381)
Appendix A. Solutions to the Exercises
t5s
+
C ( r ( f ) ) = L{€(t 5) - &(t- 5 ) ) = -5
finitr duration.
I
L(J(t))= L(-G(f)) =
4
1
2I . I
,
s
1
5t-t) c-Jio' d t =
,
s
E C, sirwe .c(t) has
EC
e-jWf d l
does not converge *
-cc
--7c
C{T(f)) =
S
0
rxl
(1) FF(x(t))-
(,+S
~
1
-b
.
Re{s) < 0
e) F{.r(h)) does riot co~iveige,see a) *
LC(i(f)) does not convergc
'Calciilitting the Fourier integral does not provide the soliit ion betanse the integral
will not cwivergt~.Nevertheless. the Fouricr transform clocs exisL in tlic form of a
dist ri hut ion.
~ o l ~ 9.2
~ i o ~
h) and c ) , since the regioii of convergence of the Laplace transform corvtaiiis the
imaginary axis. (Lying on tlw border is not srtllicient!)
Solution 9,3
The Fourier integrals from Exertisr 9.la, d and e do not converge to a function.
for a) TJre t h p niodulatiori theorem t m pair (9.7):
for (1) 1Jsc the similarity theorcm on pair (9.7):
1
F{E(-f)}
= nd(w)- - .
.?
for e ) Use the yriiiciple of duality
F{e-JW"E) = 2 7 d ( W +
011
pair (9.17):
"0).
The dwlity princple is used as follows:
S ( t - ).
3-0
c-.)wr
2nS(-LL' - z> = 2nb(w + ?-)
Wliere ir is any constant that can be appopriately replaced in thr1 result by
U().