Tải bản đầy đủ (.pdf) (11 trang)

Báo cáo " A numerical model for the simulation of wave dynamics in the surf zone and near coastal structures " pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (305.55 KB, 11 trang )

VNUJournalofScience,EarthSciences23(2007)160‐169
160
Anumericalmodelforthesimulationofwavedynamics
inthesurfzoneandnearcoastalstructures
VuThanhCa*
Center for Marine and Ocean-Atmosphere Interaction Research,
Vietnam Institute of Meteorology, Hydrology and Environment
Received07March2007
Abstract.Thispaperdescribesanumericalmodelforthesimulationofnearshorewavedynamics
andbottomtopographychange.Inthispart,thenearshorewavedynamicsissimulatedbysolving
the depth integrated Boussinesq approximation equations for nearshore wave transformation
togetherwithcontinuityequation witha
Crank‐Nicholsonscheme.Thewaverunuponbeachesis
simulatedbyascheme,similartothe VolumeOfFluid(VOF)technique.Thewaveenergylossdue
to wave breaking and shear generated turbulence is simulated by a
ε

k
 model, in which the
turbulence kinetic energy (TKE) generation is assumed as the sum of those respectively due to
wavebreakingandhorizontalandverticalshear.
Theverificationofthenumericalmodelagainstdataobtainedfromvariousindoorexperiments
reveals that the model is capable of simulating the wave dynamics, turbulence and bottom
topography change under wave actions. The simulation of turbulence in the surf zone and near
coastalstructuresenable the model realisticallysimulatesthe contribution ofsuspendedsediment
transportintothebedtopographychange.
Keywords:Wavedynamics;Waverunup;Waveenergy;Surfzone;Boussinessqmodel.
1.Introduction
1

Extensive researches on the wave


dynamics, sediment transport and bottom
topography change in the nearshore area,
especiallyinthesurfzone[1‐5,7,9,12,14‐17]
have elucidated various aspects of coastal
processes, such as the dynamics of wave
breaking, characteristics of turbulence in the
surf zone, structure of
 the undertow, the
developmentofbottomboundarylayerunder
breakingwaves,therateofbedloadtransport,
uptakeofbedmaterialforsuspension,settling
rateofsuspendedsedim entetc.
_______
*Tel.:84‐913212455.
E‐mail:
Nadaoka [9] found by indoor
experimentsthatduringwavebreaking,large
vortices were formed and rapidly extended
both vertically and horizontally. Ting and
Kirby [15‐17] by conducting experiments
withdifferentwaveconditionsfoundthatthe
advective and diffusive transports of TKE
play a major role in the distribution of
turbulence,
 especially under plunging
breaker. They also found that under spilling
breakers (the breaking of relatively steep
wavesonagentleslope),thetimevariationof
TKE was relatively small, and th e time
average transport of TKE was directed

offshore. Under plunging breakers (the
breaking of less steep waves on a
gentle
slope), there was a large time variation of
VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
160
TKE, and its time averaged transport is
directedon‐shore.
For situations with negligible alongshore
sediment tr ansp ort, the status of a be ach 
depends on the cross‐shore transport of
sediment,whichis closelyrelatedwithwave
conditions. If the shoreward transport of
sediment by incoming waves exceeds the
offshore transport of
 sediment by ret r eating 
waves and the undertow,  there will be a net
onshore transport of sediment, resulting in
beach accretion. Otherwise, the beach is in
equilibriumstateoreroded.
During a storm, turbulence generated by
the breaking of a relatively short wind wave
has not been significantly dissipated when a
newwavearrivesandbreaks.Thus,the time
variation of TKE is relatively small, and the
combination of wave‐induced flow and
undertowmaytransportTKEandsuspended
sediment offshore. This results in the
offshore‐directed transport of sand during
storm and the associated beach erosion. On

the other hand, post
 storms, turbulence
generated by the breaking of a long period‐
small amplitude swell has significantly
dissipated when the wave retreats. Thus,
thereisalargetimevariationofTKE,andthe
peaks in turbulence intensity and suspended
sediment concentration coincide with
incoming waves. Accordingly, onshore
transportofTKEandsuspended
sedimentby
incoming waves exceeds the offshore
transport by retreating waves and the
undertow. This results in a net onshore
transport of suspended sediments and helps
explaining the onshore‐directed transport of
sediment during calm weather and the
consequentpoststormbeachrecovery.
Schaffer [14] and Madsen [7] developed
models for
 the simulation of the nearshore
wave dynamics based on Boussinesq
approximation equations. The wave energy
loss due  to breaking is  simulated by
employing a surface roller model. Due to the
instability of the numerical code resulting
from the tr eat m ent  of the surface roller wave
energy loss, Schaffer [14] had to
use a
smoothingtechniquetostabilizethesolution.

Rakha et al [12,13] presented a quasi‐2D
and a quasi‐3D phase resolving
hydrodynamic and sediment transport
models. In these mo dels, the horizontal
transport of TKE, and the associated
transport of suspended sediment are
neglected.However,asdiscussedpreviously,
results of
 Nadaoka et al [9] and Ting and
Kirby[16]show thatthehorizontaltransport
ofTKEinthesurfzoneisveryimportantand
should not be neglected. Thus, without
accounting for this, it is not easy to simulate
the beach erosion during storm and the
consequentrecoveryafterthe
storm.
NadaokaandOno[10]presentedadepth‐
integrated k‐model where the TKE
production rate was evaluated with a
Rankineeddy model. In this model, the TKE
dissipation rate and the eddy viscosity was
evaluated by employing an empirical length
scale. The model had not been verified
againstexperimentaldata.
Also,waverunup
onbeach,whichismainlyresponsibleforthe
erosion of foreshore during storms, is not
simulatedinthismodel.
Regarding all the above mentioned facts,
the purpose of this study is to develop a

numerical model that can simulate the
nearshore wave dynamics, including wave
breaking and
wave runup, the generation,
transportanddissipationofTKE.
2. Governing equations of the numerical
modelfornearshorewavedynamics
In this study, the near‐shore wave
VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
161
dynamics are simulated by solution of two‐
dimensional depth integ rated Boussinesq
approx im at ion  equations, including bottom
friction and wave energy loss due to wave
breaking and shear. The main equations of
thenumericalmodelarewrittenas:
0=


+


+


ty
q
x
q
y

x
η
   (1)
0
2
6
2
3
2
3
2
3
2
33
2
=+−








∂∂∂

+
∂∂



















∂∂∂

+






∂∂

+



+










+










+


x
c
bx
y
x

y
x
yx
xx
Qq
d
f
M
tyx
q
tx
q
h
h
q
tyxh
q
tx
h
x
gd
d
qq
yd
q
xt
q
η
(2)
0

2
6
2
3
2
3
2
3
2
33
2
=+−








∂∂∂

+
∂∂

















∂∂∂

+








∂∂

+


+











+










+


y
c
by
x
y
x
y
yyxy
Qq

d
f
M
tyx
q
ty
q
h
h
q
tyxh
q
ty
h
y
gd
d
q
yd
qq
xt
q
η
(3)
where
x
q  and
y
q  are respectively the depth
integrated flow discharges in x and y

directions;
η
 is the water surface elevation;
d  isthe instantaneous water depth; h  is the
still water depth;
c
f  is the bed friction
coefficient;
Q  is the total discharge, defined
as
22
yx
qqQ += ; and
bx
M  and
by
M
 represent
the wave energy loss due to breaking,
evaluated by introducing an eddy viscosity
andexpressedas:
() ()
() ()











+










=










+











=
y
dq
df
yx
dq
df
x
M
y
dq
df
yx
dq
df
x
M
y
tD
y
tDby
x
tD
x

tDbx
//
//
νν
νν
(4)
InEq.(4),
t
ν
istheeddyviscosity;and
D
f 
is an empirical coefficient, determined based
onthecalibrationofthenumericalmodel.
When waves are breaking on beach, a
part of the lost wave energy is transformed
into turbulence energy. At the beginning of
the wave breaking process, the turbulence is
confinedintoa small portion ofthebreaking
wave crest, the surface roller; after that,
turbulence eddies rapidly expand in vertical
and horizontal dire ctions [9, 15‐17]. The
turbulence under wave breaking is very
complexandfullythree‐dimensional.Thus,a
3Dmodelisrequiredforapropersimulation
of turbulence processes here. However, such
a model would require
 an excessive
computational time and  at the  moment is not
suitable for a practical application. On the

otherhand, based on resultsof Nadaokaetal
[9],TingandKirby[15‐17],itcanbeestimated
that in the surf  zone, the  ti me scale  for
turbulence energy transport in the
vertical
direction is much shorter than that in the
horizontaldirections.Thus,thesimulationof
the transport of TKE in the horizontal
direction is more important than that in the
vertical direction. Therefore, in the present
study, the TKE is  assumed un ifor mly
distributedinthewholewaterdepth,andthe
depth
‐integrated equations for the
production, transport and dissipation of the
TKEanditsdissipationrateread:
() ()
,
//










+











+
−=


+


+


y
dk
d
yx
dk
d
x
P
y
vk

x
uk
t
k
t
t
t
t
r
σ
ν
σ
ν
ε
 (5)
()
()
()
ε
εε
σ
ν
ε
σ
ν
εεε
εε
ε
ε
21

/
/
CPC
ky
d
d
y
x
d
d
xy
v
x
u
t
r
t
t
−+










+











=


+


+


 (6)
where
k
 and
ε
 are respectively the depth
integrated TKE and its dissipation rate;
u 
and
v
 are respectively phase‐depth

averagedflowvelocitiesinxandydirections;
t
σ
,
ε
σ
,
ε
1
C ,
ε
2
C  are closure coefficients. In
VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
162
Eq.(6),
r
P is theTKE productionrate,which
is assumed as a summation of the TKE
production due to bottom friction
rb
P ,
horizontal sh ear
rs
P  and wave breaking
rw
P 
as:
rwrsrbr
PPPP ++=   (7)

Withknownvaluesof
k and
ε
,theeddy
viscosityisevaluatedas:
()
εν
ε
dkC
t
/
2
= ,   (8)
where
)09.0( =
ε
C isconstant.
The scheme for the simulation of wave
runup and rundown on the beach is
explained in the next section. By employing
this scheme, the present model can simulate
the wave setup, set down on the beach, and
theerosionofforeshoreduringstormevents.
3. Boundary and initial conditions and
numericalscheme
3.1.Boundaryandinitialconditions
It is possible to use a weekly wave
reflected boundary condition such as the
Summerfeld radiation condition at the
offshore boundary to let reflected waves

freelygoingout ofthecomputationalregion.
However, this linear wave theory based
boundary condition, when applied in
combination with a
 nonlinear wave model,
does not ensure mass conservation and may
lead to an accumulation or lost of water
insidethecomputationalregion.Thus,inthis
study,watersurfaceelevationunderwavesis
givenattheoffshoreboundary.
Wave‐absorbing zones are introduced at
the lateral boundaries to minimize wave
reflection.
The bed friction coefficient
c
f  in
these zones is assumed constant within first
five meshes from the lateral boundaries, and
then increases linearly with the distances
fromthe boundaries towardsthe ends ofthe
waveabsorbingzones.Finally,attheendsof
the wave absorbing zones, the Summerfeld
radiation condition for long waves are
introduced
to letremaining waves going out
of the computational region. A free slip
boundary condition is applied at surfaces of
thecoastalstructures.
Zero gradients of
k  and

ε
 are assumed
at the offshore, lateral boundaries and at
surfacesofcoastalstructures.
A scheme similar to that of Hibberd and
Peregrine [5] is used to compute the wave
runuponthebeach.Asketchoftheschemeis
shown in Fig. 1. In this scheme, when the
shore is
approached, all the dispersion terms
in Eqs. (2) and (3) are turned off.
Additionally, a cell side wetted function,
defined as the wetted portion over the total
length of a cell side, and a cell wetted area
function, defined as the wetted portion over
the total cell area are introduced to
 account
for the fact that water flows only in wetted
parts of the cells on the instantaneous
shoreline. Then, the continuity equation (Eq.
1) and momentum equations (Eqs. 2 and 3)
can be derived by a method  similar to  Vu et
al[19]andbecome:

0=


+



+


t
S
y
qf
x
qf
yxxy
η
 (9)

()
()
,0
/
1
/
1
11
2
2
=+

























+










+











+


x
cx
t
x
t
yx
xx
Qq
d
f
y
dq
Sd
yS
x
dq
Sd

xSx
gd
d
qSq
ySd
Sq
xSt
q
ν
ν
η

 (10)
VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
163
()
()
0
/
1
/
1
11
2
2
=+

























+











+










+


y
c
y
t
y
t
yxyy
Qq
d
f
y
dq
Sd
yS
x

dq
Sd
xSy
gd
d
Sq
ySd
qSq
xSt
q
ν
ν
η
 (11)
where
x
f and
y
f
arerespectivelythecellside
wetted functions corresponding to
x
 and y 
directions, and
S  is the cell area wetted
function.

Fig.1.Thecoordinatesystemandmethodforthe
evaluationofawettinganddryingboundary.
The procedure for determining the cell

side wetted function  and the  cell area wetted
function in  the numerical scheme will be
discussedinthenextsection.
A still water is assumed at the beginning
of the computation. With this, all variables
aresetequaltozeroinitially.
3.2.Numericalscheme
Equations (1‐3) and (5‐6) are integrated
numerically on a spatially staggered grid
system, where components of the flow
discharge are evaluated at surfaces, and bed
elevation,
k  and
ε
 are evaluated at the
centersof control volumes. The sketchof the
coordinates and computational mesh is
showninFig.1.Asitwillbediscussedlater,
in the present scheme, the water level inside
acell is evaluatedatthecenterofthewetted
area inside the cell. A
second order accurate
Crank‐Nicholsonschemeisemployedforthe
time discretization for all equations, and a
central differencing scheme is employed for
spatial discretization of Eqs. (1) to (3). The
spatial disretization for advection terms of
Eqs. (5) and (6), governing the transport,
diffusion, generation and dissipation of
k


and
ε
, follows the third order accurate
QUICK scheme, and that for the diffusion
terms follows the central differencing
scheme. As the discretization scheme is
implicit, an iterative scheme similar to the
SIMPLE scheme of Patankar [11] is
employed. At the beginning of a new time
step, the computation of the flow
 discharges
requires the still unknown water level and
eddy viscosity. Thus, at first, the water level
ateachnewtimestepisassumedequaltothe
valueattheprevioustimestep.Then,Eqs.(2)
and (3) are solved to get the flow discharges
in x and y directions, respectively.
The new
values of the flow discharges are substituted
into the continuity equation to compute the
new water le vel. Also, with the new water
level, the thickness of the surface roller is
evaluated. Then, Eqs. (5) and (6) are
integratedtoget
k and
ε
,andconsequently
the new coefficient of eddy viscosity. All
newly obtained water level, flow discharges

and coefficient of eddy viscosity are 
substituted back into Eqs. (2) and (3) to
compute the new components of the flow
discharge. The procedure is repeated until
convergedsolutionsarereached.
The wetted periphery inside
 a
computational mesh at the intersection
betweenthewatersurfaceandthebeach,the
cell side wetted function and the cell area
wetted function at each time step are
VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
164
evaluated explicitly based on the water level,
bed elevation and the  bed slope in two
directions.Theprocedureforthisisshownin
Fig.1.Thebedelevationsatcellcorners(such
aspointsA,B,CandDinFig.1)areevaluated
as the average value of the
 bed elevation at
four adjacent points. For example, the bed
elevationatpointCinthisfigureisevaluated
as:
4
,11,11,, jijijiji
c
bbbb
b
++++
+++

=
,(12)
where b
c
 is the bed elevation at point C, and
b
i,j
, b
i,j+1
, b
i+1,j+1
 and b
i+1,j
 are respectively the
bed elevations at the center of cells (i,j),
(i,j+1), (i+1,j+1)and(i+1,j).
The water level at a cell side is averaged
from the water levels at two adjacent cells.
For example, the water level on the side BC
ofcell
i,jinFig.1isevaluatedas:
2
1,, +
+
=
jiji
bc
ηη
η
,   (13)

where
bc
η
,
ji,
η
 and
1, +ji
η
 are respectively
water levels at the cell side BC, and in the
cells(i,j)and(i,j+1).
If one of adjacent cells to a cell side is
completely dry (with the value of the area
wetted function equal to zero), the average
water level at the cell
side is assumed equal
tothewaterlevelatthewettedcell.Basedon
the bed elevation at its two ends and the
average water level on a cell side, the
intersected point between the water surface
and the cell side, and the wetted portion of
the side are determined. When
 the average
waterlevelonthecellsideishigherthanthe
bed elevation at its two ends, the side is
consideredtotally submerged intothe water,
and the corresponding value of the cell side
wettedfunctionis1.Forothercases,valueof
the cell side wetted function equals

to the
ratioofthe lengthofthewettedportion over
the total length of the cell side. After getting
allthewettedpointsonfoursidesofthecell,
the wetted periphery and the wetted area
inside a cell are determined by connecting
two adjacent wetted points with a straight

line. This wetted periphery is shown by the
dottedlineinFig.1.Thewettedareaincelli,j
in this figure is the portion of the cell from
the dotted line to offshore. The wetted
periphery and area inside the cell are kept
constantforatimestep.
4.Modelverification
4.1. Wave transformation and characteristics of
turbulence due to wave breaking on a natural
beach
To verify the accuracy of the numerical
model on the simulation of the wave
transformation on a natural beach, existing
experimental data on the wave dynamics in
the nearshore area obtained  by Ting and
Kirby [15
‐17] are used. The experiments
were carried out in a two‐dimensional wave
flumeof40mlong,0.6mwideand1.0mdeep.
A plywood false bottom was installed in the
flume to create a uniform slope of 1 on 35.
Regular waves with heights and periods

equalto12.7cm,2s
and8.7cm,5sareusedas
incoming waves respectively for spilling
breakerandplungingbreakerexperiments.
Fig. 2 shows the sketch of the Ting and
Kirby [15‐17] experiments.  Computation was
carried out with the same conditions of the
experiments. The critical water surface slope
for a broken wave to be
 recovered φ0 is set
equalto6
0
,accordingtoMadsenetal[7].
VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
165
Wave generator
0.4m
35
1
0.38m

Fig.2.ExperimentsbyTingandKirby[15‐17].
As cited by various authors [2, 4], when
waves are breaking, a major part of the lost
wave energy is dissipated directly in the
shearlayerbeneaththesurfaceroller,andonly
aminorpartofitistransformedintoturbulent
energy. Thus, a turbulence model may
underestimate the wave energy
 lost due to

breaking. To account for this, an empirical
coefficient
D
f
 was introduced in Eq. 4.
Calibrationswere carriedouttofindthebest
valueofthiscoefficient.Vuetal[18]founda
constant value of 1.5 for this coefficient for
theirone‐dimensionalmodel.However,their
computational results show that the
coefficient does not provide adequate wave
energy dissipation,
and the computed wave
heights after breaking is significantly larger
thantheobservedones.
As mentioned previously, wave breaking
happens with a sudden loss of wave energy.
This in a numerical model can be simulated
by a sudden increase in the  “energy
dissipation coefficient”
D
f
. As the breaking
waveprogresses onshore, the growth of TKE
mayaccompanyanincreaseinthecoefficient.
On the other hand, turbulence length scale,
and the corresponding turbulence intensity
decrease with water depth, leading to a
decrease in the coefficient. Thus, in this
study, the coefficient is assumed suddenly

increases
 at the breaking point, then
gradually increases towards the shore, and
thendecreaseswiththe decreaseinthewater
depthinthefollowingform:
2









+=
mb
m
mb
b
D
h
h
h
xx
baf
,  (14)
where a and b are constants, to be
determined from calibration; x and x
b

 are
respectively the coordinates in the on‐
offshore direction at the point under
considerationandthebreakingpoint;
m
h and
mb
h arethecorrespondingmeanwaterdepths
attherespectivepoints.
Fig.3showsthecomparisonbetweenon‐
offshoredistributionsoftimeaveragedmean
water surface  elevation, minimum water
surface elevation, maximum water surface
elevation, and wave height for the spilling
breaker, computed by the model (with
D
f 
evaluated following Eq. (14),
05.0=a  and
1
=
b ), and observed by Ting and Kirby [15,
16].
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2

0 1 2 3 4 5 6 7 8 9 10

11

12

13

Horizontal Distance (m)

Height (m)

Bed

Comp. Etaav
Comp. Etamax
Comp. Etamin
Comp. Waveh
Obs. Wavh
Obs. Etaav
Obs. Etamax
Obs. Etamin
Fig.3.Comparisonbetweenobservedandcomputed
timeaveragedwaveheight,highest,lowestand
meanwatersurfaceelevationforspillingbreaker.
ExperimentaldatafromTingandKirby[15,16].
ItcanbeseeninFig.3thatthemodelcan
accurately predict the wave breaking point
and provides adequate wave energy
dissipation after breaking. The maximum,

minimumandmeanwaterlevelsatallpoints
in the computational region are also
predicted by the model with good accuracy.
The general satisfactory
 agreement between
computed and observed data shown in the
VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
166
figure suggests that the model can simulate
nearshore wave processes, such as wave
energy loss due to breaking, wave setup,
setdownetc.withacceptableaccuracy.
Figures (4) to (7) respectively show the
time variation of ensemble averaged (phase‐
averaged) non‐dimensional water surface
elevation, depth‐averaged horizontal flow
velocity,TKE,andadvectivetransportrateof
TKE, computed by the model and observed
by Ting and Kirby [15, 16] at
()
642.7/ =−
mbb
hxx .Thetimetinthefiguresis
non‐dimensionalized by wave period T. For
convenient, the same coordinate system in
Ting and Kirby [15‐17] is employed in this
study. The computed time variation of
ensemble‐averaged water surface elevation
fluctuation, non‐dimensionalized by local
mean water depth h

m
 (equal the sumof local
still water depth and mean water surface
fluctuation
η
), shown in Fig. 4 agrees very
well with observed data. The agreement
between computed and observed time
variation of phase and depth‐averaged
horizontal flow velocity, non‐
dimensionalized by the local long‐wave
celerity c (defined as
()
Hhgc
m
+= , with H
as the deepwater wave height) also agrees
satisfactorily with observed data. The
agreement between computed and observed
phase and depth‐averaged non‐dimensional
TKE and its advective transport is less
satisfactory than that of the water level or
flow velocity. It must be noted that the
computation of
 TKE employs a depth‐
integrated
ε
−k
model,whichinvolvesmany
approximation assumptions and may not

accurately predict the TKE production,
transport and dissipation under a complex
situation such as wave breaking. Among all,
theweakestpointofthis model might be the
depth‐integrated approximation. It is
commonly known that just after wave
breaking, turbulence is
concentrated only
inside the surface roller, and flow in the
region below remains irrotational. Thus, a
depth‐integrated model for the generation,
transport and dissipation of TKE cannot be
considered as a good approximation for this
situation. However, despite of all inadequate
assumptions and approximations,  order of
TKEpredictedbythe
model,showninFig.6,
agreeswellwiththeobservedone.Regarding
difficultiesinpredictingtheTKEunderwave
breaking with a numerical model, it can be
saidthatthenumericalmodelcanpredictthe
TKE and its advective transport with
satisfactoryaccuracy.
-0.2
-0.1
0
0.1
0.2
0.3
0.4

0.5
00.20.40.60.81
t/T
(
ζ
-<
ζ
>)/
h
Fig.4.Computedandobservedphase‐averaged
watersurfaceelevationat(x‐x
b)/hb=7.462.Spilling
breaker.

-0.2
-0.1
0
0.1
0.2
0.3
0.4
00.20.40.60.81
t/T
<u>/c

VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
167
Fig.5.Computedandobservedphase‐depth
averagedhorizontalflowvelocity
at(x-x

b
)/h
b
=7.462.Spillingbreaker.
The agreement between computed and
observedadvectivetransportsofTKE,shown
inFig.7,isbetterthanthatfortheTKEitself.
Results of Ting and Kirby [15, 16] show that
there is a tendency of offshore (negative)
transport of TKE. The computational results
by the present model also reveals the
 same
tendency; ho wever, as shown in Fig. 8, the
residual advective offshore transport of TKE
evaluated by the numerical model is
significantlysmallerthantheobservedone.
From the general agreement between
computed and observed values of various
wave characteristics, it can be remarked that
the numerical model can simulate
wave
transformation in the nearshore region with
anacceptableaccuracy.
0
0.001
0.002
0.003
0.004
0.005
0.006

00.20.40.60.811.2
t/T
k /c
2
Fig.6.Computedandobservedphase‐depth
averagedrelativeturbulentintensity
at(x-x
b
)/h
b
=7.462.Spillingbreaker.

-1
-0.5
0
0.5
1
1.5
2
00.20.40.60.81
t/T
<u>k/c
3
(X10
-
3
)

Fig.7.Computedandobservedphase‐depth
averagedrelativeadvectivetransportrateofTKE

inthehorizontaldirectionat(x-x
b
)/h
b
=7.462.
Spillingbreaker.
4.2.Waverunuponbeach
To verify the  accuracy of the simulation
bythepresent numerical modelonthewave
runup on beach, experimental data of Mase
andKobayashi[8]areused.Thesketchofthe
experiment is shownin Fig. 10. As shown in
the figure, the experiments were carried out
in a wave flume
 with the length of 27 m,
depth of 0.75 m and width of 0.50 m. An
irregular wave generator is installed at one
end of the wave flume. At the other end is a
model beach with a foreshore slope of 1/20.
The water depth in front of the slope
is set
constantandequalto0.47m.Thewaverunup
on the beach is recor ded by a wave meter.
Wave groups used in the experiments are
expressedas:
()
[]
()
[]
()()

,2cos2cos
12cos
2
1
12cos
2
1
max
ftft
ftft
ππδ
δπδπ
η
η
=
−++=
(15)
where
max
η
 is the amplitude of the incoming
waves,
f  is the wave frequency, and

 is
the variation in the relative wave frequency.
During the experiments,
max
η
was taken as 5

cm.
VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
168
-0.05
-0.025
0
0.025
0.05
0 5 10 15 20 25
Time (sec)
Water Surface Elevation (m)
Fig.8.Computedandobservedwaverunupheight.
T=2.5s,∆=0.1.
Fig. 8 shows an example of comparison
between observed and computed wave
runup for different wave periods. It can be
seen in the figures that the computed wave
runup heights agree very satisfactorily with
theobservedvalues.
The computational results (not shown)
also reveal that short period waves are
dissipated much
 more rapidly on the beach
compared with long period waves.  The very
satisfactory agreement between computed
and observed wave runup heights reveals
that the numerical model can accurately
simulatewaverunuponbeaches.
The model is also verified for its
applicability of computing waves near

coastalstructures.
5.Conclusions
A numerical model has been developed
for the simulation of the wave dynamics in
the near shore area and in the vicinity of
coastal structures. It has been found that the
numerical model can satisfactorily simulate
the wave transformation, including wave
breaking, wave runup on the beach, and
turbulence generated by
 wave breaking and
shear. As the model is a depth‐integrated,
two‐dimensionalinthehorizontaldirections,
the computational time is relatively short.
Thus, the application of the model for
simulation of wave transformation in the
field, especially in the vicinity coastal
structures and inside harbours is very
promising.
References
[1] D. Cox, N. Kobayashi, Kinematic undertow
model with logarithmic boundary layer, Journal
ofWaterway, Port, Coastal,andOceanEngineering
123/6(1997)354.
[2] W.R.Dally,C.A.Brown ,Amodelinginve stig ati on 
of the breaking wave roller with application to
cross‐shore currents, Journal of Geophysical
Research100(1995)24873.
[3] A.G.
Davies,J.S.Ribberink,A. Temperville,J.A.

Zyserman, Comparisons between sediment
transport models and observations  made in
wave and current flows above plane beds,
CoastalEngineering31(1997)163.
[4] R. Deigaard, Mathematical modelling of waves
inthesurfzone,Prog.ReportISVA69(1989)47.
[5] S. Hibberd, H.D. Peregrine,
Surf and runup on
beach:Auniformbore,JournalofFluidMechanics
95(1979)323.
[6] C.W. Hirt, Nichols,Volumeof fluidmethodfor
the dynamics of free boundaries, Journal of
ComputationalPhysics39(1981)201.
[7] P.A. Madsen, O.R. Sorensen, H.A. Schaffer,
Surf zone dynamics simulated by a Boussinesq
typemodel.Part1:Modeldescriptionandcross‐
shore motion of regular waves, Coastal
Engineering33(1997)255.
[8] H. Mase, N. Kobayashi, Low frequency swash
oscillation, Journal of Japan Society of Civil
EngineersII‐22/461(1993)49.
[9] K. Nadaoka, M.  Hino, Y. Koyano, Structure of
the turbulent flow
field under breaking waves
in the surf zone, Journal of Fluid Mechanics 204
(1989)359.
VuThanhCa/VNUJournalofScience,EarthSciences23(2007)159‐168
169
[10] K. Nadaoka, O. Ono, Time‐Dependent Depth‐
Integrated Turbulence Closure Modeling of

Breaking Waves, Coastal Engineering ACSE
(1998)86.
[11] S.V. Patankar, Numerical Heat Transfer and Fluid
Flow,HemispherePubl.Co.,London,1980.
[12] K.A. Rakha, R. Deigaard, I. Broker, A phase
resolvingcrossshore sediment transport model
for
beach profile evolution, Coastal Engineering
31(1997)231.
[13] K.A. Rakha, A quasi‐3D phase‐resolving
hydrodynamic and sediment transport model,
CoastalEngineering34(1998)277.
[14] H.A. Schaffer, P.A. Madsen, R. Deigaard, A
Boussinesq model for waves breaking in
shallowwater,CoastalEngineering20(1993)185.
[15] F.C.K. Ting, J.T.
Kirby,Observationofundertow
and turbulence in laboratory surf zone, Coastal
Engineering24(1994)51.
[16] F.C.K. Ting, J.T. Kirby, Dynamics of surf zone
turbulenceinastrongplungingbreaker,Coastal
Engineering24(1995)177.
[17] F.C.K. Ting, J.T. Kirby, Dynamics of surf zone
turbulence in a spilling breaker, Coastal
Engineering27(1996)131.
[18] Vu Thanh Ca, K. Tanimoto, Y. Yamamoto,
Numericalsimulationofwavebreakingbyak‐
ε

model, Proceedings of Coastal Engineering, JSCE

47(2000)176.
[19] Vu Thanh Ca, Y. Ashie, T. Asaeda, A k‐
ε
turbulence closure model for the atmospheric
boundary layer including urban canopy,
Boundary‐LayerMeteorology102(2002)459.


×