Tải bản đầy đủ (.pdf) (1 trang)

Đề thi tuyển sinh lớp 10 năm 2012 chuyên toán tỉnh Long An ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (96.57 KB, 1 trang )

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 HỆ CHUYÊN
LONG AN Môn thi : TOÁN (Hệ chuyên)
Ngày thi : 05-07-2012
ĐỀ CHÍNH THỨC Thời gian: 150 phút (không kể phát đề)
………………………………………………………………………………………….
Câu 1: (1,5 địểm )
Rút gọn biểu thức:A =
3 11 3 1
8 15 5 3
x x x x
x x x x
  
 
   



0, 9, 25
x x x   .
Câu 2: (2 điểm).
Cho phương trình: x
2
-(2m+3)x+m
2
+m+2=0 (m là tham số).
a) Định m để phương trình có nghiệm.
b) Định m để phương trình có hai nghiệm
1
x
,
2


x
thỏa
1 2
2
x x
 .
Câu 3: (1 điểm).
Giải phương trình: (x+3)(x-2)(x+1)(x+6)= - 56.
Câu 4: ( 2,5 điểm ).
Cho đường tròn (O) đường kính AB, trên cung AB lấy một điểm C ( C không trùng với A, B
và AC < CB).Vẽ dây cung CD vuông góc với AB tại E ( E

AB ). Qua điểm C vẽ một đường
thẳng vuông góc với BD tại M ( M

BD), đường thẳng này cắt đường tròn (O) tại G và cắt
BE tại H.
a) Chứng minh tứ giác BCEM nội tiếp.
b) Chứng minh EH.MG = EA.HM.
c) Gọi K là giao điểm của AG và ED. Chứng minh AG.AK – AE.EB = AE
2
.
Câu 5: ( 1điểm ).
Tìm các số nguyên
x
để
2
199 2 2
x x
  

là một số chính phương chẵn.
Câu 6: (1 điểm).
Cho a,b,c

R; a,b,c > 0, a+b+c=1.
Chứng minh rằng:
1 1 1
3
2 2 2
a b b c c a
  
  
.
Câu 7: (1 điểm).
Cho hai tia Ax và Ay vuông góc với nhau, trên tia Ax lấy điểm B cố định, điểm C di chuyển
trên tia Ay. Đường tròn nội tiếp tam giác ABC lần lượt tiếp xúc với AC, BC tại M và N.
Chứng minh MN đi qua một điểm cố định.
HẾT

×