E
n
1
,n
2
(k
z
) = E
n
1
,n
2
+
2
k
2
z
2m
e
, ψ
n
1
,n
2
,k
z
(x, y, z) =
e
ik
z
z
√
L
ψ
n
1
,n
2
(x, y),
L = L
z
z E
n
1
,n
2
ψ
n
1
,n
2
(x, y)
E
n
x
,n
y
=
2
π
2
2m
e
n
2
x
L
2
x
+
n
2
y
L
2
y
, ψ
n
x
,n
y
(x, y) =
2
L
x
L
y
sin
n
x
πx
L
x
sin
n
y
πy
L
y
.
E
n,
=
2
A
2
n,
2m
e
R
2
, ψ
n,
(r, ϕ) =
1
√
πR
1
J
n+1
(A
n,
)
J
n
(A
n,
r
R
)e
inϕ
,
A
n,
n n =
0, ±1, ±2, ) = 1, 2, 3, J
n
(A
n,
) = 0
ψ(r) = 0 r = R
σ
µν
(ω) = lim
δ→0
∞
0
e
iωt−δt
(J
µ
, J
ν
(t))dt,
∞
0
e
−zt
(A, B(t))dt = ( A, B)[z −iη + (A, B)
−1
∞
0
e
−zt
(Q, R(t))dt]
−1
.
σ
µν
(ω) = lim
δ→+0
∞
0
e
iωt−δt
(J
µ
, J
ν
(t)) = lim
δ→+0
(J
µ
, J
ν
)
− i(ω + η)
+
i
2
(J
µ
, J
ν
)
−1
∞
0
e
iωt−δt
([U, J
µ
], [U, J
ν
]
I
) dt
−1
,
U
ω
E
Ω
F
A = T
R
(ρ(t)A) ρ(t)
∂ρ(t)
∂t
=
i
[ρ(t), H] ⇒
∂ρ(t)
∂t
=
i
ρ(t), H(t) + H
1
t
.
ρ(t)
A = A
0
−
i
t
t
H
1
t
(H
T
|t
, t), A
dt
, H
1
t
(H
T
|t
, t) = [H
T
, H
1
t
(t
, t)].
σ
k
(ω) = −
i
ω
lim
a→0
+
(ω −L)
−1
J
k
,
X ≡ T
R
{ρ
0
(H)[X, J
]}
P
αβ
X = X
αβ
J
k
/J
k
αβ
, Q
αβ
= 1−P
αβ
, X
αβ
≡ T
R
{ρ
0
(H)[X, a
+
α
a
β
]}.
P
αβ
X
J
k
α, β
E =
E
0
sin Ωt
H =
n
1
,n
2
,
k
ε
n
1
,n
2
k −
e
c
A(t)
a
+
n
1
,n
2
,
k
a
n
1
,n
2
,
k
+
q
ω
q
b
+
q
b
q
+
n
1
,n
2
,n
1
,n
2
,
k,q
M
n
1
,n
2
,n
1
,n
2
(q)a
+
n
1
,n
2
,
k
a
n
1
,n
2
,
k+q
(b
q
+ b
+
−q
).
t N
q
(t) =< b
+
q
b
q
>
t
∂N
q
(t)
∂t
= −
1
2
α,α
,
k
|M
α,α
(q)|
2
∞
s,s
=−∞
J
s
(
Λ
Ω
)J
s
(
Λ
Ω
) exp
i(s − s
)Ωt
×
t
−∞
f
α
(
k)f
α
(
k + q) + f
α
(
k + q)N
q
(t
) − f
α
(
k)(1 + N
q
(t
))
× exp
i
E
α
(
k + q) − E
α
(
k) − ω
q
− sΩ
(t − t
)
+
f
α
(
k −q)f
α
(
k) + f
α
(
k)N
q
(t
) − f
α
(
k −q)(1 + N
q
(t
))
× exp
−
i
E
α
(
k) − E
α
(
k −q) − ω
q
− sΩ
(t − t
)
dt
.
Λ =
e
E
0
q
m
e
Ω
.
P
k0
P
k0
≡ 1 − P
k0
∂J
k
(t)
∂t
= A
k0
J
k
(t)−
t
0
Q
k0
(τ)J
k
(t
1
)dt
1
−
i
Λ
k0
E
(t)−
i
J
1
k
(t).
J
k
(t)
m
P
m
k0
X = B
m
k0
(t)T
R
J
m
k
[E
(t)]
m
X
, P
m
k0
= 1 − P
m
k0
,
J
m
k
= J
k
(L
)
m
, B
m
k0
(t) = D
0
/Λ
m
k0
[E
(t)]
m
, Λ
m
k0
= T
R
(J
m
k
D
0
).
m = 1
J
k
(z) =
∞
m=0
m
j=0
T
j
k0
Λ
m
k0
E
m+1
(z)
.
m = 0
m ≥ 1
E(t) = E
(0) exp(−iωt)
E
m+1
(t)
E
m+1
(z) =
1 −
∞
n=0
(−1)
k
mω
z + ω
n
E
m
(0)E(z),
(2.13) (2.12)
J
k
(z) =
∞
m=0
m
j=0
T
j
k0
Λ
m
k0
1 −
∞
k=0
(−1)
n
mω
z + ω
n
E
m
(0)
E(z).
J
k
(z) = σ
m
k
(z)E(z)
σ
m
k
(z) =
∞
m=0
m
j=0
T
j
k0
Λ
m
k0
1 −
∞
n=0
(−1)
n
mω
z + ω
n
E
m
(0)
.
T
j
k0
= −
i
iz −A
j
k0
+ Q
j
k0
(z)
−1
. σ
m
k
(z)
H
int
(t) = lim
δ→0
+
e
3
j=1
α,α
(r
j
)
αα
a
+
α
a
α
E
j
e
i¯ωt
P
0
Q
0
P
0
X ≡
X
αα
a
+
β
a
β
αα
a
+
β
a
β
, Q
0
≡ 1 −P
0
.
σ
ij
(ω) = −e lim
∆→0
+
α,α
(r
j
)
αα
(j
i
)
α
α
f
α
− f
α
¯ω −E
α
α
− Γ
0
αα
(¯ω)
,
Γ
0
αα
(¯ω)
P
1
X ≡
X
ββ
αα
a
+
γ
a
γ
ββ
αα
a
+
γ
a
γ
, Q
1
≡ 1 − P
1
.
σ
ijk
(¯ω
1
, ¯ω
2
) = e
2
α,α
β,β
γ,γ
(r
j
)
αα
(r
k
)
ββ
(j
i
)
γγ
(f
α
− f
α
)
¯ω
2
− E
α
α
− Γ
0
αα
(¯ω
2
)
×
δ
γα
δ
β
α
δ
γ
β
¯ω
12
− E
α
β
− Γ
1
αα
β
(¯ω
12
)
−
δ
βα
δ
γ
α
δ
γβ
¯ω
12
− E
β
α
− Γ
2
αα
β
(¯ω
12
)
,
Γ
1
αα
β
(¯ω
12
) Γ
2
αα
β
(¯ω
12
)
(ω
12
− iδ) − E
αβ
± ω
q
δ → 0
+
δ(ω
12
− E
αβ
± ω
q
•
γ
0
αα
(ω)(f
α
− f
α
) =
qµ
|M
α
,µ
(q)|
2
[(1 + N
q
)f
µ
(1 − f
α
) − N
q
f
α
(1 − f
µ
)]δ(ω −E
µα
+ ω
q
)
− [(1 + N
q
)f
α
(1 − f
µ
) + N
q
f
µ
(1 − f
α
)]δ(ω −E
µα
− ω
q
)
+
q,µ
|M
µ,α
(q)|
2
[(1 + N
q
)f
α
(1 − f
µ
) − N
q
f
µ
(1 − f
α
)]δ(ω −E
α
µ
+ ω
q
)
− [(1 + N
q
)f
µ
(1 − f
α
) + N
q
f
α
(1 − f
µ
)]δ(ω −E
α
µ
− ω
q
)
•
γ
1
αα
β
(¯ω
12
)(f
α
− f
α
) =
q,µ
|M
β,µ
(q)|
2
[(1 + N
q
)f
α
(1 − f
µ
) − N
q
f
µ
(1 − f
α
)]δ(¯ω
12
− E
α
µ
+ ω
q
)
− [(1 + N
q
)f
α
(1 − f
µ
) − N
q
f
µ
(1 − f
α
)]δ(ω
12
− E
α
µ
+ ω
q
)
+ [(1 + N
q
)f
µ
(1 − f
α
) − N
q
f
α
(1 − f
µ
)]δ(¯ω
12
− E
α
µ
− ω
q
)
− [(1 + N
q
)f
µ
(1 − f
α
) − N
q
f
α
(1 − f
µ
)]δ(ω
12
− E
α
µ
− ω
q
)
−
q,µ
|M
µ,α
(q)|
2
[(1 + N
q
)f
α
(1 − f
µ
) − N
q
f
µ
(1 − f
α
)]δ(ω
12
− E
µβ
− ω
q
)
− [(1 + N
q
)f
µ
(1 − f
α
) − N
q
f
α
(1 − f
µ
)]δ(ω
12
− E
µβ
+ ω
q
).
|µ |α
E
α
= E
µ
+ ω
12
+ ω
q
γ
0
αα
(ω) =
π
(f
α
− f
α
)
V
(2π)
3
|M(q)|
2
×
I(q
1
)[(1 + N
q
)f
−
α
(q
1
)(1 − f
α
) − N
q
f
β
(1 − f
−
α
(q
1
))] + I(q
2
)
× [N
q
f
α
(1 − f
+
α
(q
2
)) − (1 + N
q
)f
+
α
(q
2
)(1 − f
α
)]
π
(f
α
− f
α
)
V
(2π)
3
|M(q)|
2
×
I(q3)[(1 + N
q
)f
+
α
(q
3
)(1 − f
α
) − N
q
f
α
(1 − f
+
α
(q
3
))]
+ I(q4)[N
q
f
−
α
(q
4
)(1 − f
α
) − (1 + N
q
)f
α
(1 − f
−
α
(q
4
))]
,
I(q
i
) =
4π
2
(n
β
x
)
2
/L
2
x
+ 4π
2
(n
β
y
)
2
/L
2
y
+ q
2
1
4π
2
(n
β
x
)
2
/L
2
x
+ 4π
2
(n
β
y
)
2
/L
2
y
+ q
2
1
+ q
2
d
2
+
2q
2
1
(q
2
1
+ q
2
d
)
2
, = 1 4.
500
γ
1
αα
β
(ω
12
)(f
α
− f
α
) = T
1
1 − f
+
β
(q
1
) + N
q
+ T
2
f
+
β
(q
1
) + N
q
− T
3
f
α
(1 + N
q
) − f
−
α
(q
3
)(f
α
+ N
q
)
+ T
4
f
+
α
(q
4
)(1 − f
α
+ N
q
) − f
α
N
q
,
T
1
=
e
2
ω
L
z
4(2π)
3
χ
1
χ
∞
−
1
χ
0
4π
2
(n
β
x
)
2
/L
2
x
+ 4π
2
(n
β
y
)
2
/L
2
y
+ q
2
1
4π
2
(n
β
x
)
2
/L
2
x
+ 4π
2
(n
β
y
)
2
/L
2
y
+ q
2
1
+ q
2
d
2
+
2q
2
1
(q
2
1
+ q
2
d
)
2
,
T
2
, T
3
, T
4
J
µ
=
3
ν=1
{σ
µν
(ω, t)E
0ν
(t)},
σ
µν
(ω, t) = lim
δ→+0
∞
0
dt
e
iωt
−δt
(J
ν
, J
µ
(t, t − t
)),
J
µ
(t, t − t
) = exp
i
t
t−t
H(s)ds
J
µ
exp
−
i
t
t−t
H(s)ds
.
Jµ(t, t − t
) J
ν
σ
µν
(ω, t) =
lim
δ→+0
(J
ν
, J
µ
)
δ −i(ω + η) +
i
2
(J
ν
, J
µ
)
−1
∞
0
dt
e
iωt
−δt
([U, J
ν
], [U, J
µ
]
I
)
−1
,
[U, J
µ
]
I
= exp
i
t
t−t
H
0
(s)ds
[U, J
µ
] exp
−
i
t
t−t
H
0
(s)ds
.
σ
zz
(ω, Ω) =
α
e
β(E
F
−E
α
)
L
z
√
2π
2πm
e
β
2
1/2
Γ(ω, Ω) − iω
Γ
2
(ω, Ω) + ω
2
,
Γ(ω, Ω) = (j
z
, j
z
)
−1
2
π
L
z
e
2
m
e
2
α,α
,q,µ,ν
|M
α,α
(q)|
2
q
z
J
µ
(aq)J
ν
(aq)
×
1
ω −νΩ
[e
β(ω−νΩ)
− 1]e
i(ν−µ)Ωt
e
β(E
F
−E
α
)
N
q
exp
−
β
2
2m
e
(
λ
ν
q
z
−
q
z
2
)
2
,
α(ω, Ω) =
4πL
z
e
2
cN
∗
βm
e
2
ω
2
α,α
,q,µ,ν
| M
α,α
(q) |
2
q
z
J
µ
(aq)J
ν
(aq)e
β(E
F
−E
α
)
×
1
ω −νΩ
[e
β(ω−νΩ)
− 1] cos[(ν −µ)Ωt]N
q
exp
−
β
2
2m
e
λ
ν
q
z
−
q
z
2
2
,
N
∗
α
µν
(ω) = (4π/cN) [σ
µν
(ω)] =
4π
cN
(J
µ
, J
ν
)G
µν
(ω)
ω
2
+ G
µν
(ω)
2
,
G
µν
(ω)
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
x 10
−8
−0.04
−0.02
0
0.02
0.04
0.06
0.08
Radius of quantum wire (m)
Absorption coefficient (Arb.Unit.)
Dotted line: T = 82 K
Solid line: T = 77 K
Dashed line: T = 72 K
1.5 2 2.5 3 3.5
x 10
−8
−5
−4
−3
−2
−1
0
1
2
Radius of quantum wire (m)
Absorption coefficient (Arb.Unit.)
Dotted line: T = 82 K
Solid line: T = 77 K
Dashed line: T = 72 K
60 80 100 120 140 160 180 200 220
−8
−6
−4
−2
0
2
4
6
8
10
Temperature (K)
Absorptions coefficient (Arb.Unit.)
Dotted line: R=15,8nm
Solid line: R=16,3nm
Dash
line: R=16,8nm
0 0.02 0.04 0.06 0.08 0.1
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
Photon energy (eV)
Absorption coefficient (Arb.Unit.)
Dotted line: T = 273 K
Solid line: T = 77 K
Dashed line: T = 25 K
R = 25 nm
0.5 1 1.5 2 2.5 3 3.5 4
x 10
−8
0
2
4
6
8
10
12
Radius of quantum wire (m)
Absorption coefficient (Arb.Unit.)
Dotted line: T = 272 K
Solid line: T = 273 K
Dashed line: T = 274 K
0 0.02 0.04 0.06 0.08 0.1
0
50
100
150
200
250
Photon energy (eV)
Absorption coefficient (Arb.Unit.)
Dotted line: T = 272 K
Solid line: T = 273 K
Dashed line: T = 274 K
R ~ 200 A
o
∂N
q
(t)
∂t
= G
q
N
q
,
G
q
> 0
G
q
< 0
G
(±)
q
=
Lm
e
2
3
q
α,α
|M
α,α
(q)|
2
1
e
βA
(±)
+ 1
−
1
e
βB
(±)
+ 1
,
A
(±)
= E
α
− E
F
+
2
2m
e
m
e
2
q
(∆ε + ω
q
∓ Λ) +
q
2
2
,
B
(±)
= E
α
− E
F
+
2
2m
e
m
e
2
q
(∆ε + ω
q
∓ Λ) −
q
2
2
.
G
±
q
=
Lme
βE
F
2
3
q
α
α
|M
α
α
(q)|
2
× exp
− β
m
2
2
q
2
E
α
− E
α
+ ω
q
∓ Λ −
2
q
2
2m
2
+ E
α
e
−β(ω
q
∓Λ)−1
.
Λ > ω
q
eq
E
0
m
e
Ω
> ω
q
⇒
e
E
0
q
m
e
Ω
= v
d
q > ω
q
.
G(Ω)
G(Ω)
G(R)
0 50 100 150 200 250 300
, x 10
13
Hz
0
1
2
3
4
5
G, x 10
14
s
1
0
5
10
15
20 25 30
35
, x 10
13
Hz
-4
-2
0
2
4
Gs
1
Ω
20
40
60
80
100
L
x
nm
20
40
60
80
100
L
y
nm
0
2
4
6
Gx10
14
s
1
20
40
60
80
100
L
x
nm
20
40
60
80
100
L
y
nm
20
40
60
80
100
L
x
nm
20
40
60
80
100
L
y
nm
0
2
4
G x10
10
s
1
20
40
60
80
100
L
x
nm
20
40
60
80
100
L
y
nm
0 10 20 30 40 50
, x 10
13
Hz
0
5
10
15
20
25
30
G, x 10
14
s
1
0 20 40
60
80 100
, x 10
13
Hz
-30
-20
-10
0
10
20
30
G s
1
Ω
0
5
10
15
20 25 30
x 10
13
Hz
0
2·10
9
4·10
9
6·10
9
8·10
9
1·10
10
G s
1
T 200K, R75nm q10
7
m
1
CQRAcoustic phononDeg El.
0 2.5
5 7.5
10 12.5
15 17.5
x 10
13
Hz
0
0.002
0.004
0.006
0.008
0.01
0.012
G s
1
T 200 K, q10
7
m
1
,R75 nm
CQROptical phonon
0 50 100 150 200
R nm
0
0.2
0.4
0.6
0.8
1
1.2
GR x 10
5
s
1
T200K, q10
8
,10
14
CQRAcoustic Phonon
0 100 200 300 400 500
R nm
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
GR s
1
T 200 K, 10
13
Hz, q10
7
m
1
CQROptical phonon
∂
∂t
b
q
t
+ iω
q
b
q
t
=
1
2
α,α
,
k
|M
α,α
(q)|
2
∞
s=−∞
J
2
s
(
Λ
Ω
)
t
−∞
dt
f
α
(
k + q) − f
α
(
k)
× exp
i
E
α
(
k + q) − E
α
(
k) − ω
q
− sΩ
(t − t
)
+
f
α
(
k) − f
α
(
k −q)
× exp
−
i
E
α
(
k) − E
α
(
k −q) − ω
q
− sΩ
(t − t
)
.
b
q
t
c
q
t
ω
q
M
αα
(q) D
αα
(q) c
q
t
b
q
t
ν
q
D
αα
(q) M
αα
(q) f
α
(
k)
|α,
k >
b
q
t
c
q
t
[ω
2
− ω
2
q
−
2
2
α,α
|M
α,α
(q)|
2
ω
q
P
0
(q, ω)][(ω −sΩ)
2
− ν
2
q
−
2
2
α,α
D
α,α
(q)
2
×
ν
q
P
0
(q, ω −sΩ)] =
4
4
α,α
,s
M
α,α
(q)
2
D
α,α
(q)
2
ω
q
ν
q
P
s
(q, ω)P
s
(ω −sΩ, q),
P
s
(ω, q) =
∞
s=−∞
J
s
(Λ)J
s+s
(Λ)Γ
q
(ω + sΩ),
Γ
q
(ω + sΩ) =
k
f
α
(
k) − f
α
(
k −q)
ε
α
(
k) − ε
α
(
k −q) − (ω + sΩ) − iδ
.
ω
q
±ν
q
= Ω
|M
α,α
(q)|
2
|D
α,α
(q)|
2
1
ω
ac
(q) = ω
a
+ iτ
a
; | ω
a
| τ
a
ω
a
≈ ω
q
+
1
2
α,α
| M
α,α
(q) |
2
P
0
(q, ω); τ
a
≈ −
1
2
α,α
| M
α,α
(q) |
2
P
0
(q, ω
q
)
ω
op
(q) = ω
0
+ iτ
0
; |ω
0
| |τ
0
|
ω
0
≈ ν
q
+
1
2
α,α
| D
α,α
(q) |
2
P
0
(q, ω), τ
0
≈ −
1
2
α,α
| D
α,α
(q) |
2
P
0
(q, ω
q
).
ω (ω
0
, q
0
)
ω
(±)
±
= ω
a
+
1
2
(v
a
± v
0
)∆q −i(τ
a
+ τ
0
) ±
[(v
a
∓ v
0
)∆q −i(τ
a
− τ
0
)]
2
±
2
2
α,α
| M
α,α
(q) || D
α,α
(q) |P
N
(q, ω
q
)
2
1/2
,
ω
(−)
+
ν
q
+ ω
q
= Ω
q = 0
ω
(−)
+
> 0
E
0
> E
th
=
2m
e
Ω
2
eq
γ(ω
q
) − γ(ν
q
)
[θ(ω
q
) − θ(ω
q
− Ω)]
2
+ [γ(ω
q
) − γ(ω
q
− Ω)]
2
1/2
,
γ(ω) =
Sm
3/2
e
(1 − e
βω
)
2
√
2πβ
2
q
e
β(E
F
−E
α
)−
βm
e
2
2
q
2
[E
α
,α
(ω)]
2
,
θ(ω) =
Sm
e
e
βE
F
2πβ
e
−βE
α
− e
−βE
α
+
β
2
q
2
2m
e
E
α
,α
(ω)
,
E
th
K
s
= C
q
(ν
q
)/B
q
(ω
q
)
s = 1 K
1
K
1
=
α,α
,
k
D
α,α
(−q)M
α,α
(q)P
−1
(q, ω
q
)/(δ + iγ
0
).
γ
0
=
α,α
,
k
|D
α,α
(−q)|
2
P
0
(q, ν
q
)
K
1
=
α,α
,
k
D
α,α
(−q)M
α,α
(q)λ Γ
q
(ω
q
)/2γ
0
= Γ/2γ
0
.