Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi môn toán lớp 12 (212)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117.88 KB, 5 trang )

Tài liệu Free pdf LATEX

BÀI TẬP ƠN TẬP MƠN TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+2
c+3
c+2
c+1
Câu 2. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3


3

a 15
a3 5
a 6
3
.
B.
.
C. a 6.
D.
.
A.
3
3
3
log(mx)
Câu 3. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
p
ln x
1
Câu 4. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x

3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
9
3
x+3
nghịch biến trên khoảng
Câu 5. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 6. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 7. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.

A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 6.
B. 2.
C. 2 3.
D. 2 2.
n−1
Câu 9. Tính lim 2
n +2
A. 3.
B. 2.
C. 1.
D. 0.
cos n + sin n
Câu 10. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 0.
D. 1.


Câu 8. [3-1214d] Cho hàm số y =

Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 12. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [−1; 2).

C. (−∞; +∞).

D. [1; 2].

Câu 13. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {3}.
D. {5}.
Trang 1/4 Mã đề 1


Câu 14. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. .
e

D. 3.

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.

B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x + y − z = 0.

Câu 15. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 16. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m > 0.

D. m , 0.

Câu 17. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (1; +∞).

D. (−∞; 1).

2

Câu 18. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 3.

D. 2.

d = 300 .

Câu 19. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho. 3 √
3

3a 3
a 3
.
B. V = 6a3 .
C. V =
.
D. V = 3a3 3.
A. V =
2
2
Câu 20. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 2.
C. a 3.
D.
.
3

2
Câu 21. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Không có câu nào C. Câu (II) sai.
D. Câu (I) sai.
sai.
[ = 60◦ , S O
Câu 22. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng

a 57
2a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
19
19
17

Câu 23.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
0dx = C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
Z
Z x
xα+1
C.
dx = x + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 24. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Một mặt.

D. Ba mặt.

Câu 25. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 3.

D. 1.
2
2
Trang 2/4 Mã đề 1


Câu 26. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.

C. 5.

D. 2.

Câu 27. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
Câu 28. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.

C. 8.

D. 12.


Câu 29. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 40a3 .
A. 10a3 .
B. 20a3 .
C.
3
x2 +2x
2−x
Câu 30. [2] Tổng các nghiệm của phương trình 2
= 8 là
A. −6.
B. 6.
C. −5.
D. 5.
Câu 31. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.
Câu 32. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = x
.
A. y0 =

ln 2
2 . ln x
Câu 33. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim k = 0 với k > 1.
n

C. 12.

D. 8.

C. y0 = 2 x . ln x.

D. y0 = 2 x . ln 2.

B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n

Câu 34. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3
a3 5
.
B.

.
C.
.
D.
.
A.
25
5
25
3
Câu 35. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
C. Nếu
Z
Z
D. Nếu

f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 36. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. [1; +∞).
D. (−∞; −3].
Câu 37. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD


3
3
a 3
a 3
a3
A. a3 .
B.
.
C.
.
D.
.
9
3
3
 π π

Câu 38. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 7.
C. 3.
D. 1.
Trang 3/4 Mã đề 1


2x + 1
Câu 39. Tính giới hạn lim
x→+∞ x + 1
1
B. 2.
C. 1.
D. −1.
A. .
2
Câu 40. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 10.
C. 12.
D. 11.
x
Câu 41. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3

A. .
B.
.
C. 1.
D. .
2
2
2
Câu 42. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
3

Câu 43. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e5 .
C. e3 .

D. e2 .

Câu 44. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
B. m = ±1.
C. m = ± 2.
D. m = ±3.
A. m = ± 3.
Câu 45. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!

1
1
1
B. −∞; − .
C.
; +∞ .
A. − ; +∞ .
2
2
2

!
1
D. −∞; .
2

Câu 46. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√a 5. Thể tích khối chóp3 S .ABCD là
√ S H ⊥ (ABCD), S A =
2a3 3
2a
4a3
4a3 3
.
B.
.
C.
.

D.
.
A.
3
3
3
3
Câu 47. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2


A. −3 − 4 2.
B. 3 + 4 2.
C. 3 − 4 2.
D. −3 + 4 2.
Câu 48. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −2.
A. −7.
B. −4.
C.
27
Câu 49. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
log 2x
Câu 50. [1229d] Đạo hàm của hàm số y =


x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

2. A

B

4.

B

5.

C

6.

C

7.

C

8.

C

10.

C

12.

C


D

9.
11. A
13.

D

15.

C

17. A

D

16.

D

18.

19.
21.

14.

20.

C

B
D

25. A

24.

B

26.

B

28.

C

29.

B

30.

31.

B

32.

33.


B

34.
C

35.

C
B

45. A
47.
49.

D
C
D
C
B
D

38.

B

41.
43.

36.

D

37.
39.

D

22. A

23.
27.

B

D

40.

C

42.

C

44.

C

46.


D

48.

D

50.

C

1

C



×