Tải bản đầy đủ (.doc) (24 trang)

SKKN sử dụng công cụ véc tơ để phát triễn một số bài toán mới từ một số bài toán cơ bản trong sách hình học 10

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (413.38 KB, 24 trang )

I. MỞ ĐẦU
1.1. Lý do chọn đề tài
Trong quá trình dạy học ở trường phổ thông tôi nhận thấy học sinh rất e
ngại học môn hình học vì các em nghĩ rằng nó rất trừu tượng, thiếu tính thực tế
khách quan. Chính vì thế mà có rất nhiều học sinh học yếu môn học này. Việc sáng
tạo các bài toán mới từ các bài toán cơ bản có trong sách giáo khoa nhằm mục đích
khuyến khích sự tìm tòi, tư duy, sáng tạo cho học sinh, cũng như tạo cho các em sự
say mê môn hình học, phát triển khả năng tự phát hiện vấn đề và giải quyết vấn đề,
từ đó nâng cao chất lượng dạy học. Đây cũng là một trong những mục tiêu quan
trong mà giáo dục hiện nay đang hướng tới. Qua những năm giảng dạy môn học
này tôi cũng đúc kết được một số kinh nghiệm về vấn đề này nhằm giúp các em
tiếp thu kiến thức được tốt hơn, từ đó mà chất lượng giảng dạy cũng như học tập
của học sinh, đặc biệt là trong công tác bồi dưỡng học sinh giỏi. Vì vậy tôi đã chọn
đề tài: “ Sử dụng công cụ vectơ để phát triển một số bài toán mới từ một số bài
toán cơ bản trong sách hình học 10 "
1.2. Mục đích nghiên cứu.
Trong phạm vi đề tài này tôi không có tham vọng đưa ra một hệ thống kiến
thức hoàn toàn mới, một kết quả mới về mặt toán học; ở đây tôi chỉ trình bày
những kết quả mà trong quá trình dạy học về hinh học 10 tôi đã tích luỹ, tìm tòi;
nhằm hướng tới mục đích giúp các em học sinh nắm vững kiến thức cơ bản . Trên
cơ sở từ một số bài toán điển hình tôi sẽ đưa ra phương pháp giải cho bài toán đó
và một nhóm các bài toán tương tự; đồng thời giúp học sinh khái quát hóa để được
các bài toán mới , qua đó giúp rèn luyện, phát triển tư duy giải toán hình học cho
học sinh.
1.3. Đối tượng nghiên cứu.
Đề tài này sẽ được nghiên cứu trên học sinh lớp 10A2 và 10A3 trường THPT
Lê Hoàn - Thọ Xuân - Thanh Hoá. Trong quá trình giảng dạy bản thân sẽ định
hướng, dẫn dắt học sinh phát triển một số bài toán mới từ một số định lý hoặc bài
toán cơ bản. Việc phát triển một số bài toán mới có thể đi theo chiều hướng mở
rộng sang không gian hoặc thay đổi giả thuyết của bài toán.
1.4. Phương pháp nghiên cứu.


- Phương pháp nghiên cứu lý luận:
+Thông qua việc nghiên cứu các loại tài liệu sư phạm, chuyên môn có liên
quan đến đề tài.
+ Nghiên cứu chương trình sách giáo khoa toán 10 và 11, mục đích yêu cầu
dạy hình học ở trường phổ thông
- Phương pháp đàm thoại lấy ý kiến của học sinh và giáo viên có nhiều kinh
nghiệm trong công tác bồi dưỡng học sinh giỏi.
1.5. Những điểm mới của sáng kiến kinh nghiệm
Trang 1


II. NỘI DUNG
2.1. Cơ sở lí luận của sáng kiến kinh
nghiệm. 2.1.1. Định nghĩa về vectơ.
a. Các định nghĩa
- Định nghĩa 2.1.1.1: Vectơ là một đoạn thẳng đã được định hướng, nghĩa là
trong hai điểm mút của đoạn thẳng đã chĩ rõ điểm nào là điểm đầu, điểm nào là
điểm cuối.
- Định nghĩa 2.1.1.2: Hai vectơ bằng nhau a b khi và chỉ khi chúng cùng
hướng và có độ dài bằng nhau
- Định nghĩa 2.1.1.3: Hai vectơ đối nhau a b khi và chỉ khi chúng ngược
hướng và có độ dài bằng nhau
b. Các ký hiệu thường dùng
- Ký hiệu AB chỉ độ dài đoạn thẳng AB.
- Ký hiệu AB chỉ vectơ AB.
- Ký hiệu | AB | chỉ độ dài của vectơ AB . Như vậy | AB | AB .
- Ký hiệu AB chỉ độ dài đại số của vectơ AB.
2.1.2. Các phép toán về vectơ.
a. Phép cộng các vectơ.
- Quy tắc ba điểm: Với 3 điểm A, B, C thì: AB BC AC .

- Quy tắc hình bình hành: AB AD AC .
- Tính chất trung điểm: Với I là trung điểm của đoạn thẳng AB thì:
+ IA IB 0.
+ MA MB 2MI , với điểm M bất kỳ.
b. Phép trừ các vectơ.
Với ba điểm O, A, B thì: OA

OB BA .

c. Phép nhân vectơ với một số.
- Cho vectơ u và số k . Vectơ ku được xác định bởi:
+ ku cùng hướng với vectơ u nếu k 0 và ngược hướng với vectơ u
nếu k < 0.
+ | ku | = | k | . | u | .
Trang 2


- Cho b 0 và a cùng phương với b . Khi đó, tồn tại duy nhất một số thực k
sao cho: a kb .
- Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi AB và AC là các
vectơ cùng phương.
d. Tích vô hướng của hai vectơ.
- Cho trước hai vectơ a, b . Từ một điểm O cố định, dựng các vectơ

·

OA a, OB b . Khi đó góc AOB là góc giữa hai vectơ a, b . Ký hiệu: (a,
(a, b) .

·r


b) hoặc

- Tích vô hướng của hai vectơ: a.b | a | .| b | .cos(a, b) .
- a b a.b 0 .
- a.a a 2 | a |2 .
2.1.3. Khai triển một vectơ theo các vectơ không cùng phương
a. Khai triển một vectơ qua hai vectơ không cùng phương trong mặt
phẳng
Định lý 1. Cho hai vectơ không cùng phương a và b . Khi đó mọi vectơ x đều có thể
biểu thị được một cách duy nhất qua hai vectơ a và b , nghĩa là có duy nhất cặp số
m và n sao cho x ma nb .
b. Khai triển một vectơ qua ba vectơ không đồng phẳng trong không gian.
Định lý 2. Cho ba vectơ không đồng phẳng a , b và c . Khi đó mọi vectơ x đều có
thể biểu thị được một cách duy nhất qua ba vectơ a , b và c , nghĩa là có duy nhất
bộ số m, n và p sao cho x ma nb pc .
2.1.4 Phép biến hình trong mặt phẳng
a. Định nghĩa phép biến hình
Quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định
duy nhất M’ của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng.
b. Một số phép biến hình trong mặt phẳng liên quan đến
vectơ * Phép tịnh tiến
Định nghĩa 1: Trong mặt phẳng cho vectơ v 0 , phép biến hình biến mỗi điểm M
thành điểm M’ sao cho MM ' = v , gọi là phép tịnh tiến theo vectơ v .
T
Kí hiệu: v .
T
Vậy: v (M) = M’
* Phép vị tự


MM ' = v .

Trang 3


Định nghĩa 2: Trong mặt phẳng cho điểm O và số k 0, phép biến hình biến mỗi
điểm M thành điểm M’ sao cho OM ' kOM , gọi là phép vị tự tâm O tỉ số k. Kí
V

hiệu:
Vậy:

O;k

V

M
O;k

M'

OM '

kOM

2.2. Thực trạng vấn đề trước khi áp dụng sáng kiến kinh nghiệm.
Khi dạy hình học ở lớp 10 ta nhận thấy một số bài toán cơ bản được chứng
minh trên cơ sở là công cụ vectơ. Sau đó sách giáo khoa cũng đã đưa ra một số bài
tập mang tính chất vận dụng. Bản thân tôi thấy nếu chỉ dừng lại ở đây thì làm cho
học sinh chưa thật sự hứng thú với bộ môn hình học, cũng như chưa khai thác

được khả năng phát hiện vấn đề cũng như giải quyết vấn đề, đặc biệt với các em
học sinh khá giỏi.
2.3. Các sáng kiến kinh nghiệm hoặc các giải pháp đã sử dụng để giải
quyết vấn đề.
Trong quá trình tìm tòi, nghiên cứu, giảng dạy và bồi dưỡng học sinh giỏi,
tôi đã tổng hợp và lựa chọn một số bài toán cơ bản, giải quyết nó bằng công cụ
vectơ. Trên cơ sở đó tôi hướng dẫn học sinh tìm tòi, phát triển thêm một số bài
toán mới. đồng thời giải quyết bài toán đó bằng công cụ vectơ.
Bài toán 1 (Bài toán về trọng tâm)
Bài toán cơ sở: Cho tam giác ABC , ta luôn có:
a. Một điểm G duy nhất sao cho GA GB GC 0 .
b. Ba đường trung tuyến đồng quy ở điểm G, điểm G chia mỗi đường trung tuyến
theo tỉ số -2.
Mở rộng bài toán từ tam giác sang tứ diện ta có một số bài toán mới :
Bài toán 1.1. Cho tứ diện ABCD ta luôn có :
a. Một điểm G duy nhất sao cho GA GB GC GD 0 .
b. Ba đường trung bình đồng quy ở điểm G , điểm G chia mỗi đường trung bình
theo tỉ số -1 .
c. Bốn đường trọng tuyến cũng đồng quy ở G, điểm G chia mỗi đường theo tỉ số -3
Bài toán 1.2. Trong không gian (hoặc mặt phẳng ) cho hệ n điểm A1, A2 , ….
, An , ta luôn có:
n

a. Một điểm G duy nhất sao choGAi 0
i 1

b.Tất cả các đường trung tuyến bậc k ( k = 0, 1, …, n - 1) đồng quy ở điểm G (mỗi
đường trung tuyến bậc k là đoạn thẳng nối trọng tâm của hệ k điểm bất kì trong n
điểm đã cho với trọng tâm của hệ n - k điểm còn lại).
c. Điểm G chia mỗi đường trung tuyến bậc k theo tỉ số n k

k
Trang 4


Bình luận : Cả ba bài toán trên đều tương tự nhau, có sự mở rộng dần
không gian và mở rộng dần các khái niệm, tính chất; Các bài toán này cũng đã có
hướng giải quyết trong sách giáo khoa , tuy nhiên cách giải quyết bằng công cụ
véc tơ có thể giải quyết được cả ba bài toán
Bài giải
a. Lấy 1 điểm O cố định . Điểm G thoả mãn
n

GA

i

i 1

n

0 OAi

OG0

i 1

n

nOG


OAi
i 1

1n

0 OG

OA

i

(là 1vectơ không đổi ),

ni1
O cố định nên đẳng thức này
điểm G luôn xác định và duy nhất .
b) , c) Lấy k điểm X1 , X2 , …. ,Xk bất kì từ họ điểm đã cho và gọi trọng tâm
của hệ này là G1 và trọng tâm của hệ n - k điểm Xk + 1 , Xk + 2 , …. , Xn còn lại là
k

G'1 , ta có :

n

G X
1

0

i


i 1

(1) vàG '1 X j

0 (2)

i k+1

k

k

Từ (1) ta có

GX

GX i GG1 0

i 1

kGG1 0 (1')

i

i 1

n

Từ (2) ta có


n k GG1'

nGX i
i k1

= 0 (2')

n

Cộng (1') và (2') và sử dụng GAi

0 , ta được

i 1

k n GG1'3 điểm G, G'1,G1 thẳng hàng

GG1'

kGG1 n k
0 kGG1
đồng thời G chia G1G'1 (trung tuyến bậc k) theo tỉ số (k-n)/k .
Vậy b), c) được chứng minh.
Nhận xét 1.1. Từ bài toán trọng tâm tam giác, nhìn nhận dưới góc độ diện tích
ta có
Do G là trọng tâm của tam giác, khi đó theo quan điểm diện tích ta có:

S S


1

S

1

1

1

S . Khi đó:
S.GA
S.GB S.GC 0
3
3
3
3
Từ đây ta có thể đưa ra bài toán tổng quát:
Bài toán 1.3. Cho tam giác ABC và M là một điểm thuộc miền trong tam
giác. Gọi S1, S2, S3 lần lượt là diện tích các tam giác MBC, MCA, MAB. Chứng
GBC GAC

GAB

minh: S1 MA S 2 MB S 3 MC 0 .
Bài giải
Gọi S là diện tích của tam giác ABC, từ M ta dựng hai đường thẳng lần lượt
song song với AB và AC, cắt AB tại B’ và AC tại C’
S


S

Biểu thức cần chứng minh biến đổi về dạng AM S2 AB S3 AC (*) Ta có:
AM AB ' AC '
Trang 5


ABAB' AB ACAC' AC
Dễ chứng minh
AB ' MC '

S

AB

AB

S

AC '

MB '

S

AC

AC

(MAC )


S2
S

BAC
(MAB)

S

CAB

S3
S

Suy ra điều phải chứng minh (*).
Nhận xét 1.2. Từ bài toán trên ta có thể thay giả thiết Hìnhthuđược3.1 một số
bài toán sau:
Bài toán 1.4. Cho O là điểm nằm ngoài tam giác ABC thuộc miền trong của
góc tạo bởi hai tia CA,CB. Gọi S1, S2, S3 lần lượt là diện tích các tam giác OBC,
OCA, OAB. Chứng minh S1 OA S 2 OB S 3 OC 0 .
Sau khi giải bài toán này giáo viên có thể yêu cầu học sinh tự đề xuất các
bài toán tương tự khi cho điểm M nằm ngoài tam giác nhưng ở miển trong của hai
góc còn lại.
Nhận xét 1.3. Từ bài toán 1 này ta chọn M là các điểm đặc biệt của tam giác
ABC ta có một số bài toán mới như sau
Bài toán 1.5. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh
a.IA b.IB c.IC 0 ( Bài 37 sách bài tập HH10 nâng cao)
Bài toán 1.6. Gọi O là tâm đường tròn ngoại tiếp tam giác nhọn ABC. Chứng
minh:
a. sin2AOA. sin2B.OB sin2C.OC 0

b. (tan B tan C ).OA (tan A tan C ).OB (tan A tan B ).OC 0
cosA
cosB
cosC
c. sin B.sinC .OA sin A.sinC OB
OC 0
sin
B.sinA
Bài giải
a. Nếu tam giác ABC nhọn và M trùng với tâm O đường tròn ngoại tiếp
M
thuộc miền trong ABC và S1 1 OC .OB sin BOC = R2 sin2A
2
2
2
2
Tương tự: S 2 R
sin 2B và S 3 R sin 2C .
2
2
Do đó ta có: sin 2 A.OA sin 2 B.OB sin 2C .OC O .

b. Từ đẳng thức a ta có:

Trang 6

ABC thì


sin 2 A.OA sin 2 B.OB sin 2C .OC 0

2sin A.cosA.OA
2sinB. cos B.OB 2sinC .cosC .OC
sin A
sin B
sin C
.OA cos A. cosC .OB cos A. cos .OC
cos B.
cosC
B
sin(B C )
sin( A C)
sin( A B)
.OA cos A. cosC .OB cos A. cos .OC
cos B.
cosC
B
(tan B tan C ).OA (tan A tan C ).OB (tan B

0
0

0

tan A).OC

0

Bài toán 1.7. Cho tam giác ABC có ba góc nhọn. Gọi H là trực tâm của tam
giác ABC. Chứng minh:
a. tan A. HA tan B. HB tan C .HC 0 .

a
b
c
b.
.HA
.HB
.HC 0
cos
cos
cosC
A
B
Nhận xét : Cho M là điểm nằm trong ABC không có góc nào bằng 1200 và
luôn nhìn các cạnh của tam giác dưới một góc 1200 ta có bài toán mới
Bài toán 1.8. Gọi M là điểm nằm trong tam giác sao cho M luôn nhìn các
đoạn AB,BC, CA dưới một góc 1200 . Chứng minh:
1

MA

1

MA

1

.MB

MB


MC

.MC O

Bình luận: điểm M nói trên là giao của 3 đường tròn ngoại tiếp các tam
giác đều lần lượt có các cạnh AB,BC,CA dựng ra phía ngoài tam giác.
Bài toán 2. Bài toán về tâm đường tròn nội tiếp tam giác
Bài toán cơ sở: Gọi I là tâm đường tròn nội tiếp tam giác ABC với BC=a, AC=b,
AB=c. Ta có: a.IA b.IB c.IC 0 .
( Phần chứng minh đã được chứng minh trong sách bài tập hình học 10)
Nhận xét 2.1. Xuất phát từ đẳng thức a. IA b. IB c.IC 0 , nếu ta nhìn cạnh dưới
góc độ chiều cao ta có bài toán mới như sau

Thay

a

2S b

2S

c 2S

ha

hb

hc

ta có IA IB

h

a

h

b

IC
h

0

c

Hoặc từ
1

aIA bIB cIC

0

1

IA
b
c

b c


4S2

IB
c
a

hh

I
A

1

hh

a c

4S2

IC 0
a
hh
b
IB

a b

4S 2

hb hc IA ha hc IB ha hb IC


IC 0
0


Trang 7


Bài toán 2.1. Cho tam giác ABC với các cạnh BC= a, CA=b,AB=c. Gọi I là tâm
đường tròn nội tiếp tam giác ABC. Gọi ha , hb , hc lần lượt là chiều cao của tam giác

ha , hb , hc

Nhận xét 2.4 :
Từ đẳng thức
I
A
ABC kẻ từ các đỉnh A, B ,C. Chứng minh rằng h
Bài toán 2.2. Cho tam giác ABC với các đường tròn nội tiếp
tam giác ABC. Gọi

a

I
B
h

b

IC

h 0.
c

cạnh BC= a, CA=b,AB=c. Gọi I là tâm lần lượt là chiều
cao của tam giác

ABC kẻ từ các đỉnh A, B ,C. Chứng minh rằng hb hc IA ha hc IB ha hb IC
Nhận xét 2.2. Ta liên hệ cạnh với định lý hàm số sin trong

0.

ABC ta có:


a
sin A

b
sin B

c 2 R a 2 R sin A, b 2 R sin B, c 2 R sin C .
sin C

Bài toán 2.3. Cho tam giác ABC với các cạnh BC = a, CA = b,AB = c. Gọi I là tâm
đường tròn nội tiếp tam giác ABC. Chứng minh rằng: sin A. IA sin B. IB sin C . IC 0 .
Nhận xét 2.3. Bài toán ban đầu được mở rộng trong không gian khi xét cho tứ
diện bất kì và diện tích của các tam giác cần chứng minh sẽ chuyển thành thể
tích của các tứ diện.
Bài toán 2.4. Cho tứ diện ABCD, O là một điểm bất kì thuộc miền trong tứ diện.
Gọi V1, V2, V3, V4 lần lượt là thể tích của các tứ diện OBCD, OCDA, OABD và

OABC. Chứng minh: V1 OA V2 OB V3 OC V4 OD 0 . (1)
Bài giải
V

Tương tự bài toán trong mặt phẳng ta có(1)

AO

V

V

2

V

AB V3 AC V4 AD . (Với

V là thể tích tứ diện)Từ đó ta dựng hình hộp nhận AO
làm đường chéo chính ba cạnh kề nằm trên ba cạnh của
tứ diện xuất phát từ A .
AM

Ta có AO

AS

AM

O

R

OK

AD .
A
D
OK.dt ACD

Trong đó AB

A
B

BH

BH.dt ACD

AB

AB

AP

AC

AC

V2
V


AS V 2
AP V 3
V , AD
V

Tương tự : AC

nên ta có điều phải chứng minh.

,

b.IB c.IC 0 Nếu ta bình phương vô hướng hai vế sau Hình 3.2
đó biến đổi ta sẽ kiến tạo được một số bài toán mới.

Ta có: (a.IA

b.IB c.IC)2

0

a .IA b .IB c .IC 2 abIA.IB 2bcIB.IC 2acIA.IC 0 . Vì IA
2

2

2

2


2

2

IB BA ( IA IB ) 2 BA 2 c 2 2 IA.IB IA 2 IB 2 c2 .

Trang 8


Từ đó ta có:
a 2 .IA 2 b 2 .IB 2 c 2 .IC 2 ab ( IA 2 IB 2 c 2 ) bc ( IB 2 IC 2 a 2 ) ac ( IA 2 IC 2 b2 ) 0 ( a b
c )( a.IA 2 b.IB 2 c.IC 2 ) abc ( a b c)
IA2

IB2
IC2
bc ca ab

1

Do đó ta có bài toán mới:
Bài toán 2.5. Cho tam giác ABC với các cạnh BC=a, CA=b, AB=c. Gọi I là tâm
IA
IB 2 IC2
đường tròn nội tiếp tam giác. Chứng minh rằng: 2
1.
bc

ca


ab

Nhận xét 2.5: Nếu thay tâm I bởi điểm M
bất kỳ nằm trong tam giác ta có
2
2
2
a.MA b.MB c.MC abc .
Do đó ta có bài toán mới:
Bài toán 2.6. Cho tam giác ABC có ba góc nhọn với BC=a,CA=b, AB=c. Tìm
điểm M sao cho biểu thức P = a.MA 2 b.MB 2 c.MC 2 đạt giá trị nhỏ nhất.
Nhận xét 2.6. Từ đẳng thức về tâm đường tròn nội tiếp tam giác ta xây dựng
công thức tính khoảng cách giữa các điểm đặc biệt trong tam giác theo độ dài
các cạnh a, b, c và các yếu tố khác.

+ Tính OJ với O, J lần lượt là tâm đường tròn ngoại tiếp, nội tiếp của tam
giác. Ta có:
JA JO OA
JB
JC

JO

OB

JO OC

Từ đẳng thức
a.JA b.JB c.JC 0
(a b c).OJ

a.OA b.OB c.OC
Bình phương hai vế và sử dụng phép biến đổi như trên ta có:
( a b c ) 2 .OJ 2 R 2 ( a 2 b 2 c 2 ) a.b (2 R 2 c 2 ) bc (2 R 2 a 2 ) ac (2 R 2 b2 )
abc
+
OJ2 R2
a b c
Tính khoảng cách JH với H, J lần lượt là trực tâm, tâm đường tròn nội tiếp của
tam giác.
Trang 9


Ta có:
a. JA b. JB c. JC 0
(a

b

c ).HJ a.HA b.HB c.HC

và 2.HA.HB HA 2 HB 2 ( HA HB)2 .
Bình phương vô hướng hai vế, sau đó biến đổi ta thu được đẳng thức:
( a b c ) 2 . HJ 2
(a b
c )( a. HA 2
abc ( a
b c) .
Trong đó độ dài các đoạn HA,HB,HC được tính như sau:

b. HB 2 c. HC 2 )


HA2 4OM 2 4 R 2 a 2 , HB 2 4 R 2 b 2 , HC 2 4R 2 c2 .

Thay vào hệ thức trên ta có: HJ 2

4R2

a

3

b

3

c

3

abc .

a b c
Nhận xét: Ta có a 3 b 3 c 3 3abc , ta có: HJ 2OJ
+ Tính JG với G, J lần lượt là trọng tâm , tâm đường tròn nội tiếp của tam giác.
JG 2

2 ( a 2 b 2 c2 )
9

a 3 b 3 c 3 3abc

3( a b c)

Nhận xét : Trong tam giác ta có bất đẳng thức a 2 b 2 c 2 9R2 và sử dụng BĐT a 3 b 3
c 3 3abc ta có
JG2

2R2

+Tính OG
Tính được OG2 R2

2OJ 2 JG

2abc
a b c

a 2 b 2 c2

2OJ

.

9

+ Các đoạn OH, HG được tính theo OG và đẳng thức OH

3.OG

Bài toán 3. Bài toán về đường cao trong tam giác vuông
Bài toán cơ sở : Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là

trung điểm của AH. Chứng minh rằng a 2 . IA b 2 . IB c 2 . IC 0 . (1)
Bài giải
Ta có: a 2 b 2 c 2 2a2 .
A
2
2
2
b
N
Khi đó (1)
a
c
.IA
.IB
.IC
0
M
2
2
2
2a

2a

2a

b2

AI


2a2

c2

. AB

2a2

.AC .

C

Dựng hình bình hành AMIN (hình vẽ), ta có:

B

H

AI AM AN

Với x

AM
AB

x. AB y. AC
AM.AB
AH 2
AB 2


2AB2

.Mà AH

2

b2c2

b 2 c2

b2 c2

a2

x

b2
2a2

.


Trang 10


c2 . Suy ra điều phải chứng minh.
2a2

Hoàn toàn tương tự ta có: y


Mở rộng bài toán sang không gian ta có
Bài toán 3.1.
Cho tứ diện OABC có các cạnh OA,OB,OC đôi một vuông
góc. Gọi S0 , SA, SB ,SC lần lượt là diện tích các mặt của tứ diện đối diện với các đỉnh
tương ứng O,A, B, C. Gọi I là trung điểm đường cao OH của tứ diện. Chứng minh
2
2
2
2
O
Bài giải
rằng SO

.IO SA

.IA SB

Nhận xét: Ta có: S O 2 S A
2

Từ (1)

2SO

2

S B 2 SC 2

2


SO

2

.IC 0.

.IB SC

2

SA

.IO

.IA

2

2S

SB

2SO

.

2
SC

.IB


2

(1)

2S

O
SA

S

OH

2
A
2

SO

2

SB

.OA

2SO2

.IC


0 .

I

O

2

OI

2

2

S

.OA

2

.OB

B

SO

SC

.OB


2SO2
2

2SO2
S

.OC

A

2
C

SO

2

.OC

(2)

C
H

Ta chứng minh (2) nhờ sử dụng bài toán phẳng sau:
M
Đặt OA = a, OB = b, OC = c, OM = m, AM = x
B
Áp dụng bài toán phẳng cho tam giác OAM vuông tại O có đường cao OH:
m2


a2

.

OH

x 2 OA x2 .OM .

Áp dụng bài toán phẳng cho tam giác OBC vuông tại O có đường cao OM:
c2

OM

BC

Do đó ta có

B2

.OB
2

BC2

m2

OH
OH


a2c2

OH

a 2 b2

.OA
.OB
.OC
x2
x 2 .BC 2
x 2 .BC2
m 2 BC 2
a2c2
a 2 b2
.OA 2
.OB 2
x 2 . BC 2
x .BC 2
x .BC2
4.
S

OH

.OC .

A

4.SO

S

2
A

SO

4.S

2

2

2

B

.OA

.OA

4.S

2

S2
B

SO


2

.OB

2

C

.OB
4.SO2

4.SO2

S2
C

S

2

.
OC

.OC

.OC

O

Ta có điều phải chứng minh.

Bài toán 4. Bài toán về đường thẳng Euler trong tam giác
Bài toán cơ sở. Chứng minh trong tam giác ABC bất kì, trọng tâm G, trực
tâm H, tâm đường tròn ngoại tiếp O thẳng hàng và GH 2GO ( Bài toán 3 SGK
Hình học 10 nâng cao trang 21)


Trang 11


Nhận xét: Bài toán này đã được chứng minh dựa vào kiến thức của lớp 10. Tuy
nhiên để phát triển tư duy cũng như làm tiền đề cho bài toán tiếp theo tôi trình bày
lời giải thông qua phép vị tự của lớp 11.
Chứng minh hệ thức GH=2GO ta dùng phép vị tự tâm G biến điểm O thành điểm
H hoặc ngược lại. Dựa vào hình vẽ ta đoán tỉ số vị tự là -2 hoặc - 1 .
2

Bài giải

A

Gọi M, N, P lần lượt là trung điểm của các cạnh BC,CA,AB.
1

2 GA,

Ta có: GM
Do đó

1


GN

2GB ,

1

GP

H

2GC,

P

1

V
G

2

N
G

: A M

O

B


BN
CP
Phép vị tự bảo toàn tính vuông góc nên sẽ biến trực tâm của tam giác ABC thành

M
Hình 3.9

trực tâm của tam giác MNP.
Theo giả thiết H là trực tâm của tam giác ABC và O là trực tâm của tam giác MNP,
1

vì vậy VG 2 : H O

GO

1
2 GH

Từ đó H,G,O thẳng hàng và GH=2GO
Mở rộng bài toán sang không gian ta có bài toán mới
Bài toán 4.1. Chứng minh rằng, với tứ diện trực tâm ABCD ta luôn có trọng
tâm G, trực tâm H , tâm O của mặt cầu ngoại tiếp tứ diện thẳng hàng và GH = GO.
Bài giải
Để chứng minh GH = GO ta nghĩ đến phép vị tự tâm G tỉ số -1.
Lần lượt lấy A′ đối xứng với A, B′ đối xứng với B, C′ đối xứng với C, D′ đối xứng
với D qua G.
Ta dễ thấy A' B' //=AB (tính chất phép vị tự) và
đường trung bình EF (E,F thứ tự là trung điểm
của CD và AB) cũng đi qua G .
Trong hình bình hành A'B'AB E cũng là

trung điểm của A'B'
A'CB'D là hình bình hành.
Mặt khác trong tứ diện trực tâm ABCD
có hai cạnh đối diện vuông góc với nhau nên
AB CDA'B' CD
A'CB'D là hình thoi A'C = A'D'.

Chứng minh tương tự ta cũng có A'C = A'B
A’ cách đều B, C, D. Hình 3.10
Từ giả thiết ta cũng có O cách đều B,C,D nên A'O là trục của đường tròn ngoại
tiếp BCD
A'O (BCD) A'O (B'C'D') (1).
Trang 12

C


Tương tự (1), ta cũng có B'O (A'C'D') (2); C'O (B'A'D') (3)
O là trực tâm của tứ diện A'B'C'D'.
Xét phép vị tự V 1
, ta có: V 1 : A A', B B, C C', D D'
G

G

Như vậy, V 1 : ( ABCD ) ( A ' B ' C ' D ') nên phép vị tự sẽ biến trực tâm của
tứ diện ABCD thành trực tâm O của tứ diện A’B’C’D’.
Suy ra: VG 1 : H O hay GO GHH, G, O thẳng hàng và GO = GH.
G


Bài toán 5. Bài toán đi qua điểm cố định
Bài toán cơ sở:. Trên 2 cạnh của góc xOy có 2 điểm M , N thay đổi sao cho
a
b
1, trong đó a , b là các độ dài cho trước. Chứng minh rằng M N luôn
OM ON
đi qua 1 điểm cố định.
Bài giải
Trên các tia Ox , Oy đặt các đoạn OA = a , OB = b ; gọi E là trung điểm của AB và
O
F là giao điểm của OE với MN , ta có
OF
1
OF
.OE OF . OA
OB .
OE
OE 2
OF
O
OB
A
OF
.
OM
ON .
A
E
2OE OM
O

B
N
Mà F , M , N thẳng hàng nên ta có :
M
N
OF kOM lON với k+l=1
F
OF OA
OF . OB 1 .
x
y
2OE 2OE ON
Hình 3.20
OM
OF
a
b
1 OF = 2 OE F chính là điểm thứ tư của hình bình
2OE OM
ON
hành OAFB ).
Vậy MN luôn đi qua điểm cố định là F
Bài toán 5.1. Hai điểm M, N thứ tự thay đổi trên 2 nửa đường thẳng chéo

a

b

nhau Ax, By sao cho AM BN 1 (a, b là 2 độ dài cho trước). Chứng minh rằng
M

x
MN luôn cắt 1 đường thẳng cố định .
A

x'
M'
A'
a

I

B
b


Trang 13

B'

N

Hình 3.21

y


Bài giải
Dựng tia Bx' // Ax , lấy M' trên Bx' sao cho MM'//AB .
Trên Bx' , By đặt các đoạn BA' = a , BB' = b .
a

b
BM ' BB ' 1.

Từ giả thiết

Theo kết quả ở trên ta có M'N luôn đi qua điểm cố định I (đỉnh thứ tư của hình bình
hành BA'IB') .
Xét đường thẳng qua I và // MM' (//AB) , dễ thấy chính là đường thẳng cố định
luôn cắt MN .
Bài toán 5.2. Trên các tia Ox , Oy , Oz tương ứng có các điểm M , N , P thay

a

b

đổi sao cho luôn có OM ON OP

C

1, trong đó a , b , c là các độ dài cho trước .

Chứng minh rằng mp (MNP) luôn đi qua 1 điểm cố định.
Chứng minh : Cách chứng minh tương tự .

O

C

A


G
P
B
z
F

M
N
x

Hình 3.22

y

Bài toán 6: Công thức tính độ dài đoạn trung tuyến
Bài toán cơ sở: Cho tam giác ABC với AB=c, BC= a, AC=b và trung tuyến AM .
Khi đó AM 2 ma 2 2( b 2 c 2 ) a2 (Bài tập 3 trang 58 SGK Nâng cao)
4

Bài giải
Ta có:

A
AB

AM

MB

AC


AM

MC

Khi đó :
AB 2 AB 2

(AM MB)2 (AM

2AM 2

Suy ra

b

2

c

2

2ma2

2AM (MB MC) MB2
a2
2

ma


B

MC)2

2

MC2

2(b 2 c 2 ) a2
4

Trang 14

.

M
Hình 3.30

C


Nhận xét 6.1. Từ bài toán tính độ dài trung tuyến của tam giác trong mặt
phẳng, mở rộng sang không gian ta thu được bài toán mới:
Bài toán 6.1. Cho tứ diện ABCD. Gọi ma là độ dài đoạn trọng tuyến nối từ đỉnh A
đến trọng tâm A1 của BCD. Tính độ dài ma theo ai (i =1,6) (a1 = AB; a2 = AC; a3 =
AD; a4 = BC; a5 =BD; a6 = CD).
Đáp số: m2a =

1


1

2
2
2
2
2
2
3(a 1+ a 2+ a 3) - 9(a 4+ a 5+ a 6)

Nhận xét 6.2. Lấy M là điểm bất kỳ trên đoạn BC ta có bài toán mới:
Bài toán 6.2 (định lý Stewart). Cho tam giác ABC với độ dài các cạnh AB=c, BC=
a, AC= b. Gọi D là điểm bất kỳ trên cạnh BC , BD= a1, CD= a2. Chứng minh rằng:
a b 2 a c 2 aa a

AD2

1

2

1 2

(*)

a

Đặc biệt hoá:
+ Nếu D là chân đường trung tuyến kẻ từ A xuống cạnh BC ta có công thức trung
tuyến AD 2 ma2 1 (2b 2 2c 2 a2 ) .

4

+ Nếu D là chân đường phân giác trong của góc A, tức là D chia đoạn BC theo tỉ số
DB c
DC
b . Khi đó ta có công thức tính độ dài đường phân giác:
AD2

bc 2 cb 2
b c b c

bca2
(b c)2

bc b c 2

a2

2

.

hay l 2
a

(b c)

2

Từ bài toán trên tiếp tục mở rộng sang không gian ta có bài toán mới

Bài toán 6.3. Cho tứ diện ABCD. Gọi N, M lần lượt là các điểm nằm trên các cạnh
CD, BN sao cho CN l .CD , BM k .BN . Tính AM
theo k, l và các cạnh của tứ
diện.
A

B

D

Đáp sô:

M

N

C
AM

2

(1 k ) AB

2

k (1 l ). AC

2

2


kl . AD ( k

2

k )(1 l ).BC 2 ( k 2 k )lBD 2 k 2 (l 2 l )CD2

Bài toán 7. Bài toán về hai trung tuyến vuông góc
Bài toán cơ sở: Cho tam giác ABC. Chứng minh điều kiện cần và đủ để hai trung
tuyến kẻ từ B và C vuông góc với nhau là: b 2 c 2 5a2 .(Bài tập 7 trang 70 SGK Hình
học 10- Nâng cao).
Trang 15


Bài giải
Gọi G là trọng tâm tam giác ABC. Hai trung tuyến kẻ từ B và C vuông góc
với nhauGBC vuông tại G
GB2 GC2 BC2
A
2m

2

b

2

2m

a2


c

3
3
4 mb 2 mc 2 a2
9
4 a 2 b 2 c 2 9a2
b2

c2

G
B

5a2

C

Nhận xét 7.1. Từ bài toán trên ta thay đổi giả thuyết ta có một số bài toán mới
như sau:
Bài toán 7.1. Cho tam giác ABC. Chứng minh điều kiện cần và đủ để hai trung
tuyến kẻ từ B và C vuông góc với nhau là S a 2 .tan A
Bài toán 7.2. Cho tam giác ABC nội tiếp đường tròn O; R . H là trực tâm của tam
giác. CMR cot A 2(cot B cotC) khi và chỉ khi OH 2 9 R 2 6a2 .
Bài toán 7.3. Cho tam giác ABC có hai trung tuyến kẻ từ B và C vuông góc với
4
nhau. Chứng minh cosA 5 .

Bài toán 7.4. Cho tam giác ABC có hai trung tuyến kẻ từ B và C vuông góc với


2
nhau. Chứng minh cotB cot C 3 .
Bài toán 7.5. Cho tam giác ABC có b 2 c 2 5a2 . Gọi R, r lần lượt là bán kính các
( 10 1)R
đường tròn ngoại tiếp, nội tiếp tam giác ABC. Chứng minh rằng r
. 5
Nhận xét 7.2. Từ bài toán về điều kiện cần và đủ để hai trung tuyến kẻ từ B và
C vuông góc với nhau là: b 2 c 2 5a2 , ta có thể mở rộng cho bài toán về tứ giác, tứ
diện.
Bài toán 7.6. Cho tứ giác OABC có trọng tâm G, OA=x, OB=y, OC=z,
BC=a,CA=b,AB=c. Chứng minh điều kiện cần và đủ để
GA.GB GB.GC GC .GA 0 là x 2

y 2 z 2 3( a 2 b 2 c2 )

Bài toán 7.7. Cho tứ diện OABC có trọng tâm G, OA=x, OB=y, OC=z,
BC=a,CA=b, AB=c. Chứng minh điều kiện cần và đủ để
GA.GB GB.GC GC .GA 0 là x 2 y 2 z 2 3( a 2 b 2 c2 )
Bài giải (Bài toán 7.6)
Trước hết ta chứng minh 16OG 2 3( x 2 y 2 z 2 ) ( a 2 b 2
Trang 16

c2 )


Gọi G1 là trọng tâm tam giác ABC. Vì G là trọng tâm tứ giác OABC nên
2
2
3

. (1)
GO GA GB GC

0 GO

4

16GO

OG1

9OG1

2

2

Mà OA OA (OG1 G1 A)2
Tương tự ta có:

x 2 OG12 G1 A 2 2OG1 .G1 A .

O

y 2 OG 2 G B 2
1

2OG .G B

1


1

z 2 OG 2 G C 2
1

x

2

x

2

y

2

y

2

z

2

z

2


3OG

2OG .G C

1

2

3OG

1

2

1

GA

2

GB

1

a

2

b


2

N

1

2
1

c

G C2

1

2

G

A

3( x 2 y 2 z 2 ) ( a 2 b 2 c2 )

(2)

G1

1

16OG 2 3( x 2 y 2 z 2 ) ( a 2 b 2 c2 ) .


Từ (1) và (2) suy ra

C

3

1

9OG2

1

B

M

Chứng minh tương tự ta cũng có:
16GA 2 3( x 2 b 2 c 2 ) ( y 2 z 2 a2 )
16GB 2 3( y 2 c 2 a 2 ) ( z 2 x 2 b2 )
16GC 2 3( z 2 a 2 b 2 ) ( x 2 y 2

c2 )

Mặt khác
GA.GB GB.GC GC.GA 0
(GA

GB GC)
2


(OG)

2

GA

2

2

16OG
x2

2

GB

16GA

2

2

2

2

GA GB GC
GC


0

2

2

2

16GB 16GC

y 2 z 2 3( a 2 b 2 c2 )

2.4. Hiệu quả của sáng kiến kinh nghiệm đối với hoạt động giáo dục, với bản
thân, đồng nghiệp và nhà trường.
Đề tài đã giải quyết được các vấn đề sau:
Đề tài đã chỉ ra được một số bài toán cơ bản, giải quyết nó bằng phương
pháp vectơ. Trên cơ sở đó đã xây dựng một số bài toán mới tương ứng. Xây dựng
cách giải hoặc đưa ra đáp số cho các bài toán mới.
Đề tài được áp dụng trong những tiết luyện tập, các tiết tự chọn ở trên lớp
đặc biệt là các buổi dạy bồi dưỡng học sinh khá giỏi .
Thông qua việc xuất phát từ những bài toán cơ bản, giáo viên đã gợi ý,
dẫn dắt học sinh tổng quát bài toán, tạo ra bài toán mới, dần dần hình thành cho các
em khả năng làm việc độc lập, phát triển tư duy sáng tạo, phát hiện vấn đề và giải
quyết vấn đề. Phát huy tối đa tính tích cực của học sinh theo đúng tinh thần đổi
mới của Bộ Giáo dục và Đào tạo. Từ đó tạo cho các em niềm tin, hứng thú khi học
tập bộ môn Toán.
Trang 17



Đề tài của tôi đã được kiểm nghiệm trong năm học giảng dạy lớp 10 và
một số buổi dạy bồi dưỡng học sinh giỏi, được học sinh nhiệt tình tham gia và đã
nâng cao chất lượng dạy học. Các em hứng thú học tập hơn, ở những lớp có hướng
dẫn các phương pháp này các em học sinh với mức học trung bình trở lên đã có
căn cứ để giải một số bài tập khó. Học sinh biết áp dụng tăng rõ rệt. Cụ thể ở các
lớp sau khi áp dụng sáng kiến này vào giảng dạy, đánh giá qua bài kiểm tra thu
được kết quả như sau :
Năm

Lớp

học
2018 10A4 (Ban
cơ bản)
10A2 (Ban
2019
nâng cao)

Tổng Điểm 8 trở lên
Số
số HS
Tỷ lệ
lượng
41
7
17,1 %

Điểm từ 5 đến 8 Điểm dưới 5
Số
Số

Tỷ lệ
Tỷ lệ
lượng
lượng
22
53,6 % 12
29,3 %

44

8

31

70,4%

18,2%

5

11,4 %

III. PHẦN KẾT LUẬN VÀ KIẾN NGHỊ
Sáng kiến kinh nghiệm này là kết quả của một quá trình tìm tòi, nghiên cứu
và đúc rút kinh nghiệm trong quá trình giảng dạy, bồi dưỡng học sinh giỏi. Qua
một năm triển khai thực hiện đề tài này với cách xây dựng và phát triển các bài
toán, xây dựng quy trình giải quyết các bài toán một cách "tự nhiên” như vậy, tôi
nhận thấy các em đã nắm được vấn đề, biết vận dụng các kết quả trên vào giải
quyết các bài toán một cách linh hoạt, sáng tạo. Từ đó giúp cho các em yêu thích
môn toán hơn, chất lượng giờ học đã được nâng cao rõ rệt. Trong năm học tới, tôi

sẽ tiếp tục nghiên cứu và bổ sung để đề tài này được hoàn thiện hơn, đáp ứng được
nhu cầu bồi dưỡng cho học sinh khá giỏi để các em đạt kết quả cao trong các kỳ thi
chọn học sinh giỏi và kỳ thi tốt nghiệp trung học phổ thông sau này.
Trong quá trình biên soạn đề tài tôi đã có nhiều cố gắng, tuy nhiên cũng
không tránh khỏi những thiếu sót.Tôi rất mong được các thầy cô giáo, các bạn
đồng nghiệp góp ý, bổ sung để đề tài này hoàn thiện hơn. Hy vọng tài liệu này có
thể sử dụng làm tài liệu tham khảo cho học sinh và thầy cô giáo trong quá trình học
tập, giảng dạy.
Xin chân thành cảm ơn!

XÁC NHẬN CỦA HIỆU TRƯỞNG

Thanh Hóa, ngày 20 tháng 5 năm 2019
Tôi xin cam đoan đây là SKKN của mình viết,
không sao chép nội dung của người khác.

Trịnh Công Hải
Trang 18


TÀI LIỆU THAM KHẢO
1. Văn Như Cương (Chủ biên), Phạm Khắc Ban, Tạ Mân (2007), Bài tập hình học
11 nâng cao , NXB Giáo dục, Hà Nội
2. Văn Như Cương (Chủ biên), Phạm Vũ Khuê, Trần Hữu Nam (2007), Bài tập
hình học 10 nâng cao , NXB Giáo dục, Hà Nội.
3. Nguyễn Văn Dũng (2015), Xác định và luyện tập cho học sinh một số phương
thức phát triển kiến thức sách giáo khoa hình học 10 , luận văn thạc sĩ khoa học
giáo dục, Trường ĐH Vinh, Nghệ An.
4. Trần Văn Hạo (Tổng chủ biên)- Nguyễn Mộng Hy (2007), Hình học 10 , NXB
giáo dục .

5. Trần Văn Hạo (Tổng chủ biên)- Nguyễn Mộng Hy (2007), Hình học 11 , NXB
giáo dục.
6. B.I.Acgunôp- M.B.Ban (1977), Hình học sơ cấp , NXB Giáo Dục.

Trang 19



×