Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
Câu 2. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.
C. 2.
D. +∞.
Câu 3. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
3
2
x
Câu 4. [2] Tìm
√ m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8 √
B. m = ±3.
C. m = ±1.
D. m = ± 3.
A. m = ± 2.
Câu 5. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A = a √
5. Thể tích khối chóp S .ABCD
là
√
3
3
3
2a
4a 3
2a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
2
Câu 6. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 2 − log2 3.
D. 1 − log3 2.
Câu 7. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 8. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.
Câu 9. [1] Tính lim
x→3
A. 1.
x−3
bằng?
x+3
B. −∞.
C. 0.
D. 7.
C. 0.
D. +∞.
Câu 10. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
;3 .
A. 2; .
B. [3; 4).
C. (1; 2).
D.
2
2
√
ab.
Câu 11. Cho
√ số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 12. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 3
a3 2
2
A.
.
B.
.
C. 2a 2.
D.
.
12
24
24
Câu 13. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Có vơ số.
D. Khơng có.
Câu 14. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. 2.
B. −2.
C. − .
2
D.
1
.
2
Trang 1/4 Mã đề 1
12 + 22 + · · · + n2
n3
B. 0.
Câu 15. [3-1133d] Tính lim
2
1
.
D. .
3
3
Câu 16. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 3.
D. V = 5.
A. +∞.
C.
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
8a3 3
a3 3
8a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 18. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. {3; 3}.
Câu 19. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x) − g(x)] = a − b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
Câu 20. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
9
1
A. .
B. .
C.
.
D.
.
5
5
10
10
Câu 21. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 22. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
C. 2.
D. 144.
Câu 23. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
15
18
6
Câu 24. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng
√
A. 7 3.
B. 8 2.
C. 16.
D. 8 3.
Câu 25. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + .
C. T = e + 1.
D. T = 4 + .
e
e
3
2
Câu 26. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [1; 2].
B. [−1; 2).
C. (1; 2).
D. (−∞; +∞).
Câu 27. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A.
.
B. 1.
C. .
2
2
D. 2.
!
3n + 2
2
Câu 28. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 3.
C. 4.
D. 5.
Trang 2/4 Mã đề 1
π
Câu 29. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π
A.
e .
B.
e .
C. e 3 .
D. 1.
2
2
2
Câu 30. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 31. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.
Câu 32. Hàm số nào sau đây khơng có cực trị
1
A. y = x4 − 2x + 1.
B. y = x + .
x
C. y = x3 − 3x.
D. y =
x−2
.
2x + 1
Câu 33. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −3.
C. −6.
D. 3.
2n − 3
Câu 34. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 35. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m = 0.
1
bằng
Câu 36. [1] Giá trị của biểu thức log √3
10
1
A. −3.
B. 3.
C. − .
3
D. m < 0.
D.
1
.
3
x2
Câu 37. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 0.
e
e
Câu 38. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
36
24
12
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
√
3
3
a
2a 3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 40. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −7.
D. −5.
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 41. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Trang 3/4 Mã đề 1
Câu 42. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 43. Hàm số y =
A. x = 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.
Câu 44. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. x = 2.
D. x = 0.
C. 6.
D. 10.
Câu 45. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. .
C. 2e + 1.
D. 3.
e
x+1
Câu 46. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
C. .
D. .
A. 1.
B. .
2
6
3
√3
Câu 47. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
Câu 48. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 49. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.
C. 8.
D. 20.
Câu 50. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 15, 36.
D. 3, 55.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
3.
2.
4. A
C
D
5.
11.
8.
C
B
13. A
D
12.
D
14.
B
B
D
16.
17.
D
18. A
B
20.
21.
C
22.
24.
C
25. A
D
26.
30.
B
32.
C
D
D
27.
C
28.
B
10.
15.
19.
C
6.
7. A
9.
C
D
29.
B
31.
B
33.
B
B
34.
C
35.
36.
C
37.
D
39.
D
38.
40.
D
41. A
B
42. A
43. A
44.
C
45.
46.
C
47.
48. A
50.
49. A
C
1
D
B