . . . . . . . . . 57
11 Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . 59
12 Random Copolymers . . . . . . . . . . . . . . . . . . . . . . . 60
13 Ring Opening Metathesis Polymerization . . . . . . . . . . . 60
14 Single Site Catalysis . . . . . . . . . . . . . . . . . . . . . . . . 62
15 Metallocene Catalysts . . . . . . . . . . . . . . . . . . . . . . . 63
16 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3 Progress in the Branched Architectural State . . . . . . . . . . . . . 67
J. Roovers
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2 Physical Properties Affected by Long-Chain Branching. . . . . 70
3 Synthetic Strategies for Long-Chain Branched Polymers. . . . 74
3.1 Branched Polymers via Anionic Polymerization. . . . . . 75
3.1.1 Carbanionic Star Polymers . . . . . . . . . . . . . 75
3.1.2 Asymmetric Star Polymers by Anionic
Polymerization . . . . . . . . . . . . . . . . . . . . 77
3.1.3 H-, Super-H-, and -(co) Polymers . . . . . . . . . 78
vi
CONTENTS
3.1.4 Branched Poly(methacrylate)s . . . . . . . . . . . . 79
3.1.5 Branched Aliphatic Polyethers . . . . . . . . . . . 80
3.1.6 Branched Aliphatic Polyesters . . . . . . . . . . . . 81
3.2 Branching via Living Carbocationic Polymerization . . . 82

3.3 Ring-Opening Metathesis Polymerization (ROMP) . . . 83
3.4 Living Radical Polymerization . . . . . . . . . . . . . . . 85
3.5 Metal-centered Branching . . . . . . . . . . . . . . . . . . 85
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4 Developments in the Accelerated Convergent Synthesis of
Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A. W. Freeman and J. M. J. Fre´ chet
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2 Convergent Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 93
3 Double-Stage Convergent Growth Strategies :
Hypermonomers and Hypercores. . . . . . . . . . . . . . . . . . 95
4 The Double Exponential Growth Strategy . . . . . . . . . . . 101
5 Orthogonal Coupling Strategies . . . . . . . . . . . . . . . . . 103
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5 Formation, Structure and Properties of the Crosslinked State
Relative to Precursor Architecture . . . . . . . . . . . . . . . . . . 111
K. Dus˘ek and M. Dus˘kova´ -Smrcˇkova´
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2 Network Formation . . . . . . . . . . . . . . . . . . . . . . . . 115
2.1 General Features of Network Formation . . . . . . . . . 115
2.2 Precursors of Various Architectures . . . . . . . . . . . . 119
2.3 Effect of Precursor Structure on Network Build-up . . . 123
2.4 Formation of Substructures in situ 124
2.5 Modeling of Network Formation . . . . . . . . . . . . . 127
3 Specific Examples . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.1 Telechelic Polymers: Control of Properties Through
Dangling Chains . . . . . . . . . . . . . . . . . . . . . . . 130
3.2 Dendrimers, Hyperbranched Polymers and

Derived Networks . . . . . . . . . . . . . . . . . . . . . . 133
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
CONTENTS vii
6 Regioselectively-Crosslinked Nanostructures . . . . . . . . . . . . 147
C. G. Clark, Jr. and K. L. Wooley
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2 Regioselective Bulk Crosslinking . . . . . . . . . . . . . . . . . 150
3 Regioselective Crosslinking within Supramolecular
Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.1 Core-crosslinked Nanostructures: . . . . . . . . . . . . . 156
3.2 Shell-crosslinked Nanostructures . . . . . . . . . . . . . 158
4 Regioselective Coupling/Crosslinking within
Macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.1 Intramolecular Cross-linking of Dendrimer Surfaces . . 162
4.2 Core-shell Tecto(dendrimers) . . . . . . . . . . . . . . . . 163
5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . 167
6 References and Notes . . . . . . . . . . . . . . . . . . . . . . . 168
7 Hybridization of Architectural States: Dendritic-linear Copolymer
Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
P. R. L. Malenfant and J. M. J. Fre´ chet
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
2 Diblock Hybrids Prepared by Polymerization from a
Dendritic Initiator. . . . . . . . . . . . . . . . . . . . . . . . . . 173
3 Triblock ABA Copolymer Hybrids . . . . . . . . . . . . . . . 176
4 Side-chain Functionalized or ‘Dendronized’ Copolymer
Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5 Amphiphilic Hybrids . . . . . . . . . . . . . . . . . . . . . . . 182
6 Electroactive Hybrid Copolymers . . . . . . . . . . . . . . . . 187
7 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8 Statistically Branched Dendritic Polymers . . . . . . . . . . . . . . 197
E. Malmstro¨ m and A. Hult
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
2 Random Hyperbranched Polymers . . . . . . . . . . . . . . . 198
3 Condensation Strategies to Hyperbranched Polymers —
Commercial Products . . . . . . . . . . . . . . . . . . . . . . . 199
4 Ring-opening Strategies to Hyperbranched Polymers . . . . . 201
5 Self-condensing, Vinyl Polymerization Strategies . . . . . . . 203
6 Proton-transfer Polymerization . . . . . . . . . . . . . . . . . 205
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
viii
CONTENTS
9 Semi-Controlled Dendritic Structure Synthesis . . . . . . . . . . . 209
R. A. Kee, M. Gauthier and D. A. Tomalia
1 Dendritic Polymers: Hyperbranched, Dendrigrafts and
Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
2 Synthetic Routes to Dendrigraft Polymers . . . . . . . . . . . 211
3 Systems with Randomly Distributed Branching Points . . . . 212
3.1 Dendrigraft (Comb-burst
®
) Polymers . . . . . . . . . . . 212
3.2 Dendrigraft (Arborescent) Poly(styrenes) . . . . . . . . . 215
3.3 Dendrigraft (Arborescent)-Poly(butadienes) . . . . . . . 219
3.4 Dendrigraft (Arborescent)-Poly(styrene)-graft-
Poly(isoprene) Copolymers . . . . . . . . . . . . . . . . . 221
3.5 Dendrigraft (Arborescent)-Poly(styrene)-graft-Poly(2-
vinylpyridine) and Poly(styrene)-graft-Poly(tert-butyl
methacrylate) Copolymers . . . . . . . . . . . . . . . . . 224

3.6 Dendrigraft (Arborescent) Poly(styrene)-graft-
Poly(ethylene oxide) Copolymers . . . . . . . . . . . . . 226
4 Systems with Branching Points at the Chain Ends . . . . . . . 228
4.1 Dendrigraft-Poly(ethylene oxide) with Dendrimer-like
Topologies by Terminal Grafting . . . . . . . . . . . . . 228
4.2 Dendrigraft-Poly(styrene)-graft-Poly(ethylene oxide)
Copolymers by Terminal Grafting . . . . . . . . . . . . . 230
4.3 Dendritic Poly(styrenes) by Grafting onto
Poly(chloroethyl vinyl ether) . . . . . . . . . . . . . . . . 230
5 Convergent (Self-branching) Anionic Polymerization
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
II CHARACTERIZATION OF DENDRITIC POLYMERS
10 Gel Electrophoretic Characterization of Dendritic Polymers . . . 239
C. Zhang and D. A. Tomalia
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
2 Gel Electrophoresis: Basic Concepts . . . . . . . . . . . . . . 240
2.1 Influence of Medium pH . . . . . . . . . . . . . . . . . . 240
2.2 Ionic Strength of the Medium . . . . . . . . . . . . . . . 241
2.3 Support Media . . . . . . . . . . . . . . . . . . . . . . . 241
2.4 Gel Electrophoresis under Native or Denaturing
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 243
3 Why Gel Electrophoresis is Useful in Analyzing
Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
3.1 Narrow Dispersity . . . . . . . . . . . . . . . . . . . . . 244
CONTENTS ix
3.2 Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . 245
3.3 Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
4 Gel Electrophoresis in Analyzing Dendritic Polymers and

Related Materials . . . . . . . . . . . . . . . . . . . . . . . . . 245
4.1 Purity and Homogeneity Assessment . . . . . . . . . . 246
4.2 Molecular Weight Estimations . . . . . . . . . . . . . . 249
4.3 Study of DNA/Dendrimer Complexes . . . . . . . . . . 249
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11 Characterization of Dendritically Branched Polymers by Small
Angle Neutron Scattering (SANS), Small Angle X-Ray Scattering
(SAXS), and Transmission Electron Microscopy (TEM) . . . . . 255
B. J. Bauer and E. J. Amis
1 The Uniqueness of Dendritic Structures . . . . . . . . . . . 255
2 History of Dendrimer Characterization . . . . . . . . . . . 257
3 Important Technological Questions . . . . . . . . . . . . . 258
4 Measurement Methods Used . . . . . . . . . . . . . . . . . 259
5 Dendrimer Size vs Generation. . . . . . . . . . . . . . . . . 261
6 Dendrimer Internal Segment Density Distribution (SDD) . 263
7 Comparison of Dendrimers, Hyperbranched, and
Dendrigraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8 Location of the Terminal Groups . . . . . . . . . . . . . . . 271
9 Dendrimer—Dendrimer Interactions . . . . . . . . . . . . . 274
10 Dendrimer Size Change in Different Solvents . . . . . . . . 279
11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
12 Atomic Force Microscopy for the Characterization of Dendritic
Polymers and Assemblies . . . . . . . . . . . . . . . . . . . . . . . 285
J. Li and D. A. Tomalia
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
2 Overview of Atomic Force Microscopy . . . . . . . . . . . . 286
3 Characterization of Dendritic Macromolecules by AFM . . 288
3.1 Dendritic Macromolecular Films . . . . . . . . . . . . . 288

3.2 Shape Control with Quasi-Equivalent Dendritic
Surfaces — Dendritic Cylindrical and Spherical
Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
3.3 Poly(amidoamine) (PAMAM) Dendrimers . . . . . . . 294
3.3.1 The Packing of PAMAM Dendrimers
(Generation : 9) 294
x
CONTENTS
3.3.2 G5 to G10 PAMAM Dendrimers . . . . . . . . 298
3.3.3 Core-shell Tecto-dendrimers . . . . . . . . . . . 303
4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
13 Characterization of Dendrimer Structures by Spectroscopic
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
N. J. Turro, W. Chen and M. F. Ottaviani
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
2 Structural Characterization by Photophysical and
Photochemical Probes . . . . . . . . . . . . . . . . . . . . . . 310
2.1 Encapsulation of Probe Molecules . . . . . . . . . . . . 311
2.1.1 Non-covalent, Dynamic Interior Binding . . . . 311
2.1.2 Non-covalent Encapsulation — ‘Dendritic
Box’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
2.2 Surface Binding of Probe Molecules . . . . . . . . . . . 318
2.2.1 Binding Properties of Probe Molecules . . . . . 318
2.2.2 Photoinduced Electron Transfer Processes on
Dendrimer Surface . . . . . . . . . . . . . . . . . 321
2.3 Probe Covalently Linked on the Dendrimer
Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
2.4 Probe Covalently Linked at the Center of the
Dendrimer . . . . . . . . . . . . . . . . . . . . . . . . . . 323
3 Other Photochemical Characterization . . . . . . . . . . . . 325

3.1 Photoresponsive Dendrimers . . . . . . . . . . . . . . . 325
3.1.1 Photoswitchable Dendrimers . . . . . . . . . . . 325
3.1.2 Dendritic Antennae . . . . . . . . . . . . . . . . 326
3.2 Metal Nanocomposites Stabilized by Dendrimers . . . 328
3.3 Electronic Conducting Dendrimers . . . . . . . . . . . 328
4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
14 Rheology and Solution Properties of Dendrimers . . . . . . . . . 331
P. R. Dvornic and S. Uppuluri
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
2 Architectural Features of Dendrimer Molecules that Affect
their Rheological Behavior . . . . . . . . . . . . . . . . . . . 332
3 Dilute Solution Viscometry . . . . . . . . . . . . . . . . . . . 335
4 Rheology of Concentrated Dendrimer Solutions . . . . . . . 341
5 Dendrimer Bulk Rheology . . . . . . . . . . . . . . . . . . . . 346
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
CONTENTS xi
III PROPERTIES AND APPLICATIONS OF DENDRITIC POLYMERS
15 Dendritic and Hyperbranched Glycoconjugates as Biomedical
Anti-Adhesion Agents . . . . . . . . . . . . . . . . . . . . . . . . . 361
R. Roy
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
2 Adhesion Mechanisms Involved in Influenza Virus and
Related Microbial Infections . . . . . . . . . . . . . . . . . . 363
3 Suitably Functionalized Carbohydrate Precursors . . . . . . 365
4 Calix[4]arene and -cyclodextrin as Sialoside Scaffolds . . . 366
5 Glycodendrimers Based on Poly(amidoamines) (PAMAM)
Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
6 Poly(ethyleneimine) Scaffold Toward Hyperbranched
Sialosides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

7 Chitosan as Polysaccharide Scaffold Toward Hyperbranched
Sialosides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
16 Some Unique Features of Dendrimers Based upon Self-Assembly
and Host-Guest Properties . . . . . . . . . . . . . . . . . . . . . . 387
J W. Weener, M. W. P. L. Baars and E. W. Meijer
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
2 Self-assembly of Dendrimers . . . . . . . . . . . . . . . . . . 388
2.1 Dendrimers on Surfaces: Conformational Behaviour . 388
2.2 Functional Thin Films using Dendrimers . . . . . . . . 392
2.3 Amphiphilic Dendrimers . . . . . . . . . . . . . . . . . 396
2.4 Liquid Crystalline Dendrimers . . . . . . . . . . . . . . 401
3 Host—Guest Chemistry of Dendritic Macromolecules . . . . 403
3.1 Do Cavities Exist in Dendrimers? . . . . . . . . . . . . 403
3.2 Topological Encapsulation of Guest Molecules . . . . 406
3.3 Recognition based on Hydrophobic Interactions . . . . 407
3.4 Recognition based on Hydrogen Bonding Interactions 409
3.5 Recognition based on Electrostatic Interactions . . . . 410
3.6 Recognition based on Metal—Ligand Interactions . . . 413
4 Conclusion and Prospects . . . . . . . . . . . . . . . . . . . . 416
5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
17 Dendritic Polymers: Optical and Photochemical Properties . . . 425
D L. Jiang and T. Aida
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
xii
CONTENTS
2 Light-harvesting Antenna Functions of Dendrimers . . . . . 426
2.1 Morphology Dependence of Excited Singlet Energy
Transfer Events . . . . . . . . . . . . . . . . . . . . . . . 426

2.2 Molecular Design of Blue-luminescent Dendritic
Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
2.3 Isomerization of Azodendrimers by Light
Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . 431
3 Photoinduced Energy Transfer through Dendrimer
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
4 Photoinduced Electron Transfer through Dendrimer
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
18 Bioapplications of PAMAM Dendrimers . . . . . . . . . . . . . . 441
J. D. Eichman, A. U. Bielinska, J. F. Kukowska-Latallo,
B. W. Donovan and J. R. Baker, Jr.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
2 Dendrimer Synthesis and Characterization . . . . . . . . . . 441
3 DNA Delivery In Vitro with Unmodified Dendrimers . . . . 443
3.1 Dendrimer/DNA Interactions: Characterization of the
Complex Formation . . . . . . . . . . . . . . . . . . . . 443
3.2 Mechanism of Dendrimer-mediated Cell Entry . . . . . 448
3.3 Plasmid DNA Delivery . . . . . . . . . . . . . . . . . . 449
3.4 Stable Transformed Cell Lines . . . . . . . . . . . . . . 451
3.5 Oligonucleotide Delivery . . . . . . . . . . . . . . . . . 452
3.6 Enhancement of In Vitro Gene Delivery . . . . . . . . . 453
4 DNA Delivery In Vivo . . . . . . . . . . . . . . . . . . . . . . 454
4.1 In Vivo Toxicity . . . . . . . . . . . . . . . . . . . . . . . 455
4.2 Biodistribution . . . . . . . . . . . . . . . . . . . . . . . 456
4.3 Experimental Trials . . . . . . . . . . . . . . . . . . . . 456
4.4 Genetic Approaches to the Therapy for Inflammatory and
Fibrotic Lung Disease . . . . . . . . . . . . . . . . . . . 457
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
19 Dendrimer-based Biological Reagents: Preparation and
Applications in Diagnostics . . . . . . . . . . . . . . . . . . . . . . 463
P. Singh
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
2 Analyte—antibody Interactions . . . . . . . . . . . . . . . . . 464
2.1 Solid Phase Immobilization of Immune Complexes . . 464
CONTENTS xiii
2.2 Use of Dendrimers as Protein (IgG) Replacement . . . 466
3 A Commercial Example of Dendrimer-protein Conjugate-
based Reagent Technology . . . . . . . . . . . . . . . . . . . 466
4 Dendrimer-coupled Antibody Complexes . . . . . . . . . . . 467
4.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 467
4.2 Performance as a Reagent on Stratus
®
Systems . . . . 468
4.2.1 Heterogeneous Assay Format . . . . . . . . . . . 468
4.2.2 Enhanced Assay Formats . . . . . . . . . . . . . 471
4.2.3 Performance Advantages of E5-Ab Conjugates . 473
4.3 Stability of Dendrimer-antibody Conjugates . . . . . . 474
4.3.1 Real Time Storage . . . . . . . . . . . . . . . . . 474
4.3.2 Effects of Exposure to Hydrogen Peroxide,
Bubbled Air, Oxygen and Nitrogen . . . . . . . . . . . 475
4.4 Development of the New Commercial Stratus
®
CS
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
5 Dendrimer-Multifunctional Protein Conjugates . . . . . . . 477
5.1 Dendrimer-double Antibody Conjugates . . . . . . . . 477
5.1.1 Preparation and Performance as a Reagent on

Stratus
®
477
5.2 Dendrimer—enzyme—antibody Conjugates . . . . . . . . 478
5.2.1 Preparation and Performance as a Reagent on
Stratus
®
478
6 Hydrophobicity of Dendrimer-coupled Protein
Conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
7 Stoichiometry of Dendrimer—Multi-protein Conjugates . . . 480
8 Dendrimer DNA Probe Assays . . . . . . . . . . . . . . . . . 480
9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
20 Dendritic Polymer Applications: Catalysts . . . . . . . . . . . . . 485
A. W. Kleij, A. Ford, J. T. B. H. Jastrzebski and G. van Koten
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
2 Metallodendritic Catalysts . . . . . . . . . . . . . . . . . . . . 486
2.1 Miscellaneous Dendritic Metal Catalysts . . . . . . . . 486
3 Dendrimer Catalysts Derived from Reactive Metal
Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4 Catalysis with Phosphine-based Dendrimers . . . . . . . . . 494
5 Catalysis with (Metallo)dendrimers Containing Chiral
Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
6 Non-metal Containing Dendrimers . . . . . . . . . . . . . . 503
7 Metallodendritic Catalysts and Membrane Catalysis:
Catalyst Recovery . . . . . . . . . . . . . . . . . . . . . . . . 507
xiv
CONTENTS
8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
21 Optical Effects Manifested by PAMAM Dendrimer Metal
Nano-Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
T. Goodson III
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
2 Fabrication of Metal—Dendrimer Nanocomposites . . . . . 520
3 Linear and Nonlinear Optical Properties in Metal—Dendrimer
Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . 522
4 Ultrafast Excited State Dynamics and Photo-luminescence
Properties of Dendrimer Metal Nanocomposites . . . . . . . 531
5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
22 Dendrimers in Nanobiological Devices . . . . . . . . . . . . . . . 547
S. C. Lee
1 Biology for Nanotechnology . . . . . . . . . . . . . . . . . . 547
2 Building Nanobiological Devices . . . . . . . . . . . . . . . . 548
2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
2.2 Engineering Components . . . . . . . . . . . . . . . . . 549
2.3 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
3 Characteristics of Nanobiological Devices . . . . . . . . . . . 551
4 Dendrimers in Nanobiological Devices . . . . . . . . . . . . 552
5 Summary and Prospects . . . . . . . . . . . . . . . . . . . . . 554
6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
23 Antibodies to PAMAM Dendrimers: Reagents for Immune
Detection, Patterning and Assembly of Dendrimers . . . . . . . . 559
S. C. Lee, R. Parthasarathy, T. D. Duffin, K. Botwin, J. Zobel,
T. Beck, R. Jansson, G. L. D. Kunneman, E. Rowold and C. F. Voliva
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
2 Generating Anti-dendrimer Antibodies and their

Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
3 Immune Detection of Dendrimers . . . . . . . . . . . . . . . 561
4 Antibodies as Assembly Reagents . . . . . . . . . . . . . . . . 562
5 Antibodies as Nanopatterning Reagents . . . . . . . . . . . . 562
6 Conclusion and Prospects . . . . . . . . . . . . . . . . . . . . 565
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
CONTENTS xv
IV LABORATORY PREPARATION OF DENDRIMERS AND
CONCLUSION
24 Preparation of ‘Fre´ chet-type’ Polyether Dendrons and Aliphatic
Polyester Dendrimers by Convergent Growth: An Experimental
Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
J. M. J. Fre´ chet, H. Ihre and M. Davey
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
2 ‘Fre´ chet-type’ Polyether Dendrons based on
3,5-dihydroxybenzyl Alcohol . . . . . . . . . . . . . . . . . . 570
2.1 Preparation of Methyl 3,5-bis(benzyloxy)benzoate . . . 570
2.2 Preparation of 3,5-Di(benzyloxy)benzyl Alcohol . . . . 572
2.3 Preparation of 3,5-Di(benzyloxy)benzyl Bromide . . . 572
2.4 Preparation of [G—2]—OH 573
2.5 Preparation of [G—2]—Br 574
2.6 Preparation of [G—3]—OH 574
2.7 Preparation of [G—3]—Br 575
2.8 Preparation of [G—4]—OH 576
2.9 Preparation of Higher Generation Dendrons . . . . . . 576
3 Preparation of Polyether Dendrimers by Assembly of Fre´ chet-
type Dendrons around a Core. . . . . . . . . . . . . . . . . . 576
3.1 Preparation of [G—4]
3
-[C](11) . . . . . . . . . . . . . . 578

4 Aliphatic Polyester Dendrons and Dendrimers based on
2,2-bis-hydroxymethylpropionic Acid. . . . . . . . . . . . . . 578
4.1 Preparation of Isopropylidene—
2,2- bis(hydroxymethyl)propionic Acid . . . . . . . . . 580
4.2 Preparation of Benzyl 2,2-bis(hydroxymethyl)-
propionate . . . . . . . . . . . . . . . . . . . . . . . . . . 581
4.3 Preparation of Acetonide Protected [G2]-CO
2
CH
2
C
6
H
5
and General Esterification Procedure. . . . . . . . . . . 581
4.4 Preparation of Acetonide Protected [G2]-COOH
and General Procedure for the Removal of the Benzyl
Ester Protecting Group . . . . . . . . . . . . . . . . . . 582
4.5 Preparation of (OH)
4
-[G2]-CO
2
CH
2
C
6
H
5
and
General Procedure for the Removal of the Acetonide

Protecting Groups. . . . . . . . . . . . . . . . . . . . . . 582
4.6 Preparation of Acetonide Protected
[G4]-CO
2
CH
2
C
6
H
5
583
4.7 Preparation of Ketal Protected [G4]-COOH . . . . . . 583
4.8 Preparation of Acetonide Terminated [G4] Tridendron
Dendrimer . . . . . . . . . . . . . . . . . . . . . . . . . . 583
4.9 Preparation of Hydroxyl Terminated [G4] Tridendron
Dendrimer . . . . . . . . . . . . . . . . . . . . . . . . . . 584
xvi
CONTENTS
4.10 Preparation of Benzoate Terminated [G4] Tridendron
Dendrimer and General Procedure for ‘Surface’
Modification of the Hydroxyl Terminated Dendrimers 584
5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
25 Laboratory Synthesis of Poly(amidoamine) (PAMAM)
Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
R. Esfand and D. A. Tomalia
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
2 General Comments . . . . . . . . . . . . . . . . . . . . . . . . 588
3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . 590
3.1 Divergent Synthesis of PAMAM Dendrimers via
Excess Reagent Method Preparation of Ester

Terminated PAMAM Star-branched Precursor;
[NH

-(CH

)



-NH

]; (G:—0.5); star-
PAMAM(CO

Me)

591
3.2 Preparation of Amine Terminated PAMAM Star-
branched Precursor; [NH

-(CH

)



-NH

]; (G:0);
star-PAMAM(NH


)

592
3.3 Preparation of Ester Terminated PAMAM
Dendrimer; [NH

-(CH

)



-NH

]; (G:0.5); dendri-
PAMAM(CO

Me)

596
3.4 Preparation of Amine Terminated PAMAM
Dendrimer; [NH

-(CH

)




-NH

]; (G:1.0); dendri-
PAMAM (NH

)

596
3.5 Preparation of Ester Terminated PAMAM Dendrimer;
[NH

-(CH

)



-NH

]; (G:1.5); dendri-PAMAM
(CO

Me)

597
3.6 Preparation of Amine Terminated PAMAM Dendrimer;
[NH

-(CH


)



-NH

]; dendri-PAMAM (NH

)

. . . 599
3.7 Preparation of Ester Terminated PAMAM Dendrimer;
[NH

-(CH

)



-NH

]; (G:2.5); dendri-PAMAM
(CO

Me)

599
3.8 Preparation of Hydroxy Terminated PAMAM
Dendrimer; [NH


-(CH

)



-NH

]; (G:1.0); dendri-
PAMAM (OH)

600
3.9 Preparation of Hydroxy Terminated PAMAM
Dendrimer; [NH

-(CH

)



-NH

]; (G:2.0); dendri-
PAMAM (OH)

600
3.10 Preparation of Hydroxy Terminated PAMAM
Dendrimer; [NH


-(CH

)



-NH

]; (G:3.0); dendri-
PAMAM (OH)

602
4. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
CONTENTS xvii
26 Synthesis and Characterization of Poly(Propylene imine)
Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
M. H. P. van Genderen, M. H. A. P. Mak, E. M. M. de Brabander-
van den Berg and E. W. Meijer
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
2 Large-scale Synthesis . . . . . . . . . . . . . . . . . . . . . . . 606
3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 609
4 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . 610
5 Dendrimer Shape . . . . . . . . . . . . . . . . . . . . . . . . . 613
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
27 Laboratory Synthesis and Characterization of Megamers:
Core-shell Tecto(dendrimers) . . . . . . . . . . . . . . . . . . . . 617
D. A. Tomalia and D. R. Swanson
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

2 General Comments . . . . . . . . . . . . . . . . . . . . . . . . 619
3 Self-assembly/Covalent Bond Formation Method . . . . . . 620
3.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . 623
3.1.1 Materials . . . . . . . . . . . . . . . . . . . . . . 623
3.1.2 Analytical Methods . . . . . . . . . . . . . . . . 623
3.1.3 Size Exclusion Chromatography . . . . . . . . . 623
3.1.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . 624
4 Direct Covalent Bond Formation Method . . . . . . . . . . 624
4.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . 627
4.1.1 Materials and General Methods . . . . . . . . . 627
5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
28 Conclusion/Outlook – Toward Higher Macromolecular
Complexity in the Twenty-first Century . . . . . . . . . . . . . . . 631
D. A. Tomalia and J. M. J. Fre´ chet
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
xviii
CONTENTS
Contributors
Takuzo Aida
Department of Chemistry and
Biotechnology
Graduate School of Engineering
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-8656
Japan
Eric J. Amis
Group Leader
Polymer Blends & Processing
Polymers Division,

224/B210
National Institute of Standards and
Technology
Gaithersburg, MD 20899-8542
USA
Maurice W.P.L. Baars
Laboratory of Macromolecular and
Organic Chemistry
Eindhoven University of Technology
Department of Chemical Engineering
PO Box 513
5600 MB Eindhoven
The Netherlands
James R. Baker, Jr.
University of Michigan
Center for Biologic Nanotechnology
Dept of Internal Medicine
Div of Allergy
9240 MSRB III
Ann Arbor, MI 48109
USA
Barry J. Bauer
National Institute of Standards and
Technology,
Polymers Division,
Bldg 224, Room B210
Gaithersburg, MD 20899-8542
USA
Teresa Beck
Monsanto Company

700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
Anna U. Bielinska
University of Michigan
Center for Biologic Nanotechnology
Dept of Internal Medicine
Div of Allergy
9240 MSRB III
Ann Arbor, MI 48109
USA
Kelly Botwin
Monsanto Company
700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
Wei Chen
Chemistry Department
Columbia University
3000 Broadway, MC 3119
New York, NY 10027
USA
Christopher G. Clark, Jr
Washington University
Department of Chemistry
Campus Box 1134
One Brookings Drive
St Louis, MO 63130-4899

USA
Mark Davey
Cadence Design Systems, Inc.
2655 Seely Avenue
San Jose, CA 95134
USA
Ellen M.M. de Brabander-van den
Berg
DSM Research
PO Box 18
6160 MD Geleen
The Netherlands
Brian W. Donovan
University of Michigan
Center for Biologic Nanotechnology
Dept of Internal Medicine
Div of Allergy
9240 MSRB III
Ann Arbor, MI 48109
USA
Tiffany D. Duffin
Monsanto Company
700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
Karel Dusˇek
Institute of Macromolecular Chemistry
Academy of Sciences of the Czech
Republic

Heyrovske´ ho na´m.2
CZ-162 06, Prague 6
Czech Republic
Miroslava Dusˇkova´ -Smrcˇkova´
Institute of Macromolecular Chemistry
Academy of Sciences of the Czech
Republic
Heyrovske´ ho na´m.2
CZ-162 06, Prague 6
Czech Republic
Petar R. Dvornic
Michigan Molecular Institute
1910 W. St Andrews Road
Midland, MI 48640
USA
Jonathan D. Eichman
University of Michigan
Center for Biologic Nanotechnology
Dept of Internal Medicine
Div of Allergy
9240 MSRB III
Ann Arbor, MI 48109
USA
Roseita Esfand
Dendritic Nanotechnologies Limited
Central Michigan University
Park Library
Mt Pleasant, MI 48859
USA
xx

CONTRIBUTORS
Alan Ford
Debye Institute
Department of Metal-Mediated
Synthesis
Utrecht University
Padualaan 8
3584 CH Utrecht
The Netherlands
Jean M.J. Fre´ chet
University of California
Berkeley #1460
Department of Chemistry
718 Latimer Hall
Berkeley, CA 94720-1460
USA
Adam W. Freeman
Eastman Kodak Research
Laboratories
Building 82, Rm. C608
Rochester, NY 14650-2116,
USA
Mario Gauthier
Institute for Polymer Research
Department of Chemistry
University of Waterloo
Waterloo, Ontario
N2L 3G1
Canada
Mehrnaz Gharaee-Kermani

University of Michigan
Center for Biologic Nanotechnology
Dept of Internal Medicine
Div of Allergy
9240 MSRB III
Ann Arbor, MI 48109
USA
Theodore Goodson III
Department of Chemistry
Wayne State University
Detroit, Michigan 48202
USA
Craig J. Hawker
IBM Almaden Research Center
NSF Center for Polymeric Interfaces
and Macromolecular Assemblies
650 Harry Road
San Jose, CA 95120-6099
USA
Anders Hult
Dept. of Polymer Technology
Royal Institute of Technology
SE 100 44 Stockholm
Sweden
Henrik Ihre
Amersham Pharmacia Biotech.
Bjo¨ rkgatan 30
SE-751 84 Uppsala
Sweden
Robert Jansson

Monsanto Company
700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
Johann T.B.H. Jastrzebski
Debye Institute
Department of Metal-Mediated
Synthesis
Utrecht University
Padualaan 8
3584 CH Utrecht
The Netherlands
Dong-Lin Jiang
Department of Chemistry and
Biotechnology
Graduate School of Engineering
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-8656
Japan
CONTRIBUTORS xxi
R. Andrew Kee
Institute for Polymer Research
Department of Chemistry
University of Waterloo
Waterloo, Ontario
N2L 3G1
Canada
Arjan W. Kleij

Debye Institute
Department of Metal-Mediated
Synthesis
Utrecht University
Padualuan 8
3584 CH Utrecht
The Netherlands
Jolanta F. Kukowska-Latallo
University of Michigan
Center for Biologic Nanotechnology
Dept of Internal Medicine
Div of Allergy
9240 MSRB III
Ann Arbor, MI 48109
USA
Gary Lange David Kunneman
Monsanto Company
700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
Stephen C. Lee
Monsanto Company
700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
Jing Li
Dow Chemical Company
1897 Building

Midland, MI 48667
USA
Manon H.A.P. Mak
DSM Research
PO Box 18
6160 MD Geleen
The Netherlands
Patrick R.L. Malenfant
General Electric Company
CRD Emerging Technologies
Polymeric Materials Laboratory
K1-4A49
1 Research Circle
Niskayuna, NY 12309
USA
Eva Malmstro¨m
Dept. of Polymer Technology
Royal Institute of Technology
S-100 44 Stockholm
Sweden
E.W. Meijer
Laboratory of Macromolecular and
Organic Chemistry
Eindhoven University of Technology
Department of Chemical Engineering
PO Box 513
5600 MB Eindhoven
The Netherlands
M. Francesca Ottaviani
Institute of Chemical Sciences

University of Urbino
61029 Urbino
Italy
xxii
CONTRIBUTORS
Ranjani Parthasarathy
Monsanto Company
700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
Jacques Roovers
21 Wren Rd
Ottawa, ON
K1J 7H5
Canada
Edwin Rowold
Monsanto Company
700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
Rene´ Roy
Department of Chemistry
University of Ottawa
10 Marie Curie Street,
PO Box 450 Stn A
Ottawa, ON
K1N 6N5
Canada

Pratap Singh
Dade Behring Inc.
Mail Station 700
PO Box 6100
Glasgow Business Community
Newark, DE 19702
USA
Douglas R. Swanson
Dendritic Nanotechnologies Limited
Central Michigan University
Park Library
Mt. Pleasant, MI 48859
USA
Donald A. Tomalia
Dendritic Nanotechnologies Limited
Central Michigan University
Park Library
Mt. Pleasant, MI 48859
USA
Nicholas J. Turro
Chemistry Department
Columbia University
300 Broadway, MC 3119
New York, NY 10027
USA
Srinivas Uppuluri
Flint Ink Corporation Research Center
4600 Arrowhead Drive
Ann Arbor, MI 48197
USA

Marcel H.P. van Genderen
Laboratory of Macromolecular &
Organic Chemistry
Eindhoven University of Technology
Department of Chemical Engineering
PO Box 513
5600 MB Eindhoven
The Netherlands
Gerard van Koten
Debye Institute
Department of Metal-Mediated
Synthesis
Utrecht University
Padualaan 8
3584 CH Utrecht
The Netherlands
Charles F. Voliva
Monsanto Company
700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
CONTRIBUTORS xxiii
Jan-Willem Weener
Laboratory of Macromolecular and
Organic Chemistry
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands

Karen L. Wooley
Washington University
Department of Chemistry
Campus Box 1134
One Brookings Drive
St Louis, MO 63130-4899
USA
Chunxin Zhang
University of Michigan Medical School
Center for Biologic Nanotechnology
200 Zina Pitcher Place
Ann Arbor, MI 48109
USA
James Zobel
Monsanto Company
700 Chesterfield Village Parkway
North AA4C
St Louis, MO 63198
USA
xxiv
CONTRIBUTORS

×