Tải bản đầy đủ (.pdf) (19 trang)

Skkn sử dụng công cụ véc tơ để phát triễn một số bài toán mới từ một số bài toán cơ bản trong sách hình học 10

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.47 MB, 19 trang )

I. MỞ ĐẦU
1.1. Lý do chọn đề tài
Trong quá trình dạy học ở trường phổ thông tôi nhận thấy học sinh rất e
ngại học mơn hình học vì các em nghĩ rằng nó rất trừu tượng, thiếu tính thực tế
khách quan. Chính vì thế mà có rất nhiều học sinh học yếu mơn học này. Việc sáng
tạo các bài tốn mới từ các bài tốn cơ bản có trong sách giáo khoa nhằm mục đích
khuyến khích sự tìm tịi, tư duy, sáng tạo cho học sinh, cũng như tạo cho các em sự
say mê mơn hình học, phát triển khả năng tự phát hiện vấn đề và giải quyết vấn đề,
từ đó nâng cao chất lượng dạy học. Đây cũng là một trong những mục tiêu quan
trong mà giáo dục hiện nay đang hướng tới. Qua những năm giảng dạy môn học
này tôi cũng đúc kết được một số kinh nghiệm về vấn đề này nhằm giúp các em
tiếp thu kiến thức được tốt hơn, từ đó mà chất lượng giảng dạy cũng như học tập
của học sinh, đặc biệt là trong cơng tác bồi dưỡng học sinh giỏi. Vì vậy tôi đã chọn
đề tài: “ Sử dụng công cụ vectơ để phát triển một số bài toán mới từ một số bài
tốn cơ bản trong sách hình học 10 "
1.2. Mục đích nghiên cứu.
Trong phạm vi đề tài này tơi khơng có tham vọng đưa ra một hệ thống
kiến thức hoàn toàn mới, một kết quả mới về mặt tốn học; ở đây tơi chỉ
trình bày những kết quả mà trong quá trình dạy học về hinh học 10 tơi đã
tích luỹ, tìm tịi; nhằm hướng tới mục đích giúp các em học sinh nắm vững
kiến thức cơ bản . Trên cơ sở từ một số bài toán điển hình tơi sẽ đưa ra
phương pháp giải cho bài tốn đó và một nhóm các bài tốn tương tự; đồng
thời giúp học sinh khái quát hóa để được các bài tốn mới , qua đó giúp rèn
luyện, phát triển tư duy giải tốn hình học cho học sinh.
1.3. Đối tượng nghiên cứu.
Đề tài này sẽ được nghiên cứu trên học sinh lớp 10A2 và 10A3 trường THPT
Lê Hoàn - Thọ Xn - Thanh Hố. Trong q trình giảng dạy bản thân sẽ định
hướng, dẫn dắt học sinh phát triển một số bài toán mới từ một số định lý hoặc bài
toán cơ bản. Việc phát triển một số bài toán mới có thể đi theo chiều hướng mở
rộng sang khơng gian hoặc thay đổi giả thuyết của bài toán.
1.4. Phương pháp nghiên cứu.


- Phương pháp nghiên cứu lý luận:
+Thông qua việc nghiên cứu các loại tài liệu sư phạm, chuyên mơn có liên
quan đến đề tài.
+ Nghiên cứu chương trình sách giáo khoa tốn 10 và 11, mục đích u cầu
dạy hình học ở trường phổ thơng
- Phương pháp đàm thoại lấy ý kiến của học sinh và giáo viên có nhiều kinh
nghiệm trong cơng tác bồi dưỡng học sinh giỏi.
1.5. Những điểm mới của sáng kiến kinh nghiệm
Trang 1

skkn


II. NỘI DUNG
2.1. Cơ sở lí luận của sáng kiến kinh nghiệm.
2.1.1. Định nghĩa về vectơ.
a. Các định nghĩa
- Định nghĩa 2.1.1.1: Vectơ là một đoạn thẳng đã được định hướng, nghĩa là
trong hai điểm mút của đoạn thẳng đã chĩ rõ điểm nào là điểm đầu, điểm nào là
điểm cuối.
- Định nghĩa 2.1.1.2: Hai vectơ bằng nhau
hướng và có độ dài bằng nhau

khi và chỉ khi chúng cùng

- Định nghĩa 2.1.1.3: Hai vectơ đối nhau
hướng và có độ dài bằng nhau

khi và chỉ khi chúng ngược


b. Các ký hiệu thường dùng
- Ký hiệu AB chỉ độ dài đoạn thẳng AB.
- Ký hiệu
- Ký hiệu
- Ký hiệu

chỉ vectơ AB.
chỉ độ dài của vectơ

. Như vậy

.

chỉ độ dài đại số của vectơ AB.

2.1.2. Các phép toán về vectơ.
a. Phép cộng các vectơ.
- Quy tắc ba điểm: Với 3 điểm A, B, C thì:
- Quy tắc hình bình hành:

.

.

- Tính chất trung điểm: Với I là trung điểm của đoạn thẳng AB thì:
+

.

+


, với điểm M bất kỳ.

b. Phép trừ các vectơ.
Với ba điểm O, A, B thì:

.

c. Phép nhân vectơ với một số.
- Cho vectơ
+

và số k  . Vectơ
cùng hướng với vectơ

được xác định bởi:
nếu k  0 và ngược hướng với vectơ

nếu k < 0.
+

.
Trang 2

skkn


- Cho
k sao cho:




cùng phương với

. Khi đó, tồn tại duy nhất một số thực

.

- Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi
vectơ cùng phương.



là các

d. Tích vơ hướng của hai vectơ.
- Cho trước hai vectơ

. Từ một điểm O cố định, dựng các vectơ

. Khi đó góc
hoặc

là góc giữa hai vectơ

. Ký hiệu:

.
- Tích vô hướng của hai vectơ:
-


.

.

-

.

2.1.3. Khai triển một vectơ theo các vectơ không cùng phương
a. Khai triển một vectơ qua hai vectơ không cùng phương trong mặt
phẳng
Định lý 1. Cho hai vectơ khơng cùng phương và . Khi đó mọi vectơ đều có
thể biểu thị được một cách duy nhất qua hai vectơ và , nghĩa là có duy nhất cặp
số m và n sao cho
.
b. Khai triển một vectơ qua ba vectơ không đồng phẳng trong không gian.
Định lý 2. Cho ba vectơ không đồng phẳng , và . Khi đó mọi vectơ đều có
thể biểu thị được một cách duy nhất qua ba vectơ , và , nghĩa là có duy nhất bộ
số m, n và p sao cho
.
2.1.4 Phép biến hình trong mặt phẳng
a. Định nghĩa phép biến hình
Quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định
duy nhất M’ của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng.
b. Một số phép biến hình trong mặt phẳng liên quan đến vectơ
* Phép tịnh tiến
Định nghĩa 1: Trong mặt phẳng cho vectơ
, phép biến hình biến mỗi điểm M
thành điểm M’ sao cho

= , gọi là phép tịnh tiến theo vectơ .
Kí hiệu:
Vậy:

.
(M) = M’

= .

* Phép vị tự
Trang 3

skkn


Định nghĩa 2: Trong mặt phẳng cho điểm O và số k 0, phép biến hình biến mỗi
điểm M thành điểm M’ sao cho
, gọi là phép vị tự tâm O tỉ số k. Kí
hiệu:
Vậy:
2.2. Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm.
Khi dạy hình học ở lớp 10 ta nhận thấy một số bài toán cơ bản được chứng
minh trên cơ sở là công cụ vectơ. Sau đó sách giáo khoa cũng đã đưa ra một số bài
tập mang tính chất vận dụng. Bản thân tơi thấy nếu chỉ dừng lại ở đây thì làm cho
học sinh chưa thật sự hứng thú với bộ môn hình học, cũng như chưa khai thác
được khả năng phát hiện vấn đề cũng như giải quyết vấn đề, đặc biệt với các em
học sinh khá giỏi.
2.3. Các sáng kiến kinh nghiệm hoặc các giải pháp đã sử dụng để giải
quyết vấn đề.
Trong q trình tìm tịi, nghiên cứu, giảng dạy và bồi dưỡng học sinh giỏi,

tôi đã tổng hợp và lựa chọn một số bài toán cơ bản, giải quyết nó bằng cơng cụ
vectơ. Trên cơ sở đó tơi hướng dẫn học sinh tìm tịi, phát triển thêm một số bài
tốn mới. đồng thời giải quyết bài tốn đó bằng cơng cụ vectơ.
Bài tốn 1 (Bài tốn về trọng tâm)
Bài toán cơ sở: Cho tam giác ABC , ta ln có:
a. Một điểm G duy nhất sao cho
.
b. Ba đường trung tuyến đồng quy ở điểm G, điểm G chia mỗi đường trung tuyến
theo tỉ số -2.
Mở rộng bài tốn từ tam giác sang tứ diện ta có một số bài toán mới :
Bài toán 1.1. Cho tứ diện ABCD ta ln có :
a. Một điểm G duy nhất sao cho
.
b. Ba đường trung bình đồng quy ở điểm G , điểm G chia mỗi đường trung bình
theo tỉ số -1 .
c. Bốn đường trọng tuyến cũng đồng quy ở G, điểm G chia mỗi đường theo tỉ số -3
Bài tốn 1.2. Trong khơng gian (hoặc mặt phẳng ) cho hệ n điểm A1, A2 , ….
, An , ta ln có:
a. Một điểm G duy nhất sao cho
b.Tất cả các đường trung tuyến bậc k ( k = 0, 1, …, n - 1) đồng quy ở điểm G
(mỗi đường trung tuyến bậc k là đoạn thẳng nối trọng tâm của hệ k điểm bất kì
trong n điểm đã cho với trọng tâm của hệ n - k điểm còn lại).
c. Điểm G chia mỗi đường trung tuyến bậc k theo tỉ số
Trang 4

skkn


Bình luận : Cả ba bài tốn trên đều tương tự nhau, có sự mở rộng dần
khơng gian và mở rộng dần các khái niệm, tính chất; Các bài tốn này cũng đã có

hướng giải quyết trong sách giáo khoa , tuy nhiên cách giải quyết bằng công cụ
véc tơ có thể giải quyết được cả ba bài tốn
Bài giải
a. Lấy 1 điểm O cố định . Điểm G thoả mãn





(là 1vectơ không đổi ),

O cố định nên đẳng thức này  điểm G luôn xác định và duy nhất .
b) , c) Lấy k điểm X1 , X2 , …. ,Xk bất kì từ họ điểm đã cho và gọi trọng tâm
của hệ này là G1 và trọng tâm của hệ n - k điểm Xk + 1 , Xk + 2 , …. , Xn còn lại là
G'1 , ta có :

(1) và

(2)



Từ (1) ta có

(1')

Từ (2) ta có

(2')


Cộng (1') và (2') và sử dụng

, ta được


 3 điểm G, G'1,G1 thẳng hàng
đồng thời G chia G1G'1 (trung tuyến bậc k) theo tỉ số (k-n)/k .
Vậy b), c) được chứng minh.
Nhận xét 1.1. Từ bài toán trọng tâm tam giác, nhìn nhận dưới góc độ diện tích
ta có
Do G là trọng tâm của tam giác, khi đó theo quan điểm diện tích ta có:
. Khi đó:
Từ đây ta có thể đưa ra bài tốn tổng qt:
Bài tốn 1.3. Cho tam giác ABC và M là một điểm thuộc miền trong tam
giác. Gọi S1, S2, S3 lần lượt là diện tích các tam giác MBC, MCA, MAB. Chứng
minh:
.
Bài giải
Gọi S là diện tích của tam giác ABC, từ M ta dựng hai đường thẳng lần lượt
song song với AB và AC, cắt AB tại B’ và AC tại C’
Biểu thức cần chứng minh biến đổi về dạng
Ta có:
Trang 5

skkn

(*)


Dễ chứng minh


Suy ra điều phải chứng minh (*).
Nhận xét 1.2. Từ bài tốn trên ta có thể thay giả thiết Hình
thu được
3.1 một số bài
tốn sau:
Bài tốn 1.4. Cho O là điểm nằm ngoài tam giác ABC thuộc miền trong của
góc tạo bởi hai tia CA,CB. Gọi S1, S2, S3 lần lượt là diện tích các tam giác OBC,
OCA, OAB. Chứng minh
.
Sau khi giải bài toán này giáo viên có thể yêu cầu học sinh tự đề xuất các
bài tốn tương tự khi cho điểm M nằm ngồi tam giác nhưng ở miển trong của hai
góc cịn lại.
Nhận xét 1.3. Từ bài toán 1 này ta chọn M là các điểm đặc biệt của tam giác
ABC ta có một số bài toán mới như sau
Bài toán 1.5. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh
( Bài 37 sách bài tập HH10 nâng cao)
Bài toán 1.6. Gọi O là tâm đường tròn ngoại tiếp tam giác nhọn ABC. Chứng
minh:
a.
b.
c.
Bài giải
a. Nếu tam giác ABC nhọn và M trùng với tâm O đường tròn ngoại tiếp ABC thì M
thuộc miền trong ABC và
Tương tự:



sin BOC =

.

Do đó ta có:
b. Từ đẳng thức a ta có:

.

Trang 6

skkn

sin2A


Bài tốn 1.7. Cho tam giác ABC có ba góc nhọn. Gọi H là trực tâm của tam
giác ABC. Chứng minh:
a.
.
b.
Nhận xét : Cho M là điểm nằm trong ABC không có góc nào bằng 1200
và ln nhìn các cạnh của tam giác dưới một góc 1200 ta có bài tốn mới
Bài toán 1.8. Gọi M là điểm nằm trong tam giác sao cho M ln nhìn các
đoạn AB,BC, CA dưới một góc 1200 . Chứng minh:

Bình luận: điểm M nói trên là giao của 3 đường tròn ngoại tiếp các tam
giác đều lần lượt có các cạnh AB,BC,CA dựng ra phía ngồi tam giác.
Bài tốn 2. Bài tốn về tâm đường trịn nội tiếp tam giác
Bài tốn cơ sở: Gọi I là tâm đường tròn nội tiếp tam giác ABC với BC=a, AC=b,
AB=c. Ta có:
.

( Phần chứng minh đã được chứng minh trong sách bài tập hình học 10)
Nhận xét 2.1. Xuất phát từ đẳng thức
, nếu ta nhìn cạnh dưới
góc độ chiều cao ta có bài tốn mới như sau
Thay

ta có

Hoặc từ

Trang 7

skkn


Bài toán 2.1. Cho tam giác ABC với các cạnh BC= a, CA=b,AB=c. Gọi I là tâm
đường tròn nội tiếp tam giác ABC. Gọi
lần lượt là chiều cao của tam giác
ABC kẻ từ các đỉnh A, B ,C. Chứng minh rằng

.

Bài toán 2.2. Cho tam giác ABC với các cạnh BC= a, CA=b,AB=c. Gọi I là tâm
đường tròn nội tiếp tam giác ABC. Gọi
lần lượt là chiều cao của tam giác
ABC kẻ từ các đỉnh A, B ,C. Chứng minh rằng
.
Nhận xét 2.2. Ta liên hệ cạnh với định lý hàm số sin trong

ABC ta có:

.

Bài tốn 2.3. Cho tam giác ABC với các cạnh BC = a, CA = b,AB = c. Gọi I là tâm
đường tròn nội tiếp tam giác ABC. Chứng minh rằng:
.
Nhận xét 2.3. Bài toán ban đầu được mở rộng trong không gian khi xét cho tứ
diện bất kì và diện tích của các tam giác cần chứng minh sẽ chuyển thành thể
tích của các tứ diện.
Bài toán 2.4. Cho tứ diện ABCD, O là một điểm bất kì thuộc miền trong tứ diện.
Gọi V1, V2, V3, V4 lần lượt là thể tích của các tứ diện OBCD, OCDA, OABD và
OABC. Chứng minh:
. (1)
Bài giải
Tương tự bài tốn trong mặt phẳng ta có(1)

. (Với

V là thể tích tứ diện)Từ đó ta dựng hình hộp nhận AO
làm đường chéo chính ba cạnh kề nằm trên ba cạnh của
tứ diện xuất phát từ A .
Ta có

.

Trong đó
Tương tự :
nên ta có điều phải chứng minh.
Nhận xét 2.4 :
Từ đẳng thức
hai vế sau

, Nếu ta bình phương vơ hướng
Hình 3.2
đó biến đổi ta sẽ kiến tạo được một số bài tốn mới.
Ta có:
.


.
Trang 8

skkn


Từ đó ta có:

Do đó ta có bài tốn mới:
Bài toán 2.5. Cho tam giác ABC với các cạnh BC=a, CA=b, AB=c. Gọi I là tâm
đường tròn nội tiếp tam giác. Chứng minh rằng:

.

Nhận xét 2.5: Nếu thay tâm I bởi điểm M bất kỳ nằm trong tam giác ta có
.
Do đó ta có bài tốn mới:
Bài tốn 2.6. Cho tam giác ABC có ba góc nhọn với BC=a,CA=b, AB=c. Tìm
điểm M sao cho biểu thức P =
đạt giá trị nhỏ nhất.
Nhận xét 2.6. Từ đẳng thức về tâm đường trịn nội tiếp tam giác ta xây dựng
cơng thức tính khoảng cách giữa các điểm đặc biệt trong tam giác theo độ dài
các cạnh a, b, c và các yếu tố khác.


+ Tính OJ với O, J lần lượt là tâm đường tròn ngoại tiếp, nội tiếp của tam giác.
Ta có:

Từ đẳng thức

Bình phương hai vế và sử dụng phép biến đổi như trên ta có:
+
Tính khoảng cách JH với H, J lần lượt là trực tâm, tâm đường tròn nội tiếp của
tam giác.
Trang 9

skkn


Ta có:


.
Bình phương vơ hướng hai vế, sau đó biến đổi ta thu được đẳng thức:
.
Trong đó độ dài các đoạn HA,HB,HC được tính như sau:
.
Thay vào hệ thức trên ta có:

.

Nhận xét: Ta có
, ta có:
+ Tính JG với G, J lần lượt là trọng tâm , tâm đường tròn nội tiếp của tam giác.


Nhận xét: Trong tam giác ta có bất đẳng thức
ta có

và sử dụng BĐT

+Tính OG
Tính được

.

+ Các đoạn OH, HG được tính theo OG và đẳng thức
Bài toán 3. Bài toán về đường cao trong tam giác vng
Bài tốn cơ sở : Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là
trung điểm của AH. Chứng minh rằng
. (1)
Bài giải
Ta có:
.
A
N
Khi đó (1)
M
.
Dựng hình bình hành AMIN (hình vẽ), ta có:

Với

. Mà


B

H

.

Trang 10

skkn

C


Hồn tồn tương tự ta có:

. Suy ra điều phải chứng minh.

Mở rộng bài tốn sang khơng gian ta có
Bài tốn 3.1. Cho tứ diện OABC có các cạnh OA,OB,OC đơi một vng
góc. Gọi S0 , SA, SB ,SC lần lượt là diện tích các mặt của tứ diện đối diện với các đỉnh
tương ứng O,A, B, C. Gọi I là trung điểm đường cao OH của tứ diện. Chứng minh
O
rằng
. (1)
Bài giải
Nhận xét: Ta có:
.
Từ (1)

I


.

A
H
M
Ta chứng minh (2) nhờ sử dụng bài toán phẳng sau:
Đặt OA = a, OB = b, OC = c, OM = m, AM = x
B
Áp dụng bài toán phẳng cho tam giác OAM vng tại O có đường cao OH:
.
Áp dụng bài tốn phẳng cho tam giác OBC vng tại O có đường cao OM:
.
Do đó ta có

Ta có điều phải chứng minh.
Bài toán 4. Bài toán về đường thẳng Euler trong tam giác
Bài toán cơ sở. Chứng minh trong tam giác ABC bất kì, trọng tâm G, trực
tâm H, tâm đường trịn ngoại tiếp O thẳng hàng và
( Bài tốn 3 SGK
Hình học 10 nâng cao trang 21)

Trang 11

skkn

C


Nhận xét: Bài toán này đã được chứng minh dựa vào kiến thức của lớp 10. Tuy

nhiên để phát triển tư duy cũng như làm tiền đề cho bài toán tiếp theo tơi trình bày
lời giải thơng qua phép vị tự của lớp 11.
Chứng minh hệ thức GH=2GO ta dùng phép vị tự tâm G biến điểm O thành điểm
H hoặc ngược lại. Dựa vào hình vẽ ta đốn tỉ số vị tự là -2 hoặc - .
Bài giải
Gọi M, N, P lần lượt là trung điểm của các cạnh BC,CA,AB.

A
H

Ta có:
P

Do đó
B

N

G
O
M

Hình 3.9
Phép vị tự bảo tồn tính vng góc nên sẽ biến trực tâm của tam giác ABC thành
trực tâm của tam giác MNP.
Theo giả thiết H là trực tâm của tam giác ABC và O là trực tâm của tam giác MNP,
vì vậy
Từ đó H,G,O thẳng hàng và GH=2GO
Mở rộng bài tốn sang khơng gian ta có bài toán mới
Bài toán 4.1. Chứng minh rằng, với tứ diện trực tâm ABCD ta ln có trọng

tâm G, trực tâm H , tâm O của mặt cầu ngoại tiếp tứ diện thẳng hàng và GH = GO.
Bài giải
Để chứng minh GH = GO ta nghĩ đến phép vị tự tâm G tỉ số -1.
Lần lượt lấy A′ đối xứng với A, B′ đối xứng với B, C′ đối xứng với C, D′ đối xứng
với D qua G.
Ta dễ thấy
//=AB (tính chất phép vị tự) và
đường trung bình EF (E,F thứ tự là trung điểm
của CD và AB) cũng đi qua G .
Trong hình bình hành A'B'AB  E cũng là
trung điểm của A'B'
  A'CB'D là hình bình hành.
Mặt khác trong tứ diện trực tâm ABCD
có hai cạnh đối diện vng góc với nhau nên
AB  CD  A'B'  CD
  A'CB'D là hình thoi  A'C = A'D'.
Chứng minh tương tự ta cũng có A'C = A'B  A’ cách đều B, C,Hình
D. 3.10
Từ giả thiết ta cũng có O cách đều B,C,D nên A'O là trục của đường tròn ngoại
tiếp BCD  A'O  (BCD)  A'O  (B'C'D') (1).
Trang 12

skkn

C


Tương tự (1), ta cũng có B'O  (A'C'D') (2); C'O  (B'A'D') (3)
 O là trực tâm của tứ diện A'B'C'D'.
Xét phép vị tự


, ta có:

Như vậy,
nên phép vị tự sẽ biến trực tâm của
tứ diện ABCD thành trực tâm O của tứ diện A’B’C’D’.
Suy ra:

 H, G, O thẳng hàng và GO = GH.

hay

Bài toán 5. Bài toán đi qua điểm cố định
Bài toán cơ sở:. Trên 2 cạnh của góc xOy có 2 điểm M , N thay đổi sao cho
, trong đó a , b là các độ dài cho trước. Chứng minh rằng M N luôn
đi qua 1 điểm cố định.
Bài giải
Trên các tia Ox , Oy đặt các đoạn OA = a , OB = b ; gọi E là trung điểm của AB và
F là giao điểm của OE với MN , ta có
O
.


.

A

E

B


Mà F , M , N thẳng hàng nên ta có :
với k+l=1

N
M




.

F

x

y

Hình 3.20

 OF = 2 OE  F chính là điểm thứ tư của hình bình

hành OAFB ).
Vậy MN ln đi qua điểm cố định là F
Bài tốn 5.1. Hai điểm M, N thứ tự thay đổi trên 2 nửa đường thẳng chéo
nhau Ax, By sao cho

(a, b là 2 độ dài cho trước). Chứng minh rằng

MN luôn cắt 1 đường thẳng cố định .


M

x



A

x'
M'
a

A'
I

B

Trang 13

skkn

b
B'

Hình 3.21

N

y



Bài giải
Dựng tia Bx' // Ax , lấy M' trên Bx' sao cho MM'//AB .
Trên Bx' , By đặt các đoạn BA' = a , BB' = b .
Từ giả thiết 

.

Theo kết quả ở trên ta có M'N ln đi qua điểm cố định I (đỉnh thứ tư của hình
bình hành BA'IB') .
Xét đường thẳng  qua I và // MM' (//AB) , dễ thấy  chính là đường thẳng cố định
ln cắt MN .
Bài tốn 5.2. Trên các tia Ox , Oy , Oz tương ứng có các điểm M , N , P thay
đổi sao cho luôn có

, trong đó a , b , c là các độ dài cho trước .

Chứng minh rằng mp (MNP) luôn đi qua 1 điểm cố định.
O
Chứng minh : Cách chứng minh tương tự .
C

G
A

P

B


z
F
M
N
x

Hình 3.22

y

Bài tốn 6: Cơng thức tính độ dài đoạn trung tuyến
Bài toán cơ sở: Cho tam giác ABC với AB=c, BC= a, AC=b và trung tuyến AM .
Khi đó

(Bài tập 3 trang 58 SGK Nâng cao)

Bài giải
Ta có:

A

Khi đó :
B

M
Hình 3.30

Suy ra

.

Trang 14

skkn

C


Nhận xét 6.1. Từ bài tốn tính độ dài trung tuyến của tam giác trong mặt phẳng,
mở rộng sang không gian ta thu được bài toán mới:
Bài toán 6.1. Cho tứ diện ABCD. Gọi ma là độ dài đoạn trọng tuyến nối từ đỉnh
A đến trọng tâm A1 của BCD. Tính độ dài ma theo ai (i = ) (a1 = AB; a2 = AC;
a3 = AD; a4 = BC; a5 =BD; a6 = CD).
Đáp số: m2a =

(a21+ a22+ a23) -

(a24+ a25+ a26)

Nhận xét 6.2. Lấy M là điểm bất kỳ trên đoạn BC ta có bài tốn mới:
Bài tốn 6.2 (định lý Stewart). Cho tam giác ABC với độ dài các cạnh AB=c, BC=
a, AC= b. Gọi D là điểm bất kỳ trên cạnh BC , BD= a1, CD= a2. Chứng minh rằng:

Đặc biệt hoá:
+ Nếu D là chân đường trung tuyến kẻ từ A xuống cạnh BC ta có cơng thức trung
tuyến

.

+ Nếu D là chân đường phân giác trong của góc A, tức là D chia đoạn BC theo tỉ số
. Khi đó ta có cơng thức tính độ dài đường phân giác:

hay

.

Từ bài tốn trên tiếp tục mở rộng sang khơng gian ta có bài tốn mới
Bài toán 6.3. Cho tứ diện ABCD. Gọi N, M lần lượt là các điểm nằm trên các cạnh
CD, BN sao cho
. Tính AM theo k, l và các cạnh của tứ
A
diện.

D

B
M

Đáp sơ:

N

C

Bài tốn 7. Bài tốn về hai trung tuyến vng góc
Bài tốn cơ sở: Cho tam giác ABC. Chứng minh điều kiện cần và đủ để hai trung
tuyến kẻ từ B và C vng góc với nhau là:
.(Bài tập 7 trang 70 SGK
Hình học 10- Nâng cao).
Trang 15

skkn



Bài giải
Gọi G là trọng tâm tam giác ABC. Hai trung tuyến kẻ từ B và C vng góc
với nhau
vng tại G
A

G
B
C
Nhận xét 7.1. Từ bài toán trên ta thay đổi giả thuyết ta có một số bài tốn mới
như sau:
Bài toán 7.1. Cho tam giác ABC. Chứng minh điều kiện cần và đủ để hai trung
tuyến kẻ từ B và C vng góc với nhau là
Bài tốn 7.2. Cho tam giác ABC nội tiếp đường tròn
giác. CMR
khi và chỉ khi

. H là trực tâm của tam
.

Bài toán 7.3. Cho tam giác ABC có hai trung tuyến kẻ từ B và C vng góc với
nhau. Chứng minh

.

Bài tốn 7.4. Cho tam giác ABC có hai trung tuyến kẻ từ B và C vng góc với
nhau. Chứng minh


.

Bài tốn 7.5. Cho tam giác ABC có

. Gọi R, r lần lượt là bán kính các

đường trịn ngoại tiếp, nội tiếp tam giác ABC. Chứng minh rằng

.

Nhận xét 7.2. Từ bài toán về điều kiện cần và đủ để hai trung tuyến kẻ từ B và
C vng góc với nhau là:
, ta có thể mở rộng cho bài toán về tứ giác,
tứ diện.
Bài tốn 7.6. Cho tứ giác OABC có trọng tâm G, OA=x, OB=y, OC=z,
BC=a,CA=b,AB=c. Chứng minh điều kiện cần và đủ để

Bài tốn 7.7. Cho tứ diện OABC có trọng tâm G, OA=x, OB=y, OC=z,
BC=a,CA=b, AB=c. Chứng minh điều kiện cần và đủ để

Bài giải (Bài toán 7.6)
Trước hết ta chứng minh

Trang 16

skkn


Gọi G1 là trọng tâm tam giác ABC. Vì G là trọng tâm tứ giác OABC nên
.



(1)
.

Tương tự ta có:

O

N
G
C

A
G1

Từ (1) và (2) suy ra

.

B

M

Chứng minh tương tự ta cũng có:

Mặt khác

2.4. Hiệu quả của sáng kiến kinh nghiệm đối với hoạt động giáo dục, với bản
thân, đồng nghiệp và nhà trường.

Đề tài đã giải quyết được các vấn đề sau:
Đề tài đã chỉ ra được một số bài toán cơ bản, giải quyết nó bằng phương
pháp vectơ. Trên cơ sở đó đã xây dựng một số bài tốn mới tương ứng. Xây dựng
cách giải hoặc đưa ra đáp số cho các bài toán mới.
Đề tài được áp dụng trong những tiết luyện tập, các tiết tự chọn ở trên lớp
đặc biệt là các buổi dạy bồi dưỡng học sinh khá giỏi .
Thông qua việc xuất phát từ những bài toán cơ bản, giáo viên đã gợi ý,
dẫn dắt học sinh tổng quát bài toán, tạo ra bài toán mới, dần dần hình thành cho
các em khả năng làm việc độc lập, phát triển tư duy sáng tạo, phát hiện vấn đề và
giải quyết vấn đề. Phát huy tối đa tính tích cực của học sinh theo đúng tinh thần đổi
mới của Bộ Giáo dục và Đào tạo. Từ đó tạo cho các em niềm tin, hứng thú khi học
tập bộ mơn Tốn.
Trang 17

skkn


Đề tài của tôi đã được kiểm nghiệm trong năm học giảng dạy lớp 10 và
một số buổi dạy bồi dưỡng học sinh giỏi, được học sinh nhiệt tình tham gia và đã
nâng cao chất lượng dạy học. Các em hứng thú học tập hơn, ở những lớp có hướng
dẫn các phương pháp này các em học sinh với mức học trung bình trở lên đã có
căn cứ để giải một số bài tập khó. Học sinh biết áp dụng tăng rõ rệt. Cụ thể ở các
lớp sau khi áp dụng sáng kiến này vào giảng dạy, đánh giá qua bài kiểm tra thu
được kết quả như sau :
Năm
học

Lớp

Tổng

số HS

10A4 (Ban
41
2018
cơ bản)
10A2 (Ban
2019
44
nâng cao)

Điểm 8 trở lên Điểm từ 5 đến 8 Điểm dưới 5
Số
Số
Số
Tỷ lệ
Tỷ lệ
Tỷ lệ
lượng
lượng
lượng
7

17,1 % 22

53,6 %

12

29,3 %


31

70,4%

18,2%

5

11,4 %

8

III. PHẦN KẾT LUẬN VÀ KIẾN NGHỊ
Sáng kiến kinh nghiệm này là kết quả của một quá trình tìm tịi, nghiên cứu
và đúc rút kinh nghiệm trong q trình giảng dạy, bồi dưỡng học sinh giỏi. Qua
một năm triển khai thực hiện đề tài này với cách xây dựng và phát triển các bài
tốn, xây dựng quy trình giải quyết các bài toán một cách "tự nhiên” như vậy, tôi
nhận thấy các em đã nắm được vấn đề, biết vận dụng các kết quả trên vào giải
quyết các bài tốn một cách linh hoạt, sáng tạo. Từ đó giúp cho các em u thích
mơn tốn hơn, chất lượng giờ học đã được nâng cao rõ rệt. Trong năm học tới, tôi
sẽ tiếp tục nghiên cứu và bổ sung để đề tài này được hoàn thiện hơn, đáp ứng được
nhu cầu bồi dưỡng cho học sinh khá giỏi để các em đạt kết quả cao trong các kỳ thi
chọn học sinh giỏi và kỳ thi tốt nghiệp trung học phổ thơng sau này.
Trong q trình biên soạn đề tài tơi đã có nhiều cố gắng, tuy nhiên cũng
khơng tránh khỏi những thiếu sót.Tơi rất mong được các thầy cơ giáo, các bạn
đồng nghiệp góp ý, bổ sung để đề tài này hồn thiện hơn. Hy vọng tài liệu này có
thể sử dụng làm tài liệu tham khảo cho học sinh và thầy cơ giáo trong q trình học
tập, giảng dạy.
Xin chân thành cảm ơn!


XÁC NHẬN CỦA HIỆU TRƯỞNG

Thanh Hóa, ngày 20 tháng 5 năm 2019
Tôi xin cam đoan đây là SKKN của mình viết,
khơng sao chép nội dung của người khác.

Trịnh Công Hải
Trang 18

skkn


TÀI LIỆU THAM KHẢO
1. Văn Như Cương (Chủ biên), Phạm Khắc Ban, Tạ Mân (2007), Bài tập hình học
11 nâng cao , NXB Giáo dục, Hà Nội
2. Văn Như Cương (Chủ biên), Phạm Vũ Khuê, Trần Hữu Nam (2007), Bài tập
hình học 10 nâng cao , NXB Giáo dục, Hà Nội.
3. Nguyễn Văn Dũng (2015), Xác định và luyện tập cho học sinh một số phương
thức phát triển kiến thức sách giáo khoa hình học 10 , luận văn thạc sĩ khoa học
giáo dục, Trường ĐH Vinh, Nghệ An.
4. Trần Văn Hạo (Tổng chủ biên)- Nguyễn Mộng Hy (2007), Hình học 10 , NXB
giáo dục .
5. Trần Văn Hạo (Tổng chủ biên)- Nguyễn Mộng Hy (2007), Hình học 11 , NXB
giáo dục.
6. B.I.Acgunơp- M.B.Ban (1977), Hình học sơ cấp , NXB Giáo Dục.

Trang 19

skkn




×