–
biên) –
–
THANH PHONG
thi
.
sinh viên
.
T
b
[6], [9], [10].
Oly
.
1
Ụ
Ụ
1
Ụ
Ụ
2
hươn 1
1
Ứ
6
Ứ .............................................................................................................6
.................................................................................................6
.....................................................................................................6
..........................................................................6
.....................................................................................................7
.....................................................................7
........................................................................................9
§2
Ủ
Ứ ...............................................................................11
..........................................................................11
.............................................................................................12
.........................................................................14
4.
................................................16
5.
..........................................................17
6
.........................................................................17
Ứ ......................................21
§3
1.
....................................21
2.
......................................................23
hươn
29
1
Ủ
N................29
.........................................................................................29
.........................................................29
.........................................................................................29
...............................................................................................29
5.
........................................................................................30
......................................................................31
2
................................................................................................ 31
2. Ma
.......................................................................................................31
.......................................................................31
.................................................................................................31
..................................................................................................31
6. Ma tr
...................................................................................................32
...................................................................................................32
................................................................................................ 33
§
...............................................................................35
1.
............................................................35
..........................................................36
Ừ
...................................................................................42
................................................................................42
........................................................42
NG Ủ
....................................................................................49
................................................................................................ 49
............................................49
3.
ng c a ma tr n .............................................................50
hươn
hươn
1
......................................................................................................55
Ứ
Ứ
61
........................................................................61
...........................................................................................61
.................................................................................61
Ứ ............................................................64
.............................................................................64
....................................................................................66
..........................................................................................67
............................................................70
...............................................72
.............................................................................................73
3
hươn
Ì
81
Ì
§1
1. H
.....................................81
n tính và khơng tuy n tính ................................................81
2. D ng ma tr n c a h
n tính ....................................................81
3. Nghi m c a h
..............................................................................82
4. H
n ........................................................................83
Ì
§
....................................83
.............................................................83
ử Gauss .....................................................................................86
.........................................................................................89
4. Sử d
nh lý v nghi m c
5. Sử d
ix
c. ......................................................91
gi i h
i x ng. ................94
.............................................................................................96
hươn
§1
Ơ
Ơ
E
E
TUY N TÍNH
..................................................................................108
1. Khái ni
.............................................................................108
c l p tuy n tính và ph
n tính ......................................................108
và s chi u c
4. Ma tr n chuy
108
...........................................................108
t
x1, x2 ,..., xn sang y1, y2 ,..., yn ..............................109
5. Không gian con - H ng c a m t h
........................................................110
6. T ng và t ng tr c ti p.......................................................................................110
7.
.............................................................111
§2. ÁNH X TUY N TÍNH ..................................................................................116
1. Khái ni m ánh x tuy n tính .............................................................................116
2. Ma tr n c a ánh x tuy n tính...........................................................................117
3. Ảnh và h t nhân c
4. Giá tr
5. T
ng c u tuy n tính. ........................................................118
...................................................................................118
ng c
c ..............................................................................119
4
........................................................119
§3. CHÉO HĨA MA TR N VÀ ỨNG DỤNG ....................................................124
1. Chéo hóa ma tr n ..............................................................................................124
2. Ứng d ng c a chéo hóa ma tr n .......................................................................126
ng. .......................................................................................128
ỨC CỰC TIỂU ....................................................................................134
§
c c c ti u ................................................................................................134
n c c ti u ....................................................................134
3. Bài t p áp d ng .................................................................................................135
...........................................................................................136
hươn 6
TỔ HỢP
144
§1. CHỈNH HỢP – TỔ HỢP – HOÁN V ............................................................144
1. Ch nh h p..........................................................................................................144
2. T h p ...............................................................................................................144
3. Hốn v ..............................................................................................................145
§2. NH THỨC NEWTON – TAM GIÁC PASCAL ..........................................146
1. Nh th c Newton ...............................................................................................146
2. Tam giác Pascal ................................................................................................147
ỨNG MINH VÀ NGUYÊN LÝ QUY N P ..............148
ng minh tr c ti p và ph n ch ng ..........................................148
2. Nguyên lý qui n p .............................................................................................149
§4. NGUN LÍ DIRICHLET - NGUN LÍ CỰC H N ...............................152
1. Ngun lí Dirichlet (hay cịn g i là nguyên lí chu ng thỏ) .............................152
2. Nguyên lý c c h n ............................................................................................153
6 ................................................. Error! Bookmark not defined.
166
5
hươn 1
Ứ
,…
1
ửK
Ứ
,
K
.
1
h
n
hứ
nh n h
1
K
f ( x) a0 a1 x ... an x n ,
ai K , i 0,1,..., n
a0
do.
K
ủ
K[x].
hứ
f ( x) a0 a1 x ... an x n
nh n h
an 0
f (x
ử an
h
K
f (x).
n
nh n h
ừ nh n h
hứ
n
m
i 0
i 0
f ( x) ai x i ; g ( x) bi x i
n m vaø ai bi , i 0,..., n .
nh n h
n
m
i 0
i 0
f ( x) ai x i ; g ( x) bi x i
6
n
n
deg( f
f ( x) g ( x)
max( m , n )
a
i 0
i
mn
bi x i
f ( x).g ( x) ck x k , ck
k 0
nh
1
ab
i j k
i
j
0 f ( x), g ( x) K [ x]
deg( f ) deg( g )
f ( x) g ( x) 0
deg( f ) deg( g )
f ( x) g ( x) 0
b) deg(fg)= deg(f )+deg(g).
a)
h
h
deg( f g ) max{deg( f ),deg( g )}.
deg( f g ) d eg( f ) deg( g ).
ư
nh
K[x], g(x)
K[x] sao cho f ( x ) g( x )q( x ) r( x ), deg(r) deg( g)
0.
f (x) cho
q(x), r(x
g(x).
nh n h
f (x), g (x) K [x], K
q(x) K [x] sao cho f (x) = q (x)g (x
f (x) trong K [x
h ng
n nh
nh n h 6
f (x
g(x
a) h (x
b) h (x)
c)
hứ
f (x)
ỏ
h (x
h (x) | f (x
h(x
g(x
ủ h
nh
a)
ủ h
f (x
g(x
f (x
g (x
nE
hứ
f ( x), g ( x) K [ x] vaø deg( f ) deg( g )
=
g (x) hay g (x
f (x) | g (x) hay g ( x) f ( x).
ử 0 f ( x), g ( x) K [ x]
UCLN ( f ( x), g ( x ))
nh n h
▪ h
f (x
g (x)
UCLN ( f ( x), g ( x)) b1g ( x),
7
h (x) | g (x).
h (x).
b)
r ( x) 0
UCLN ( f ( x), g ( x)) UCLN ( g ( x ), r ( x)) .
.
a)
f ( x) g ( x) q ( x).
r (x) =
UCLN ( f ( x), g ( x)) b1g ( x),
r ( x) 0
b)
b
g(x).
ử h( x) UCLN ( f ( x), g ( x)),
f ( x) g ( x) q ( x) r ( x). G
h '( x) UCLN ( g ( x), r ( x)) .
g (x
f (x
h( x ) | f ( x)
h( x) | g ( x) nên h( x ) | r ( x)
r (x). Suy ra h( x) | h '( x)
h '( x ) | h( x)
g (x
h(x
h(x
’(x
’(x
h( x) h '( x). ■
nh
f ( x), g ( x)
u(x
hứn
v(x) sao cho f ( x)u ( x) g ( x)v( x) 1.
nh.
ử f ( x), g ( x)
, UCLN ( f ( x), g ( x)) 1.
ử deg( f ) deg( g )
UCLN ( f ( x), g ( x )) 1
n = deg(g
f ( x )u ( x ) g ( x ) v ( x ) 1
u ( x ), v ( x ) sao cho
n = 0 hay g(x) = b0
u(x) =
v( x) b01
ỏ
f ( x) u ( x) g ( x) v( x) 1 .
ử
f (x), g (x
ỏ
deg( f ) deg( g )
deg(g) = n
f ( x) g ( x)q( x) r ( x),deg(r ) deg( g ) neáu r ( x) 0.
n, n > 0.
q (x
r (x) sao cho
r ( x ) 0 thì g(x
r ( x ) 0 , suy ra 1 UCLN ( f ( x), g ( x)) UCLN ( g ( x), r ( x))
’(x), ’(x) sao cho
g ( x)v '( x) r ( x)u '( x) 1 hay f ( x)u '( x) g ( x)(v '( x) q( x)u '( x)) 1
u ( x) u '( x);
deg(r ) deg( g ) n
v( x) v '( x) q ( x)u '( x)
f ( x)u ( x) g ( x )v ( x ) 1.
ử
UCLN ( f ( x ), g ( x ))
u(x), v(x) sao cho f ( x)u ( x) g ( x)v( x) 1
f (x
UCLN ( f ( x), g ( x)) 1. ■
8
g (x
ụ
6.
hứ
ụ 1.
x 2017 cho ( x 2)3 trên
ử x 2017 ( x 2)3 q( x) ax 2 bx c
[ x].
(*).
4a 2b c 22017.
Thay x
2017 x 2016 3( x 2) 2 q( x) ( x 2)3 q '( x) 2ax b
Thay x = 2
(**).
4a b 2017.22016 .
(**)
a 2017.2016.2 2014 .
x=2
b 2017.2015.22016 ; c (1 1007.2017)22017.
2017.2016.22014 x2 2017.2015.22016 x (1 1007.2017)22017.
ụ 2.
UCLN ( x m 1, x n 1) x d 1 , d UCLN (m, n); m, n
d UCLN (m, n)
*
m dm ', n dn '.
m ', n '
x m 1 x d 1; x n 1 x d 1 . Suy ra x m 1 x n 1
m'
n'
xd 1
xm 1
xn 1.
u, v
d UCLN (m, n)
x m 1, x n 1
h( x )
h( x) | x mu x nv x nv ( xd 1)
h( x) | ( x d 1) .
ụ
xd 1
sao cho um vn d
h( x) | ( x mu 1) ( x nv 1) hay
UCLN ( xm 1, xnv ) 1 nên UCLN (h( x), xnv ) 1
f ( x) [ x]
a)
f ( xn )
b)
a
m, n
*
x 1
*
ỏ
f ( xn )
cho ( xn an )m .
9
ử
f ( xn )
( x 1)m
x n 1.
f ( xn )
ử f (x
c)
f ( x), h( x) [ x]
x2 x 1
f ( x) g ( x3 ) xh( x3 ).
x 1
g ( x)
ỏ
h(x
x 1.
hay
f (1n ) f (1) 0
x 1
f ( xn )
a)
f (x
f ( x) ( x 1) g ( x)
x 1,
f (x)
f ( xn ) ( xn 1) g ( xn )
x n 1.
f ( xn )
( x 1)m
f ( xn )
b)
f ( m1) ( x n )
f (an ) f '(an ) ... f ( m1) (an ) 0.
( x 1).
f ( x), f '( x),..., f ( m1) ( x)
an
x a
n m
, thay x
, 2
c)
x 2 x 1.
g (1) h(1) 0
g ( x)
( x 1)m1
f '( x n )
xn
( x n a n )m .
f ( xn )
1
3
i
2
2
, 2
x2 x 1 nên f () f (2 ) 0.
f (x
g (1) 2h(1) 0
g(1) = h(1) =
x 1.
h(x
.
2
x100 2 x 51 1 cho x 1.
1.
ư n
n
1
§1, 6)
2. (USAMO 1976) Cho f (x), g (x), h (x), s (x
f ( x5 ) xg ( x5 ) x2h( x5 ) ( x4 x3 x2 x 1)s( x)
f (x
x - 1.
ư n
n Thay x
f (1) = 0.
10
- 2x + 2.
f (x
3. (
f ( x), g ( x) [ x]
[3]
f ( x 2010 2009) x g ( x 2010 2009)
x 2 x 1.
x 2010.
f ( x), g ( x)
ư n
ỏ
n
§1, 6).
x100 1
4.
x 45 1 trên
[ x].
x5 – 1.
Ủ
§2
1
h
hứ
nh
nh n h
1
ửK
ửc
Ứ
f ( x) a0 a1 x ... an x n K [ x].
cK
f (c) a0 a1c ... anc n 0 .
f ( x)
a0 a1 x ... an x n 0 trong K.
f (x) trong K
nh
f (c).
1
c K , f ( x) K[ x].
f ( x) cho x c
Khi chia f ( x) cho x c
ử
K
f ( x ) ( x c)q( x ) r, q( x ) K[ x]
Thay x = c
f (x)
f (c) r .
f ( x) cho x c
1.
f (c). ■
f ( x)
f ( x)
a, b K , f (a ) f (b) a b.
11
x c.
nh
2.
.
a khơng
• ơ
n
f ( x) cho x c
n
Cho f ( x ) a0 a1 x ... an x K [ x ].
q( x ) b0 b1 x ... bn1 x n1
q ( x)
r
an
c
2
h
...
an 1
a1
bn 1 an bn 2 an 1 cbn 1
a0
b0 a1 cb1 r a0 cb0
hứ
nh n h
ử c
f ( x) ( x c)m g ( x), g ( x) K[ x]
nh
r f (c).
*
m
f ( x) K [ x]
g(c)0.
3. Cho f ( x) K[ x]
f (x).■
2.
ử f(x
f (x) - g(x
x
ỏ
K. Suy ra f (x) – g (x
n
f (x) – g(x
nh
4.
n trên K
n
n+1
n
f (x) = g(x).■
x1 , x2 ,..., xk
f ( x) an xn axn1 ... a0 [ x]
m1 m2 ... mk n
m1 , m2 ,..., mk
f ( x) an ( x x1 ) m ( x x2 ) m ...( x xk ) m .
1
12
2
k
f(x
( x x1 )m , ( x x2 ) m , ..., ( x xk ) m .
1
2
( x x1 )m , ( x x2 ) m , ..., ( x xk ) m
1
k
2
k
( x x1 )m ( x x2 ) m ...( x xk ) m .
f(x
1
2
k
f ( x) q( x)( x x1 )m ( x x2 ) m ...( x xk ) m ,
1
2
so
k
.■
f (x
nh
5.
)
f ( x) an x n an1 x n1 ... a1 x a0 K [ x], an 0
x1 , x2 ,..., xn K
x1 x2 ... xn
an 1
an
x1 x2 x1 x3 ... xn 1 xn
an 2
an
...
x1 x2 ... xn
ử f(x
n
(1) n a0
an
x1 , x2 ,..., xn ,
f ( x) an ( x x1 )( x x2 )...( x xn ) an x n an ( x1 x2 ... xn ) x n1 ... (1)n an .x1x2 ...xn .
an 1
x1 x2 ... xn a
n
an 2
x1 x2 x1 x3 ... xn 1 xn a
n
...
(1) n a0
...
x
x
x
1 2 n
an
■
13
3.
hứ
nh n h
h
1
n
ử K
ư n
f (x) K [x
trong K [x
f (x) = g ( x )h ( x ), g (x), h (x) K [x
nh
K [x
g (x) hay h (x
1.
.
f (x
g(x
R[x] sao cho
0 deg( fg ) deg( f ) deg( g )
f ( x) g ( x) 1
R
deg( f ) deg( g ) 0 , hay f ( x)
ử
f (x
f ( x)
R
.■
ụ
[ x]
x+
nh
[ x] .
6.
a)
b)
f ( x) ax b K [ x], a 0 .
a)
f ( x) 0
f ( x)
g ( x), h( x) K [ x] , deg(g) + deg(h) =
ử f ( x ) g ( x ) h( x )
deg( g ),deg( h) deg( f ).
deg(g) = 1; deg(h) =
deg(g) = 0; deg(h) = 1.
deg(g) = 1; deg(h) =
h(x
deg(g) = 0; deg(h) =
g(x
f ( x)
.■
f(x
ử f (x
K
f (x)= g(x)h(x); g(x), h(x)K[x
f (x
f (x)
f(x)
g(x
K.
K. ■
f(x)
14
h(x
x ,
nh
.
6
x
2,
x
ử f (x
x–c
2, 1), f (x
f ( x ) ( x c)g( x ),deg(g) 0, g( x ) [ x],
f (x
.■
f (x
nh
2
z a ib, b 0
f ( x) [ x]
z a ib
x 2 2ax a 2 b 2 .
f ( x)
ử f ( x) an xn an1xn1 ... a0
z
f ( x)
f ( z) an z n an1z n1 ... a1z a0 0.
n
an z an1 z
n 1
... a1 z a0 0
f (x
z
f (x
( x z)( x z) x2 2ax a 2 b2 , a, b . ■
[ x],
6
2, 3
x .
f (x
deg(g) 0, g( x ) [ x].
f (x
z
x
ử f (x
c
f (x
2
xc
2, 3) suy ra f (x
g ( x) ( x z)( x z) x2 ( z z) x z z,
15
f ( x) ( x c) g ( x),
f (x
2, 1), f (x
0. Do f (x
g(x
f ( x) k g ( x), k \ {0}.
0. ■
f (x
h
4.
h
ủ
hứ
h
h
ỏ
f ( x ) n x n n1 x n1 ... 0 , n 0, i , i 1, n.
1
1
f ( x ) (an x n an1 x n1 ... a0 ) g( x ),
b
b
ai , i.
b
f (x
g (x
ann an1n1 ... a0 0, an 0 hay an an1 an
n
Suy ra an
n 1
g(x
... a0 ann1 0.
x n an1 x n1 ... a0 ann1 0
(*).
f (x
nh
f ( x ) an x n an1 x n1 ... a0 , n 0
.
p
, UCLN( p, q) 1
q
n.
0
f (x
n
p
p
p
f an an1
q
q
q
n 1
p
... a1 a0 0
q
Hay a0 q n p(an p n1 an1 p n2 q ... a1q n1 ),
v an p n q(an1 p n1 ... a1 pq n2 a0 q n1 ) .
p
q
a0 q n
q
a an p n
an.. ■
16
UCLN (p, q) = 1 nên p
a0
nh
f ( x ) x n an 1 x n 1 ... a0 , n 0
a0
1
a0
p
, UCLN ( p, q) 1
q
q
(1), 1
-1).
f (x
p
a0.
f ( x ) ( x )g( x )
g( x ) [ x].
f (x
f (1) (1 )g(1)
f (1) (1 )g(1)
1
f (-1). ■
1
f
▪
n h
h
ủ
hứ
f (1); f -
như
f ( x ) x n an1 x n1 ... a0 , ai
f (x) không?
ỏ
a0
f (1) f (1)
;
1 1
f (x) không?
hứ
5.
h
n
ư n
h
[x
Eisenste
h
n Eisenstein.
f ( x ) an x n an1 x n1 ... a0 , an 0 (n 1)
n
2
0
quy trong [x].
ụ
6
n h
hứ
ụ 1. Cho m
f (x) = x5 – x +
[ x].
m
.
17
ử f ( x) g ( x)h( x), g ( x), h( x) [ x].
a5 a 0(mod5)
m 5
a
deg( g ), deg(h) 2.
f (x
g ( x) x bx c [ x] c
2
Suy ra x15 x25 x1 x2 2m 0
ử
.G
g, h
x1 x2 b
x1 x2 c
x 5 x m 0, i 1, 2
i
i
x 1 , x2
x1 x2 ; x15 x25
( x1 x2 )5 x15 x25 (mod 5)
.
x1 x2
5
x1 x2 (mod5) .
suy ra x15 x25 x1 x2 (mod5) hay m
[ x].
f (x
ụ 2.
n
f ( x) ( x 1)
2 n 1
x
n2
c x x 1.
2
1
3
i
.
2
2
f ( ) 0 . V
x2 x 1
x2 x 1
2 n 1
x2 x 1
f (x
n
n2
1
1
3
3
f ( ) i
i
2
2
2
2
(2n 1)
(2n 1)
( n 2)2
( n 2)2
cos
i sin
cos
i sin
0
3
3
3
3
(2n 1) (n 2)2
do
3
3
f ( x) ( x 1)2 n1 xn2
ụ 3. (
c x2 x 1.
2012, [5]) Cho m, n
xm xn 1
cho 3.
18
x2 x 1
mn 2
m 3q r; n 3q1 r1 , q, q1 , r , r1 0;1;2.
xm xn 1 ( x3q 1) xr ( x3q 1) xr xr x r 1
1
xm xn 1
1
x2 x 1
r , r1 0;1;2
x 2 x 1.
1
xr xr 1
o
1
xr xr 1
x2 x 1
1
r 2, r1 1.
r 1, r1 2
mn 2 9 q q1 3(qr1 q1r ) r r1 2
1. Cho f (x
f
f
f
ư n
n
f (a ) f (b) (a b)
2. Cho f (x
a, b, c sao cho f (a) = b, f (b
ư n
n
f (c) = a.
f (a ) f (b) ( a b).
3.
f (2014) = 2011.
ư n
n
f (2017) =
ử
a, b K , f (a) f (b) a b.
4. Cho f (x
f (x
ư n
f
n Sử
5.
a, b K , f (a) f (b) a b.
a, b
ư n
n
f
f ( x) axn1 bxn 2n1
ử
a = n, b= - 2n -
6
xp x a
ư n
[ x].
n
§2, 6).
19
7.
f ( x) x2012 x1006 1
2011, [4])
x 2 x 1.
ư n
n
§2, 6).
8.
ư n
n T
n
§2, 6),
x 3 m x 3 n 1 x 3 p 2
9.
m, n, p.
ư n
x 2 x 1.
x2n xn 1
n
n
x2 x 1
n
§2, 6).
10
n
a) ( x 1) n x n 1
x 2 x 1.
b) ( x 1) n x n 1
x 2 x 1.
ư n
11.
n
§2, 6).
f ( x) xn a1xn1 ... an1x 1
ử
n
f (2) 3n.
ư n
n
n
ử x1 , x2 … x n
f(x
f ( x). Suy ra f ( x) ( x x1 )( x x2 )...( x xn ),
x1 , x2 ,..., xn
12. Cho
qui trên
:
a) f ( x) ( x x1 )( x x2 )...( x xn ) 1
b) f ( x) ( x x1 ) 2 ( x x2 ) 2 ...( x xn ) 2 1
ư n
n
ử f (x) =g (x) h(x
deg (g), deg (h) >
13
:
20
n
n
f (2) (2 xi ).
i 1
a ) f ( x) x p 1 ... x 1 với p là số nguyên toá.
b) f ( x ) 3 x 4 5 x 3 4 x 1
ư n
n
Ứ
§3
nh
1.
hứ
h
nh h
n h m
hứ
ử
,
.
ụ 1.
ỏ
n
f ( x 1) f ( x) 2 x, x.
n
f ( x) an x n an1 x n1 ... a1 x a0 , ai
D
f ( x 1) f ( x) 2 x, x
f (0) = a0.
f (1) f (0), f (2) f (0) 2, ..., f (n 1) f (0) 2 4 ... 2n f (0) n( n 1) .
§2, 4),
n
n
f ( x) x 2 x a0 .
f ( x) x 2 x a0 ,
a0 .
ụ2
Thay x =
f (x
ỏ
xf ( x 2) ( x 20) f ( x), x
x hay f ( x) x f1 ( x).
f (x
f
Thay f ( x) x f1 ( x)
( x 2) f1 ( x 2) ( x 20) f1 ( x), x
Nên f1 (2) 0,
(1)
f1 ( x) ( x 2) f 2 ( x) . Thay f1 ( x) ( x 2) f 2 ( x)
21
(*)
( x 4) f 2 ( x 2) ( x 20) f 2 ( x), x
f ( x) x( x 2)( x 4)...( x 18)q( x), x
q(x) = q( x - 2), x
Thay f (x
f ( x) ax( x 2)( x 4)...( x 18),
ụ .
q(x) = a
ỏ
a
f (x
( x 2)
2
f (x) cho
f (x) cho ( x 3)
- 3x +14.
3
x
deg f 3.
deg f 3
f ( x) a( x 3)3 3x 14.
( x 3)3 (( x 2) 1)3 ( x 2)3 3( x 2)2 3( x 2) 1 ( x 2)2 ( x 5) 3x 7
f ( x) a( x 2)2 ( x 5) 3x(a 1) 7a 14
chia f(x) cho ( x 2)2
3x(a 1) 7a 14 3x hay a = 2.
x
f ( x) 2( x 3)3 3x 14.
ụ4
f(x
ỏ
f ( x) c
f ( x) f ( x 1) f ( x 2 )(*)
=
=
f (x) =
ỏ
f (x) =
ử f (x)
n
(*) ta suy ra , , ,...
2
4
f (x
f (x
0
f(x
1
Thay x 1
1
2
0
2
f (x
1
2
22
1.
1
1
1
1
2
1
4sin 2
2
2
2
1
2
3
2
1
cos i sin
cos( ) i sin( )
1 nên 4sin 2
1
2
1
3
f (x
2 2cos 2 2 2cos
5
.
3
1
2
2
4sin 2
2
f (x
f (x
5
3
f ( x) axt ( x 1)s
f ( x) axt ( x 1)s
t = s.
ỏ
f (x) = 0; f ( x) xt ( x 1)t , t
nh
nh
2
2
3
3
2.
hứ
1.
h
hươn
a0 , a1 ,..., an
h
n
1
b0 , b2 ,..., bn
f ( x)
f (ai ) bi , i 0,..., n.
.
g( x) ( x a0 )( x a1 )...( x an )
n
n
g '( x ) ( x a j )
i 0 j 0
j i
fi ( x )
n
g '(ai ) (ai a j ), i 0,1,..., n
j 0
j i
n xa
g( x )
j
, i 0,1,..., n .
( x ai )g '(ai ) j 0 ai a j
j i
fi ( x )
n
0 khi k i
fi (ak )
.
1 khi k i
23
t
a